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ON A N OPTIMAL CONTROL PROBLEM FOR

A PARABOLIC INCLUSION

BUI AN TON

Let H, U be two real Hubert spaces and let ^ be a proper lower semi-

continuous convex function from L (0, T\H) into R . For each t in [0, T], let

φ(t,.) be a proper l.s.c. convex function from H into R with effective domain

D(φ(t,.)) and let H e a l.s.c. convex function from a closed convex subset °lί of

C/intoL2(0, T H) with

h(u) > γ\\u \\u + C

for all u in °ίί. The constants 7 and C are positive.

The main purpose of this paper is to establish the existence of a solution of

the optimal control problem

(0.1) inίigiy) + h(u) : y'<Ξ - dφ(t, y)

+ ?(t9 y) + Bu,0<t<T, y(0) = yo; u e 1/, */ e L2(0, 7 ; # ) }

where δ is a bounded linear mapping of U into L (0, T; H) and ^ is an upper

semi-continuous set-valued mapping of L (0, T; H) into the closed convex sub-

sets of L (0, T; H) with at most a linear growth in y. The existence is shown by

using an approximation scheme introduced recently by Barbu and Tiba [4], Barbu

and Neittaanmaki and Niemisto [5] for elliptic variational problems. Optimal con-

trol problems for differential inclusions of parabolic type involving continuous

convex multi-valued mappings have been considered by Makhmudov and Pshe-

michnyi [9].

Notations, the basic assumptions and the main result of the paper are given in

Section 1. The following differential inclusion is studied in Section 2

(0.2) y' e - dφ(t, y) + &(t, y) + Bu on (0, Γ), y(0) = y0.

The proof of the main result of the paper is carried out in Section 3. Extre-

mality relations for an approximating problem are considered in Section 4.
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196 BUI AN TON

Applications to control problems for differential inclusions of parabolic type in

non-cylindrical domains are given in Section 5.

§1. Notations, assumptions and statement of the main result

For each t in [0, T\, let φ(t,.) be a proper lower semi-continuous (l.s.c.) con-

vex function from H into R with effective domain

D(φ(t,.)) = {y : y e H, 0 < φ(t, y) < °o)

and with 0 e D(φ(t,.)).

The subdifferential dφ(t, x) of φ(t, x) at x shall be written as d(t, x). It is

known that d(t, x) is a maximal monotone set-valued mapping of H into H and

that D(d(t, x)) is dense in D(φ(t,.)). Since d(t,.) is maximal monotone in H,

the mapping / + λd(t,.) is 1-1 and onto for each positive λ and hence the Yosida

approximants Jλ = (I + λ$ί(t,.)) is well-defined.

The following results are known and can be found in Brezis [6] or in Wata-

nabe [10].

LEMMA 1.1. For each t in [0, T], let φ(t,.) be a proper l.s.c. convex function

from H into R with effective domain D(φ(t,.)) in H. Then

1. For each t and each positive λ, the Yosida approximant Jλ is a single-valued

non-expansive mapping of H into H.

2. For each t, Aλ(.) = λ (I — Jλ) is a single-valued maximal monotone, Lips-

chitzean mapping of H into H with constant λ .

3. For each t and each x, Aλx ^ d(t, Jλx).

4. For all x in Did it,.)):

][χ-^ x in H A[x-^ vn[d(t, x)] in H where rn[d(t, x)] is the element of

d(t, x) with minimal H-norm.

5. Let φλ(t, x) = infyeD{φ)\φ(tt y) + "oT II ̂  ~ yf\> then' Φ (Λ ) i s Frechet

differentiable and dφλ(ty x) = A\x.

We shall assume some continuity hypotheses on φ.
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ASSUMPTION I .1. Let r > 0 and t0 be in [0, Γ] . Then for each y0 e D(φ(tOf.)

with || y01| < r, we assume that there exists y(t) in D(φ(t,.)) such that

1. II y(t) - 2/o If £ I kr(t) - kr(Q \2(Kr + φ(t0, */„)).

2. 0 < ί>(ί, y(t)) < ψ(t0, y0) + I lr{t) - lr(t0) | (Kr + φ(t0, y0)),

where Kr is a non-negative constant and kr, lr are two absolutely continuous functions

on [0, Γ] with kfr9 l'r inL2(0, T).

Using Assumption I.I, Yamada [11] has proved the following result.

LEMMA 1.2. Let φ be as in Lemma 1.1 and suppose that Assumption I.I is satis-

fied. Let y(t) be an absolutely continuous function from [0, T] into H. Then for each

positive λ, φλ(t, y(f)) is absolutely continuous on [0, T] and

j-tψλ(t, y(t)) - (A',y(t),~y(t))) | < | Γr(t) | (Kr + φr(t, y)f>

where Kr is as in Assumption I . I and r = s u p { | | / , '#($) | | : 0 < / ί < l ; 0 < s , ί

< T).
A compactness assumption is needed in the paper.

ASSUMPTION 1.2. For each t in [0, T] and each positive c, the set

Xc(t) = iy:y ^ H, 0 < φ(t, y) < c)

is compact in H.

We shall consider set-valued mappings &(t, x) of L (0, T H) into the sub-

sets of L (0, T H) satisfying the following assumption.

ASSUMPTION 1.3.

1. 2F is an upper semi-continuous (u.s.c) set-valued mapping of L (0, T; H)

into the subsets of L (0, T; H).

2. For each and each x, ?F(t, x) is a closed convex subset of L (0, T\ H).

3. There exists C such that

s u p { | | / ( f , x) If : / ( * , * ) ) € Ξ ^ ( f , x)} < C ( l + \\x\f)
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for all x in H and almost all t in [0, T].

In Section 3, we shall consider the optimal control problem

(1.1) i n f W +h(u) +η\\v\\2

L2i0T.H) + ε-1 f [φ(t, y) + φ*(t, υ) - (y, v)]dt:
I ' ' JQ

y' e &(t, y)+Bu-v1O<t<T, y(β) = y0, ε < η u e % y, v e L2(0, T H)}

where φ , the conjugate function of φ, is given by

φ*(t, v) = supXGDiψ)[(x, υ) — φ ( t , x ) ] .

It will be shown that the set of solutions (z/J, uη

ε, v*} of (1.1) is compact in

L2(0, T H) x t/ w e a k x (L2(0, Γ ; i / ) ) w e a k for each 77 and ε. The limit of {y*, uη

ε, vη

ε)

as ε —> 0, is a solution of the problem

(1.2) inί{g(y) + h(u) + η\\vfLHθtT;H):

yf e - *f (f, y) + ^ ( ί , y) + Bu,0<t<T, z/(0) = z/0;

» e l , ι / e l 2 ( 0 , Γ ; ^ ) , v^sd(t9 y)).

The main result of the paper is the following theorem.

THEOREM 1.1. Let φ(t,.) be a proper l.s.c. convex function from its effective do-

main D(φ(t,.)) c: H into R , satisfying Assumption I.I and suppose that

φ(t, y) > c \ \ y f

forally inD(φ(tf.)) and all t e [0, T\.

Let 3" be an u.s.c. set-valued mapping of L (0, T\ H) into the closed convex sub-

sets of L (0, T; H) verifying Assumption 1.3. Suppose that Assumption 1.2 is satis-

fied and let y0 be in D(φ(t,.)). Then

1. For each η and ε, the set {yε, uε, vε) of solutions of (1.1) is compact in

L2(0, T H) x C/weak x (L2(0, T;

2. Ef^ry limit point {y , u , v } of the set {yε, uε, vε} as ε—+ 0, is a solution

of (1.2).

3. The set {yη', w77} is compact in L (0, Γ; //) X ί/weak and every limit point of

the set as rj I 0, is a solution of (0.1).
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§2. The differential inclusion

(2.1) y' e - d(ty y) + &(t, y) + Bu on (0, Γ), z/(0) = z/0.

Under slightly different hypotheses, the existence of a solution of the differen-

tial inclusion (2.1) has been established in [8] using Attouch and Damlamian [1],

Yamada [11] results together with the Schauder fixed point theorem.

First we shall consider the initial-value problem

(2.2) y' + d\y e ^(f, y) + Bu on (0, Γ), y(0) = y0.

LEMMA 2.1. Let φ be as in Theorem 1.1 and suppose that Assumptions 1.1-1.2

are verified. Let f be a continuous single-valued mapping of L (0, T; H) into

L2(0, T H) with

ί, x)\\2

for all x in H and for almost all t in (0, T). Then for any y0 in D(φ(0,.)) and any u

in °U, there exists yλ in L (0, Γ; H) with yr ^ L (0, T; H) such that

(2.3) y[ + A[yλ = f(t, yλ) + Bu on (0, T), yλ(0) = y0.

Moreover

(2.4) \\y'λfL2ωtT;H) + \\A\yλ fL2(QtT.H) + s u p o < ί < Γ ^ ( ί , yλ) < Mil + || w||^ + φiO, y0))

where M is independent of λ, y0, u.

Proof Since Aλ is Lipschitzean with constant λ , the existence of a solution

of (2.3) is a consequence of Peano's theorem.

From (2.3) we get

and

\yλ f < \ \ A\yλ f + f || /(/, yλ) f

Applying Lemma 1.2 and we have
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\ II fit, yλ) f + \ I A\yλ f + II Bu f + (Kr + φλ(t, yλ))(\ l'r(f) | + § | *;(*) | j .

Since

c\\jχxf < φ(t, Jι

λx) < φλ(t, x)

we obtain by taking into account our hypotheses on /

~jt <Pλ(t, yλ) +-fihx If + 1 \AχVχ IΓ

< || Bu |Γ + (Kr + φλ{t, yλ) + 1) (| l'rit) I + I Kit) |2) + C(l + φ,(ί, 2/,).

Thus,

(2.5) φλ(t, yλ{t)) + || % ( ί ) II + j f Ufa fds <

φλ(0, y0) +\\Buf + M+M [ φλ(s, yλ(s))ds9

where M is independent of λ, y0 and of u.

The Gronwall lemma gives

, yλ(t))

< φλ(0,y0) + \\Bu f
^ φ(Ω, y0) + II B M II2 + M 2 .

where M is again a positive constant independent of λ, y0 and of u, All the other

estimates are now a consequence of (2.5)—(2.6).

LEMMA 2.2. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then there

exists yλ in Z,2(0, T; H) with y'λ in L2(0, T; H), solution of (2.2). Moreover

II V'x ΪLHO,T;H) + \A\yλ ϊLHQtT.H) + s u p o < , < r ^ ( i , yλ(t)) < M{\ + φ(0, y0) + \\ u \fv),

where M is a positive costant independent of λ, yQ, u.

Proof. Since OF is u.s.c. from L (0, T; H) into the closed convex subsets of

L (0, T H), it follows from the approximate selection theorem that there exists

{fn} of single-valued continuous mappings of L (0, Γ; H) into L (0, Γ; i/) such

that

1. Graph fn c Graph ^ + — (unit ball about the graph of &),
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2. Range fn c co(Range ^ ) .

Lemma 2.1 yields the existence of a solution of the intial value problem

(2.6) y'n + A[yn = fn(t, yn) + Bu on (0, T), yn{0) = y0.

Furthermore

(2.7) || y'n fL2(QίT.H) + \\A\yλ fLHθtT.H) + s u p o < ^ r ^ ( f , yn) <

Mil + \\ufu + φ(0,y0),

where M is a positive constant independent of n, u, yQ, λ.

We obtain by taking subsequences (denoted again by n): {yn, yβ -^ {yf yr)

weakly in L (0, T\H) χ L (0, T H). Taking into account the lower semi-

continuity of φλ, we get

t, y(t)) < Mil + \\ul + φ(0,

It follows from Assumption 1.2 that: yn—* y in L2(0, Γ; H). From the defini-

tion of A[ we obtain

weakly in Z,2(0, Γ H). So:

We know that

With our hypotheses on 3?, we get: || wn \L2{Q,T-H) — M. Taking subsequences, we

have: wn—*w weakly in L (0, T; H). Since & is u.s.c. we get: w ^ t¥(t, y).

The lemma is proved.

THEOREM 2.1. Suppose all the hypotheses of Theorem 1.1 αr^ satisfied. Then for

any given y0 in D(φ(0,.)) and any u ^ °ll, there exists y in L (0, T; H) with yr in

L (0, T H), solution of (2.1). Moreover

sup V ( ί , pi*)) < M(l + II u \\l
0<t<T

where M is a postitive constant independent of u, y0.
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Proof. Let yλ be a solution of (2.2) given by Lemma 2.2. From the estimates

of the lemma, we obtain by taking subsequences: {yλ, y'λ} —• {y, y'} weakly in

L2(0, T H). Since

s u p o ^ ^ Γ φ α , yλ) < M,

it follows from the estimate and from Assumption 1.2 that yλ—> y in L (0, T; H)

as λ —• 0. The u.s.c. of & gives: / ( ί , z/̂ ) —*f(t, y) weakly in L2(0, T\ H) for any

/e ^.

From Lemma 2.2 we know that: Aλ (yλ) —• z weakly in L (0, T H). Since

A*λ(yλ) e d(t, yλ), we have

0 < Γ (Al(»,) - A ( t , x ) , y λ - χ)dt

for a n y A G ^ and all x in ΰ(rf) Π L (0, Γ;

Therefore

0 < U - A(ί, x), y- x)dt

for any A e ^ and all ^ in Z)W) Π L (0, T; H).

Now a standard argument yields z ^ d(t, y).

The estimates of the theorem are now an immediate consequence of those of

Lemma 2.2.

§3. The optimal control problem (0.1)

First let us consider the problem (1.1).

LEMMA 3.1. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then for

each ε < η, there exists at least one solution {yv

ε> uv

ε, υv

ε} in L (0, T; H) X °ίί X

L (0, T; H) of the optimal control problem (1.1).

Proof. 1) It is clear that the admissible set is non-empty as it contains

{y0, 0, v) with any υ in 2F(t, y0) + 5(0) .

Let dε which we shall write as dε be given by

dε = inί{g(y) + h(u) + η\\v \\2

L2{0>T.H) +

ε"1 Γ ίφ(t, y) + φ*(t, υ) - (y, v)]dt:
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y' e 2F(t, y) + Bu - v, 0 < t < T,

y(0) = yQ;x^*U;y, υ e L2(0, Γ

It is clear that: 0 < dε.

Let {yn, un, vn) be a minimizing sequence of (1.1) with

(3.1) dt < g(yn) + h(un) + η\\υn tiOιT.m +

ε~ι f [φ(t, yn) + φ*(t, vn) - (υn, yn)]dt < dε

With h as in the paper and g(.) > 0, we get

V \\vn\\2

LHo,τ;H) + lUJIί/ ^ C ( ε ) .

C(ε) is independent of ^, η.

But

n\

(3.2) z/; e ^ ( ί , z/w) + β W w - V n on (0, Γ ) , z/w(0) = y0.

Thus,

(3.3) | yn(t) f < || ^01|2 + C2 Γ' [|| yn(s) If + 1 + || MK ||2 + || vn fλds.

The Gronwall lemma gives

(3.4) b J U u ;*) ^ C3(ε, ry).

The constants C are all independent of n.

From the definition of the conjugate function, we get

ί φ(t,yn)dt

< e(l + dt) + f [φ(t, 0) + (yn, vn)]dt

<(l + dε)+ Γ [φ(t,θ)+\\yj\\vj]dt

<Ct(ε,η).

From the equation (3.2) and from (3.4), we have

(3.5) b»IU>.τ;in ^ C5(ε, 77).

2) Let n~^ °° to obtain by taking subsequences (again denoted by n): uo-+u

weakly in U', {z/w, ^ , z J —> {z/, z/', z;} weakly in (Z,2(0, Γ; i/)) 3 . Since un ^ °U
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and °U is closed, u is also in °U. In view of (3.4)-(3.5), Assumption 1.2 gives: yn~

in L (0, T\ H). The lower semi-continuity of both ψ and of its conjugate yield

X T ~T ~T

[φ(t, y) + φ*(t, v)]dt < liminf^^ I φ(t, yn)dt + liminf^^ I φ*(t, vn)dt.

Clearly

I (v, y)dt < lin\__ I (vn, yn)dt.

We now have

dε

 = g(y) + A(w) H- ry || v fL2{0T.H) + ε"1 I [φ(t, y) + φ*(t, υ) — (y, v)]dt.

It remains to show that

y' e &(t, y) + Bu - v on (0, Ί), y(0) = y0.Since $F is u.s.c. from L (0, T; //) into the subsets of L (0, Γ; //) and since yn~^y

in L2(0, Γ; / / ) , we get:/(ί, yn) — / ( ί , ?/) weakly in L2(0, 7 ; i/) for any / e ^ .

The lemma is proved.

LEMMA 3.2. Suppose all the hypotheses of Theorem 1.1 αr<? satisfied. Then for

any η, there exists at least one solution {y , u } in L (0, T; H) X U of the optimal

problem (1.2).

Proo/. Let

0 < dη = inf {̂ (z/) + A(M) + >? || v | | '2 ( 0 f Γ ; j y ):

yr e - j ί (f, y ) + ^ ( f , y) + Bu,0<t<T, y(0) = yQ

M G %, z/ G L2(0, Γ; ff), t; G ^ ( ί , z/)}.

From Theorem 2.1 we know that the admissible set

{yiy'e d(t, y) + ^ ( ί , z/) + 5 M on (0, Γ), z/(0) = y0)

is non-empty.

Let {yn, un, vn) be a minimizing sequence such that

d" < g{yn) + h(un) +η\\vn fLHo,T;H} <d" + n\

and
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Vn G d(t, yn) + ^(f, yn) + Bun on (0, Γ), yn(0) - z/0.

Then it follows from Theorem 2.1 that

hn \\IHO,T-H) + sup||i4(., &,) Il!2(o,r^) + sup p(f, yn)
A&d 0<t<T

<M(X + \\un\\2

u+φ(0,y0))

<C2(η).

We get by taking subsequences: yn~^ y weakly in L (0, Γ; H), yf

n—* yf

weakly in Z,2(0, T H), un^> u weakly in U, {A(t, yn), vn} —̂  U, f) weakly in

(L2(0, Γ; i/)) 2 . From Assumption 1.2, we obtain: yn~^ y in Z,2(0, Γ; i/) .

The u.s.c. of 5̂  yields: / ( ί , yn)^>f(t, y) weakly in L (0, T H) for any

/ ^ &. The maximal monotonicity of d gives: z ^ ^ ( ί , y).

Therefore:

z/r e - d(t, y) + &(t, y) + Bu on (0, Γ) , y(β) = z/0.

It is clear that

dη = g(y) + h(u) + η\\v \\2

L2i0>τ.H)

with v <Ξ d(t, y).

The lemma is proved.

LEMMA 3.3. Suppose all the hypotheses of Theorem 1.1 are satisfied. Then the

set {yε, Wg, fg} of solutions of {1.1) given by Lemma 3.1, is compact in L (0, T ; //)

X C/weak X (L (0, Γ; i/)) w e ak / o r g α c ^ / i ^ d 17. Eferj; ίimiί ^oinί in L (0, T ; i / )

X C/weak x (L (0, T ; i ί ) ) w e a k °/ ^ α ^ 5 g^ α^ ε -^ 0, is α solution of the optimal control

problem (1.2).

Proo/. 1) Let {e/ , ^ , t; } be a solution of the optimal control problem (1.2)

given by Lemma 3.2.

Taking y = y,u = u,v = v = A(t, y ) for some A ^ d, i.e. #

z/ ) in (1.1): we get:

g(yε) + ή(«e) + 77II v£ \\2

L2{0>T.H) +

ε"1 f [φ(t, yε) + p*(ί, v£) - (ye, υε)]dt

^ g(y )

since
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φ(t9 y) + φ*(t9 υ) - (y, υ) = 0 for all υ = A(t, y) e dφ(t9 y).

It follows that

(3.6) || uε Wu + η\\vε \\2

L2i0tT;H) < M,

where M is a positive constant independent of both ε and of η.

On the other hand, using the definition of the conjugate function we have

(3.7) Γ [φ(s, yε) - φ(s, x) + (x - y£, υ£)]ds < εM

for aWxinD(φ) Π L2(0, T H).

Since we assume that x — 0 is in D(φ(t,.)), we get

(3.8) / φ(s, yε)ds < C2η~ι + / \\yε fds.

But
&) + 5wε - z;ε on (0, T) yβ(0) = y0.

So:

(3.9) || yε |Γ < || z/0 IP + C3 Γ || yε(s) fds

The different constants C are all independent of ε, ry.

The Gronwall lemma applied to (3.10) yields

It now follows from (3.9) that

(3.11) Γ φ(s,yε)ds< C6rj~\

and

ll&IUλΓ JSΓ) ^ Af(?7).

The set {yε, uε, vε) is now compact in L (0, T; H) x Uweak x (L (0, Γ; i ϊ)) w e a k

2) Let ε—» 0 and we have, by taking subsequences: {uε, vε) —• {w, f} weakly

in U x L2(0, Γ; //). Since uε ^ °U and ^ is closed, u is in %. Assumption 1.2

gives: y^ym L2(0, Γ; i/) . Clearly yε-* y' weakly in Z, (0, Γ; / ί ) . Since
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g(yε) + h(uε) + η || vε fL2{0ιT.H)

+ Mwe) + r? II vε fLHoτ-H) + ε" 1 I ίψ(t, yε) + φ*(f, t;e) - (ye, υe)]dt

λ 1 7 / * \ 1 II * II2

) + h(u ) + η II t; llL2(0;T;/f),

we obtain

( 3 . 1 2 ) g(y) + hiu) +η\\v |g, ( 0 > 7 . ; J Ϊ ) < ^ ( z / * ) + h ( u * ) +η\\v* fLHo,τ.m.

3) We now show that

y' e */(f, z/) + ^(f, z/) + Bu on (0, 7), y(β) = y0.
The upper semi continuity of 9 gives: f(t, yn) -+f(t, y) weakly in L (0, T; H)

for any / Ξ ^ . In (3.7), we get by replacing z;ε with /( ί , z/ε) + Buε — yr

ε

I [φ(t, yε) ~ φ(t, x) + (x - ye9 fit, yε) + Buε - yf

ε)]dt < εM.

So:

\\\vΛT) ||2 + fj [φ(t, yε) - φ(t, x) + (x- y£,f(t, yε + Bue)]dt

- j\x,yf

ε)dt<εM+\\\yof.

Hence, letting ε~* 0 yields

Γ [φ(t, y) ~ φ(t, x) + (x ~ y, fit, y) + Bu - yr)\dt < 0.

It follows that

I {yf - Bu- f(t,y),χ- y)dt< I [φ(t, x) - φti, y)]dt

for all x in D(φ) Π L2(0, T; H) and for some / e ^ .

Thus, z/' — βz/ — /(f, z/) e dφ(t, y). It is now clear that v G 9φ(ί, #). Since

{z/ , z/ , v } is a solution of (1.2) any y, u are in the admissible set of the prob-

lem (1.2); in view of (3.13) the lemma is proved.

Proof of Theorem 1.1. In view of Lemma 3.3 it remains only to show that

there exists at least a solution of (0.1) and that the set of solutions {y , u , v } of

(1.2) is relatively compact in L2(0, T H) x ί/weak x (L2(0, T;H))weak and that
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the limit in L2(0, T\ H) X Uweak of any {yη, uι', z/} is a solution of (0.1).

The existence of a solution of (0.1) can be established as in the proof of Lem-

ma 3.3 by using a minimizing sequence. We shall not reproduce the proof here.

Let {y*, u*} be a solution of (0.1) and let v* — m\d\t, y ) ] , i.e. the element

of the convex set d(., y ) with minimal L (0, Γ; i/)-norm. Since yη, u'', vv is a

solution of (1.1), we have

h(u ) + η || v \\LHO,T H)

h(u ) + η \\v \\L2{0tT.h

Thus,

where M is independent of η.

On the other hand

\u\\u<M,

(yηY

Theorem 2.1 gives

& f sup φ(t,yη) < C(l + φ(0,

Thus, as before the set ίz/̂ } is relatively compact in L (0, Γ; /f).

Let {y, u) be the limit in L (0, Γ; //) x C/weak of ίz/77, u1}, then a proof as

before gives

y' e - ^ ( ί , z/) + ^ ( ί , z/) + β M on (0, Γ), z/(0) =

and

+h(u) <g{h*)

Since {z/, M) is now in the admissible set of the problem and since {y , u } is

a solution of (0.1), the theorem is then an immediate consequence of the above ine-

quality.

§4. Extremality relations for (1.1)

The first order necessary conditions of optimality for the differential inclu-

sion (1.1) are derived in this section.
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Let K(u) be a closed convex subset of L2(0, T; H) defined by

(4.1) K{u) = \y:y^L\θ, T;H),0< f φ(t, y)dt < c(l + \u\fυ + φ(0, z/0))

and let Iκ{u(x) be its indicator function.

LEMMA 4.1. Let ^ be a set-valued mapping of L (0, T; H) into the subsets of

L (0, T; H) verifying Assumption 1.3. Suppose further that'.

1. For each y, 3"{y) is a compact subset of L (0, T; H).

2. 5F is convex, i.e. the graph of3" is a convex subset of L (0, T H) x L (0, T H).

Then for each fixed x in L (0, T; H), the function

(4.2) F(y x) = inf/eSW Γ (/, x)dt

is convex and l.s.c. from L (0, T H) into R.

Proof For each fixed x in ί,2(0, Γ; H), F(. x) is a mapping of L2(0, Γ; fiΓ)

into R and its lower semi-continuity is an immediate consequence of a known re-

sult. (Cf. [2] p.67). We now show that it is convex, i.e.

F(λyx + (1 - λ)y2 x) < λFiy, x) + (1 - Λ)F(*/2 x).

for any pair ylt y2 in L (0, T\ H) and any 0 < λ < 1. Let {t/y, f(y)) be in Graph

), then {A^ + (1 ~ λ)y2, λfίyj + (1 - ^)/(y2)} e Graph PUyx + (1 -

for any 0 < ^ < 1. We have

inf Γ (/, x)dt
\y1 + (l~λ)y2) Jθ

Γτ Γτ

< inf I (g,x)dt+ inf / (g,x)dt

< λ inf JT (A, x)dt + (1 - ^) inf j [ (A»

The lemma is proved.

Let
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γ(yλ u, v p) =

F(y p) - (v- Bu, p)dt + I (y, pOdt

- (y(T),p(T)) + (y

for any {y, u, v) in W1>2(0, T; H) x U x ί,2(0, T; ff) and ̂  e ^ 1 > 2 ( 0 , 7 ; H).

The strategy set S is given by

(4.3) S={{y,u,v}:{y,u,v}^ Wh\θ,T)H) x (/xL^OJ i / ) , ^ ^ ^ ; / ) ) <0

for a l l - i n ^ 1 > 2 ( 0 , Γ; ^ ) } .

Let Γ b e the mapping of L2(0, T H) x U x L2(0, Γ; i/) into i? + defined by

(4.4) Γ(y, u, v) = g(y) + h(u) +η\\υ W^T H) + W t f ) +

ε"1 Γ [φ(ί, z/) + Φ * ( ί , t;) - G/, z/)]Λ.

Now problem (1.1) may be rephrased as

(l.Γ) inf { 2 /^ } e 5Γ(z/, M, v).

The Lagrangian of the problem (1.1') is

(4.5) L(y, uy v p) = Γ(y, u, υ) + γ(y, uy v p).

It is defined for {y, u, v) in 5 and p in W ' (0, T; H).

The Lagrange multipliers p* are given by

inf{L(z/, u, v p*) : {y, u, v) G L2(0, T H) X U X L2(0, Γ; //)}

= inf{ sup Uy, u, v p) : {y, u, v) e L2(0, T H) x Ux L2(0, T i/)}.
/)e^L2(0,r;i7)

It is known that {z/*, u^ p*} is an optimal solution of (1.1) iff:

(i) {y%, u*, v*} minimizes L(y, u, v p*) on L (0, T; H) x U x L (0, T; H)

and

(ii) rίz/^, M*, ̂  ^ } = 0.

Thus, from (4.4), (4.6) we get

(4.6) p' + dyF{y*, p) + dgiyj + dl^iyj + ε"1 J^ (dφ(t, yj -vJdt^O;

p(T) =

and
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(4.7) 9λ(tt*) + B*p 3 0

with

(4.8) 2J\Ό% + ε~ιdφ*(t9 υj ~ ε~V* " ί 3 θ .

It follows from (4.7) and (4.8) that

P' + dyF(y^ p) + dg(y*) + dσ^M

(4.9) - (2εr?)"1 Γ />Λ+ e"1 Γ [dφ(t, */*) - (2η)~1y^ + (2εη)'1dφ*(t9 v

p{T) =y*(T).

Let Φiy* /)) be given by

*;p) ~ (2εr?)"1 f pdt.

Then ΪPiy* p) is a mapping of L (0, Γ; H) into L (0, Γ; H) and is linear in

p. Since Λ is convex and l.s.c. from U to R , its sub-differential dh{x) is a closed

convex subset of U. Let

# ω = {p(t):p e l 2 ( 0 , T;i7), 5*^) e - dh(u*(f))}

for almost all t in (0, T).

The problem (4.9) may be rewritten as

(4.10) -pf e ^>(y# p) + y(u*, υj on (0, T),pe X(f) a.e. on (0, T)9p(T) = y*{T)

with

Γτ

" 1 I
^ 0

THEOREM 4.1. Suppose all the hypotheses of Theorem 1.1 and of Lemma 4.1 are

satisfied. Let iy*y u%, v*} be an optimal solution of the problem (1.1). If u%(T) is in

H, then we assume that B y%(T) ̂  — dh(u%(T)). Then there exists a unique p

with p and pr in L (0, T; H), solution of the inclusion

— r) fc Πr / (r ) ) -+- °r \ 1J ' T)) -+- °U (U 1) ) nw \\\ I ) ' Tl( I ) ^^ 1
jj κ— UIΛJ/^ \y/ ι t/ Vt/ϊj- > /// ι <-7 vtf ^ς, ^ ^ / ^ ^ \Vy l J f JJ\1 / I

Let φ(t x) = -o" II x II + / # ω C r ) , then 0 is a convex, l.s.c. function
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from H into R for almost all t. Its subdifferential dφ(t; x) — x + dl^{t)(x) is a

set-valued mapping of H into H for almost all ί.

Consider the problem

(4.11) - p' + dφ(t, p) - {9{y*, p) + p) - Viu*, v*) 3 0 on (0, Γ)

p(T) =

Since y*(T) is in D{φ(T,.) it is known that (4.11) has a unique solution p with

p and p' in L (0, Γ; i/) . The theorem is proved.

§5. Applications

Let Ωt be a bounded open set of Rn with boundary Γt and set β =

U0<t<τ(Ωt x U}), Γ = U 0 ^ ί ^ Γ ( L ί x it}). We shall make the following assump-

tions on Ω.

ASSUMPTION V.

1. There exist k £= N and ε0 such that for each t in [0, 71, Γt consists of closed

hypersurfaces Γt of class C and dist (Γt, Γ%

t) ^ ε0 for j Φ i.

2. Let Ωs = U s<r<t(Ωr X {r}). TTiew ί/iβ domain Ω is covered by N slices

Ωt'
+t', δj > 0 and j = 1, . . . , N. For each j , β/ i + ' t5 mapped onto a cylin-

drical domain Ωt X (tJf t} + δ ;) 6jv a diffeomorphism of class C up to the

boundary, which preserves the time-variable.

Let G be an open ball of Rn with clΩ c G for all f in [0, 71.

1. A strongly nonlinear parabolic inclusion

Let U = L (0, T; L (G)) and let °U, the set of admissible controls be a closed

convex subset of U, e.g.

{U:UΪΞ U, a< u(x, t) < β a.e. in (0, T) x G, Γw(x, t)dxdt= M)

Let i ί be a closed convex subset of L (G) with 0 ^ K, a typical example of K

is

K= {y: y(x) <= L2(G), 0 < z/(x) a.e. in G).
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We shall take X(t) to be the set

X(t) = {y(x, y) :y e L2(G) Π K a.e. in (0, 7), y = 0 on G - Ωt).

It is easy to see that

Let

(5.1)

where

and

Mt)

Φ(t,

is a

φit,

y)--

wi

closed

.») =

= r-11|

t. υ) =

convex

φit,

Vy\\

= +

y)

CO

subset of L

+ /*«><*)•

IT 11 c ^ 1/1/

) l i y <= κκ0

otherwise.

•(G).

•(G)

Then φ(t,.) is a l.s.c. convex function of L (G) into R with D(φ(t,.)) =

{yiy^XU) Π R^0

1>r(G)}. Since #(*) is a closed convex subset of L2(G), the in-

dicator of the set is a l.s.c. convex function on L (G) and for any y in D(dφ(t,.)),

the subdifferential of φ(t, y) is

y) = -F(|Fz/Γ"2Fz/) + 9/*ω.

With φ as above, its conjugate is given by

(5.2) φ*(t, v) = s u p Z G K { t ) n W i , r { Ω t ) [ J ^ υzdx ~ r~JQ\ Vz Γ ^ J

It is known that there exists a unique solution zv of the nonlinear elliptic

boundary-value problem

(5.3) -V(\Vz \r~2Vz) + dlκω(z) 3 v in fl,, 2: = 0 on 9fl,.

for any given υ in L (G). It is not difficult to check that: φ (t, v) = (1 —

r" x )J zυv.

Consider the optimal control problem

inf 1 / I y(x, t) — q(x, t) \2dxdt +

-w j I u(x, t) \2dxdt +
*^Ω

η f I υ \2dxdt + ε"1 Γ (r" 1 1 Fz/ Γ + (1 - r " 1 ) ^ - yυ)dxdt
Ω Ω
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:y'e?(t, y) + Bu-υ, y(0) = y0}.

Let q(x, t) be in L2(0, T; L\G)) and let

g(y) = ~2 J I y(χ> fi ~ Q(χ> $

We shall study the control problem

(5.5) inff Γ I y{x, t) - q(x, t) \2dxdt + ~ f \ u(x, t) \2dxdt: y

where S(M) is the set of solutions of the initial boundary-value problem

(5.6) y' - V (I Vy \r~2Vy) e ^ ( ί , y) + β ^ on Ω, y(x, t) = 0 on Γ, z/(0) - y0.

THEOREM 5.1. Let ?F be an u.s.c. set-valued mapping of L (0, T; L (G)) into

the subsets of L (0, T; L (G)) satisfying Assumption 1.3. Suppose that Assumption

V is verified and let φ be as above with yQ ^ K (0) Π PF0' ( β 0 ) . T/i^n the set of solu-

tions {yl, uη

ε, υv

ε} of (5.4) is compact in L (0, T L (G)) x (L (0, Γ ; L ( G ) ) w e a k

X (L 2 (0, Γ; £ 2 ( G ) ) w e a k . Let ε~^ 0 and then let 77 —̂  0, ί ^ n the set of limit points

{y, u, υ) of {yη

ε, u°ε, vε} are solutions of the optimal control problem (5.5)-(5.6).

Proof With φ as in the theorem and with Assumption V, it was shown by

Yamada [11] that φ satisfies Assumption I.I. It is clear that Assumption 1.2 is a

direct consequence of the Sobolev imbedding theorem and of Aubin's theorem. The

stated result is now an immediate consequence of Theorem 1.1.

2. Mixed boundary problems for evolution inclusions

Let Ωt be as before and let G be a bounded, open simply connected subset of

R with a smooth boundary. We assume that Ωt is a subset of G for all t and that

γt — dG Π Γt is a non-empty closed surface. Set: γ = U 0 < t < Γ γt and let

H(G) = iy:y^ Wι'2{G), y = 0 on dG - γ}.

Let j be a proper l.s.c. convex function from R to [0, 00] with ;(0) = 0 and let

β = dj. Consider the l.s.c. convex funtion φ of L (G) into R defined by

Φiy) =\ f\Vy fdx + fj(y)dσ if y e H(G), j(y) e L\γ)
ά JG Jy

and
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ψiy) — °° otherwise.

Let Kit) = {y : y e L2(G), z/ = 0 a.e. in G - β,} and set φit, y) = φiy) +

IK(t)iy). It was shown in [8] that

Diφit,.)) = {y:y^L2(G),Δy<ΞL2iG),y\ΩttΞ Wh2iΩt),

y = 0 on G - Ωt, - - ^ e β(z/) on

with 9φ(/, z/) = —4?/.

The conjugate of φit, y) is

φ*(t, v) = supZGWi,2iΩt)z==0 on d G - r t { j Ω [ z v - 2" I F * l j ^ x " J >

Consider the mixed boundary-value problem

dz
(5.7) — Δz = v in Ωt, — -*r- ̂  βiz) on γt, z = 0 on dβ, — γt.

It was shown in [8] that (5.7) has a unique solution zυ in W (β,). Since 2y is

in W ' iΩt) and 4z y is in L iΩt), it is known that -=p- is in L idΩt) and it is not

Λ Γ λ Γ dz
difficult to check that: φ*it, v) = ~κ I zυvdx ~~ ~κ \ ~^~ vdσ.

Δ j Ω t z Jyt on

As before we now consider the optimal control problem

inf[J I yix, t) - qix, t) \2dxdt + \j\ uix, t) \2dxdt + Ϊ] j \ υ \2dxdt +

(5.8) ε"1 h r I | | Vy \2 + -wzvv\dxdt + / jiy)dσ — τr-~r^ v — yυ)dxdt\ :

L Δ JQ I Δ ) Jy Δ Ofl J

^ e ^ ( ί , z/) on (0, Γ), |/(0) = z/0).

The problem (5.8) will serve as the approximating system for

(5.9) inf[J~ I yix, t) - qix, t) \2dxdt + j \ uix, t) \2dxdt: y e S(w)}

where Siu) is the set of solutions of the initial boundary-value problem

(5.10) y' - Δy(Ξ &(t, y) + u on Ω, - J j e ^(y) on rff



2 1 6 BUI AN TON

y — 0 on dΩ — γ y(0) = y0.

THEOREM 5.2. Let φ be as above and let ^ be a set-valued mapping of L (0, T;

L (G)) into the subsets of L (0, T; L (G)) satisfying Assumption 1.3. Suppose that

Assumption V is verified and let y0 be in K(0) Π H(G) with j(y0) E L ( j ) . Then

the set of solutions {yε, uε, vε} of the optimal control problem (5.8) is compact in L (0,

T;L2(G)) x (L2(0, Γ ; L 2 ( G ) ) ) w e a k x (L2(0, T; L 2 (G))) w e a k . 77w sef o/ /tmtί

points {y, u, v) of the solution-set of (5.8) as ε —> 0 αnrf ί/ien α5 η-^ 0 is a

solution-set of the optimal control problem (5.9)-(5.10).

Proof Again with φ as in the theorem and with Assumption V, one can show

that Assumption I.I is verified. (Cf. Yamada [11]). It is clear that Assumption 1.2

is satisfied and the stated result is an immediate consequence of Theorem 1.1.
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