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CLASSIFICATION OF SURFACES IN

THREE-SPHERE IN LIE SPHERE GEOMETRY

TAKAYOSHI YAMAZAKI AND ATSUKO YAMADA YOSHIKAWA

0. Introduction

We studied plane curves in Lie sphere geometry in [YY]. Especially we con-

structed Lie frames of curves in S and classified them by the Lie equivalence. In

this paper we are concerned with surfaces in S . We construct Lie frames and

classify them. We moreover obtain the necessary and sufficient condition that two

surfaces are Lie equivalent.

We give some basic concepts about frames before explaining our main result.

Let N be a smooth ^-dimensional manifold, and let λ : M—* N and λ : M—• N be

embedded submanifolds of dimension m. We say that λ and λ have contact of at

least order k at p ^ M and p e M if λ and λ agree up to the differentials of order

k at p and p. Let G be a group of diffeomorphisms on N. We say that λ and λ

have G- contact of at least order k at p and p if there exists a P ^ G such that λ

and P ° λ have contact of at least order k at p and p.

Let λ : M—* G/H be a connected, smoothly embedded w-dimensional subman-

ifold of a homogeneous space G/H. We state the definition of Frenet frames of λ

and its construction following G. R. Jensen [J]. Firstly we construct the set of

zeroth order frames. A zeroth order frame at p ^ M is an element P €= G such that

π(P) = λ{p) (where π is the natural projection G—• G/H). Let Lo denote the set

of all zeroth order frames on M. A zeroth order frame field u along λ is a smooth

cross section of L o ^ M.

Secondly we construct first order frames. We denote by g and ί) the Lie algeb-

ras of G and H respectively. We take a vector subspace m of g complementary to

\), and choose a basis eίf. . ., eMo of m. With respect to this basis, we consider the

isotropy representation p0: H—> GL(rn0, R) given by the adjoint action of H on

g/t) = m. There is a naturally defined smooth map λQ from Lo to the Grassmann

manifold Gm >n given by λo(u) = u^ λ*Mp where λ(p) = π(u). We choose a local
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cross section Wx of the action (H, p0) on Gm n. If there exists a zeroth order

frame field u along λ such that λo(u) c Wv we let Lλ = λ^ (W^ and call Lx the

set of first order frames on λ (with respect to W^. We define a /irsί order frame field

along /ί to be a smooth cross section Lx —* M.

Furthermore we iterate this construction of frames; Lo^> Lλ 3 L2 ^ 3

£ f e ^ •••. Thus we construct a set of λ -th order frames L^ which gives λ -th

order contact under the action of G. Suppose frames of all orders can be con-

structed on λ. The sequence dim Lo > dim Lx > dim L2 > eventually stabil-

izes. Thus there is the smallest integer q > 1 such that dim Lk = dim L9 for all

k > q. Then the frames of order q are called the Frenet frames of λ.

Let us now return to the gist of this paper. Let S be the unit sphere in the

Euclidean space E , and 7\S the unit tangent bundle of S , i.e. TλS = {(u, v)

€= Sn x Sn wv = 0}, where * denotes the inner product of Ew . An immersed

hypersurface f : M —• S with a unit normal field ξ : M —• S naturally in-

duces a map λ = (/, ξ) : M —* 7\S . This map >ί is called the Legendre map in-

duced by / with ξ.

Let P0(n + 1, 2) be the projective orthogonal group of signature {n + 1, 2).

The group P0{n + 1,2) acts on 7\S transitively. Then 7\S is equal to a

homogeneous space POin + 1, 2)/H for the isotropy subgroup i/ of P0(n + 1, 2)

at a point. Let /? : Λfw —• TX5W and /ϊ: Mn —> 7\5n be embedded Legendre maps.

We say that λ and Λ are Lΐg equivalent if /ί and ^ are POin + 1, 2)-

congruent, that is, there exists a P ^ P0(n + 1, 2) such that Pλ{M) agree with

Λ(M). Frenet frames of a Legendre map λ in ΓiS" under the action of P0(n + 1, 2)

are called Lie frames of /ϊ. We are here concerned with the case when n = 3.

We summarize our main results as follows: Let f : M —* S be an embedded

surface with a field of unit normals ξ : M —* S , and λ = (/, ξ) : M —• 7\S be

the Legendre map induced by / with ξ. Let Ω be the Maurer-Cartan form on

PO(4, 2). Then for λ we can construct a Lie frame u : Λf2—• PO(4,2) of one of

the distinct five types (Type (a) , . . . , Type (e) in Theorem 3.1) with respect to the

pullback of Ω by u. Furthermore, a surface of Type (a) is an oriented sphere,

Type (b) is a cyclide of Dupin,

Type (c) or (d) is a "degenerate" surface (including canal surface) and

Type (e) is a general surface.

In Section 1, we outline basic facts in Lie sphere geometry. This section is

largely based on U. Pinkall [P] an T. E. Cecil [C]. In Section 2, we give some con-

cepts about frames according to G. R. Jensen [J]. In Section 3, we give our main

theorem and its proof. In Section 4, we get some characteristics of surfaces in Lie

equivalent classes. U. Pinkall showed that the class of Dupin hypersurfaces in Sn
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is invariant under Lie transformations ([P]). We see here that the degeneration of

Lie frames characterizes oriented spheres, cyclides of Dupin and canal surfaces in

We wish to thank Professor Hajime Sato for his helpful suggestions and com-

ments in studying the problems here.

1. Lie sphere geometry

1.1. Lie spheres and Lie transformations

Let 5 be the unit sphere in the Euclidean space E , and 7\SW the unit tan-

gent bundle of 5 i.e.

TγS
n = {(u, υ) e Sn x Sn u v = 0},

where denotes the inner product of E . A hypersphere c : S —> S with a

unit normal vector field ξ along c which gives an orientation induces a mapping

(t, ξ) \ S —* TλS . We call also (c, ξ) an oriented hypersphere. When c shrinks to

a point, we regard ξ as the inclusion of the fiber of TλS over the point c into

7\SW, and call (c, ξ) a point sphere. We use the term Lie sphere to denote an

oriented hypersphere or a point sphere.

Let Rn

2

+ = {x = (xl9 , xn+3) ;x{ ^ R) be an (n + 3)-dimensional real

vector space with the scalar product <, > defined by

(1.1) <x, y> = 'xSy,

where

/ 0 0 - 7 2

(1.2) S=(SJ = ( 0 I,., 0

\ - h o o
We denote by P w the associated projective space, and by Qn the quadric in

Pn+ defined by (x, x) = 0. Then we can identify a Lie sphere in TλS
n with a

point of Q

Let A n~ be the set of all projective lines on Qn+ . By LineίΓ, Z) e A n~

we denote the line generated by [Yl, [Z] ^ Qn . Then

A diffeomorphism φ : T1S
n -^ TλS

n is called a Lie transformation if it carries

Lie spheres to Lie spheres. For example a Mόbius transformation and a parallel

transformation are Lie transformations; the former takes point spheres to point
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spheres and the latter takes (c, ξ) to (cos tc + sin tξ, — sin tc + cos tξ), where t

^ [0, TΓ). Lie transformations are generated by Mόbius transformations and para-

llel transformations.

Denote the group of all Lie transformations by G. A Lie transformation φ can

be regarded as a diffeomorphism φ : Q —•» Q preserving lines on Q , that is

the restriction of a projective transformation Φ : P w + —» Pn+ preserving Qn+ .

Thus,

G = P0(n + 1,2) = O(n + 1,2) / { ± 1},

where O(n + 1,2) = ί P e GL(rc + 3; R) 'PSP = S).

Let 0 = (elt en + 1) ^ 7^5 be the origin, where (e^ . . . , eM+1) is the natural

basis of Έn+ . The isotropy subgroup H of G at o given by

(1.3) H =
A
0

0

0
E

0

0
0

Ά~
exp

0
β

0

0
0

'B

o\
0

0/

exp
1

0

0

\c

0
0
0

0
0
0

A e GL(2; R ) , £ e θ ( « - l ) , S e MK_1>2(R), C e o(2)

The group G acts on A transitively, then

A2"'1 = G/H.

1.2. Lie frames

The Lie algebra g of G is given by

g = {X e 8 [(n + 3; R) 'XS + 5 Z = 0}

la δ ζ

β ε 'δ

'β -'a

and the Lie algebra ί) of H is given by

0 0

J9 ε 0

(1.4)

o(2), ε e o ( « - 1)

(1.5)

— a /

A Lie frame (Y1,. . ., FM+3) is an ordered set of vectors in R 2 satisfying the

relations
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(1.6) <Y,,Y)=Sit

for 1 < i, j < n + 3. The space of all Lie frames can be identified with O(n + 1,

2).

Let Ω — (ωp be the Maurer-Cartan form introduced by the equation

(1.7) dY, = nΣ.ω',Yr

Taking the exterior derivative of (1.8), we get the Maurer-Cartan equations

(1.8) dω'i = Σ ωk

t A ωk.

By using (1.8), we find that con+3 Λ idωn+3) Φ 0. Hence TXS is a contact

manifold with a contact form con+3.

1.3. Leg endre submanifolds and Dupin submanifolds

An immersed in — 1)-dimensional integral submanifold of the contact dis-

tribution D is called a Legendre submanifold.

An immersed hypersurface / : Mn~ι—+ Sn with a unit normal field ξ : Mn~l

—> Sn naturally induces a Legendre submanifold λ = (/, ξ) : Mn~ —»• 7\SW. This

map yϊ is called the Legendre map induced by / with ξ. Conversely a Legendre sub-

manifold λ = (/, ξ) : M —> 7\SW naturally induces a smooth map f : M —•

S , which may have singularities; however, a Legendre submanifolds is locally

transformed by a parallel transformation to be a Legendre map. (See [P Theorem

1] )

Let Y and Z are smooth maps from Mn~ into Qn+ . By Line{Γ(^), Zip)} we

denote the line generated by the points [Yip)] and [Zip)] in Qw + for p ^ M w .

Let λ = LineίF, Z} : M^1—>Λ2 w~1 be a Legendre submanifold. Then,

(1.9) <dY, Z> = 0.

(For the necessary and sufficient condition that a smooth map λ — Line{F, Z} :

Mn —+ Λ n is a Legendre submanifold, see [C Theorem 2.3].)

We call the sphere

(1.10) [Kip)] = [rYip) + sZip)]

a curvature sphere of λ at p ^ Jlί" , if there exist a non-zero vector X in TpM
n

and r, s e R with (r, s) =̂ (0,0) such that

(1.11) rdYiX) + sdZiX) e Span{F(/>),
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A curvature sphere is invariant under Lie transformations. The vector X is called

a principal vector corresponding to [K\. At each point p ^ M , there are at most

n — 1 distinct curvature spheres [KJ, . . . , [Kg]. The principal vectors corres-

ponding to the curvature sphere [KJ form a subspace Tt of the tangent space

TpM
n~\ and TpM

n~ι = 7\ Θ Θ Tg. If the dimension of Tt (which we call the

multiplicity of [UL,]) is constant on an open subset U of M , then the distribution

Tt is integrable on U. A connected submanifold J^ of Mn is called a curvature

surface if at each p ^ sS, the tangent space 7 ^ is equal to a T r

A Legendre submanifold λ : M —> Λ is called a Dupin submanifold if

along each curvature surface, the corresponding curvature sphere is constant. We

say that a Dupin submanifold is proper if multiplicities of curvature spheres are

constant on Mn~ . If sS is a curvature surface of dimension m > 1 in a Legendre

submanifold, then the corresponding curvature sphere is constant along ώ. This

fact shows that we have only to check the Dupin condition along curvature sur-

faces with dimension one.

1.4. The second fundamental form

Let λ :Mn~ ~^Λn~ be a Legendre submanifold. Let (Ylf . . . , Yn+3) be a

smooth Lie frame on an open set U of Mn such that for each x ^ U, λ(x) —

Line{Fw+2, Yn+3). We can choose the Lie frame so that Yn+2 is not a curvature

sphere at U. By (1.4) and (1.9) we find that the forms α>3, ω 4 , . . ., o)n+l are linear-

ly independent; i.e.

(1.12) ω\ Λ ω\ A ••• Λ ωλ

n+ί Φ 0 .

The condition (1.9) is equal to

(1.13) ωn+3 = 0.

Taking the exterior derivative of (1.13) and using the Maurer-Cartan equations

(1.8), we obtain that

n + l

(1.14) dωn+3 = Σ ωa A ωa = 0
a=3

By Cartan's lemma and (1.12) it follows that

n+l

(1.15) ωa = Σ haβωβ with Aαi3 = hβa.
β=3

We define the second fundamental form of λ determined by Yn+2 to be the quadratic

differential form
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(1.16) Π(YnJ = KΣ haβω
ι

aω\.
a,β=3

2. Frenet frames

2.1. Contact

Let N be a smooth n-dimensional manifold, and let λ : M~~* N and λ : M—* N

be embedded submanifolds of dimension m. We say that λ and Λ have contact of at

least order O a t ^ M and p & M iί λ(p) = λ(p), and that λ and I have contact of

at least order \ Ά p and p if λ(p) — λ(p) — x and λ%Mp = λ*M~p as subspaces of

We reformulate the definition above. Let Gnm(N) denote the Grassmann bun-

dle of tangent m-plane on N. The immersion λ induces the smooth mapping Tλ: M

—* Gnm(N) given by Tλ(p) — λ*Mp, which is a m-plane in Nλip). Then λ and λ

have contact of at least order 1 at p and p if and only if Tλ (p) = Γj (̂  ).

We iterate this construction and define higher order contact as follows:

Let N(o) = N,no = n and for k > 0 let iV("+1) = Gnk>m(N(k)) where nk+ι =

άimNik+1). Let T,(o) = λ and Γ,("+1) - ΓΓ?> :M~> G^JN^). Then for A > 0 we

say that λ and /ί have contact of at least order k at p and )̂ if Tλ (p) = T~λ (p). If

λ and /i have contact of at least order k at p ^ M and p ^ M but not of order

/c + 1, then we say that λ and λ have contact of order k dX p and ^.

We say that λ and /ί have G-contact of least order k at p if there exists a P ^

G such that /ί and P ° /I have contact of at least order k at p and ^.

2.2. Construction of Frenet frames

Let G be a transitive Lie transformation group on a manifold N. We fix an

origin o of JV, and denote the isotropy subgroup of G at o by ϋf. Then the map

7Γ : G—• iV given by ττ(P) = P(o) induces diffeomorphism G / i / = Λ̂ .

Let λ:M~^G/H=N be a connected, smoothly embedded n-dimensional

submanifold of a homogeneous space G/H. Firstly we construct the set of zeroth

order frames. A zeroth order frame at p ^ M is an element P ^ G such that

τr(P) =Λ(/>).

Choosing a basis ev . . ., £mo of the tangent space No, we have a natural bun-

dle map h0: G~^L(N) defined by A0(P) = P*(ev . . . , ^ o ) , where L(Λ0 -> Λ̂  is

the principal GL(m, R)-bundle of linear frames on N. We identify P ^ G with

A0(P) e L(iV), so we call P a frame.

Let Lo denote the set of all zeroth order frames on M. A zeroth order frame

u along λ is a smooth cross section of Lo—* M i.e. is a smooth map u : M—+
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G such that π ° u — λ.

Secondly we construct first order frames. We denote by g and ί) the Lie algeb-

ras of G and H respectively. We take a vector subspace m of g complementary to

ί), and choose basis ev . . ., em of m. With respect to this basis, we consider the

linear isotropy representation pQ:H—> GL(m0, R) given by the adjoint action of

H on g/ΐ) = m. There is a naturally defined smooth map λQ from LQ to the Grass-

mann manifold Gm^n given by λo(P) = P* λ*Mp where λip) = π(P). We choose a

local cross section Wι of the action (H, p0) on Gmo>n. We say that λ has the type

of Wx if there exists a zeroth order frame field u along λ such that λQ(u) c: Wv If

λ has the type of Wv we let Lγ — λQ (W^ and call Lx the set of first order frames

on λ (with respect to WΊ). We define a /irsί order frame field along Λ to be a smooth

cross section Lι —* M.

The smooth map λ0 ° u: M—> Wλ does not depend on the choice of first order

frame field u along λ. Choose a coordinate system x ,. . ., χUl on Wλ, where /^ =

dim Wv We call the functions \ί — χι ° λ0 ° M(Z = 1, . . . , μ^ the /irsί ortίer in-

variants of Λ.

The set of first order frames L : gives first order contact under the action of

G. To put it more precisely, let λ : M—• G/H and /ί : M~-> G/H be smoothly

embedded w-dimensional submanifold on which first order frames can be con-

structed. Then λ and λ have G-contact of at least order 1 at p ^ M and p G M if

and only if they are both the type of a local cross section W1 of p0, and they have

the same first order invariants at p and p. (See [J 1.6 Theorem 1].)

Furthermore we iterate this construction of frames: Lo 3 L1 3 L2 ^ * ' * ^

LΛ ^ . Thus we construct a set of k-th order frames Lk which gives k-th

order contact under the action of G. The sequence dim Lo > dim Lγ > dim L2 >

- - - eventually stabilized. Thus there is the smallest integer q > 1 such that

dim Lk = dim Lq for all k > q. Then the frames of order q are called the Frenet

frames of Λ.

We have the following congruence and existence theorem: Let λ \M^> G/H

and ~λ :M—• GV/f be smoothly embedded ^-dimensional submanifold. Then λ and

λ are G-congruent if and only if their Frenet frames are of the same order q, they

are both the type of a local cross section Wq and there exist a one-to-one corres-

pondence φ \M—*M such that ka ° φ — ka where ka, ka are invariants of order

< q. (See [J 1.11 Theorem 3].)
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3. Lie frames of Leg endre maps in 7\S under PO(4,2)

3.1. Main theorem

Our main theorem is the following:

THEOREM 3.1. Let λ : M —* TXS be a Legendre map which is induced by an

embedded oriented surface f : M —• S with a field of unit normals ξ : M —> S . Let

Ω be the Maurer-Carton form on G — PO(4,2) and φv φ2 coframe fields on M .

Then the Legendre map λ belongs to one of the following fine types.

Type (a): We can take a Lie frame u : M —* G of λ such that

0 0 0! 02 0 0

0 0 0 0 0 0

0 0 0 0 0! 0

0 0 0 0 0 2 0

0 0 0 0 0 0

0 0 0 0 0 0,

(3.1) u*Ω =

Type (b): We can take a Lie frame u : M —• G of λ such that

(3.2) u Ω —

0 0 0 : 02 0 0

0 0 φx - 0 2 0 0

0 0 0 0 0! 0!

0 0 0 0 0 2

0 0 0 0

0 0 0 0

~ 02

0 0

0 0

Type (c): We can take a Lie frame u : M

la δ 0

β 0 *δ

v j β — c

G of λ such that

u Ω =

(3.3) a =
k2φ2

+ 1)0! + k2φ2 ( - 3/c1 + 1)0! - 3/c20

(k2 - k3)φ2 (k2 - k3)φ2

2/c30i + £

0 k4φ

-k4φλ 0

- 2A:30i ~

ι 02

i " 0 2
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In (3.3), kι (i = 1, 2, 3, 4) are smooth functions on M that satisfy the following

tegrability conditions:

in-

(3.4)

k2 + 6ftV + k[ = 0,

12ftV - δAr'A;4 + {2k\ - k") = 0.

8ft V + k\ = 0,

2kιk2 + k3 - k\ + kl = 0,

where k] (i = 1, 2, 3, 4, j — 1,2) are smooth functions on M such that dk' — k[φ1

+ k'2φ2.
Type (d): We can take a Lie frame u : M —* G of λ such that

la δ 0

u*Ω=lβ 0 'δ

( 3 5 ) a = ( 3 ^ + 3 ^ k'φ. + k'φ,

\ f t V i + (A:2 + D 0 2 3 f t V i + (3A;2 ~ l ) φ

_ . /c 4 0 x — 2ft 3 02 ^ V i — 2k3φ2P — I
(kι + k3)φλ + k2φ2 ( - kι - k3)φx - kzφ

7 ' \. o /' " \^ " Λ

In (3.5), A: (i = 1, 2, 3, 4) αr<? smooth functions on M that satisfy the following in-

tegrability conditions:

k1 - 6k2k3 + k\ = 0,

( 3 6 ) I2kιk3 + 8k2k4 + ( - 2k\ - k\) = 0.

o/C AC Kγ — U ,

LJ AC AC AC ACo I ACi V y ,

t̂ /ẑ rg /c;- (/ = 1,2,3,4, y = 1,2) αr^ smooth functions on M such that dk = k[φ1 +

kι

2φ2.
Type (e): We can take a Lie frame u : M —> G of λ such that

/ a δ O

(3.7) u*Ω = I j8 0 {δ

X 7 β — a'
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a =

β =

r =

(3kι (3k2 + 1)02 k φλ + k φ2

(k1 + 1)0! + (/c2 + 1)02 (3/c1 + 2)0! - (3/c2 + 2)02

k φ2k φι

Jr k φ2 k

k4φι + /c 60 2 — /c40L — /c602

0 /c60i + /c502 ί 01 02

1 ~02

/n (3.7), k (i — 1, . . ., 6) are smooth functions on M that satisfy the following in-

tegrability conditions:

k3 = (A:1 -hA:2)2 + 2A:2
1 + /ί;2,

k4 = (k1 + k2)2 - k\ + 2k\,

(3.8) 6kλk3 + 4ft2ft5 + 3/c3 + 2/c5 - k\ + k\ = 0,

4A1A6 + 6/c2/c4 + 3/c4 + 2/c6 + /c2

4 - k[= 0

4/c1/c5 4- 4/c2/c6 + 2/c5 + 2/c6 + k\ - k\ = 0,

ίί /ier^ /c; (/ = 1, . . ., 6, 7 = 1,2) are smooth functions on M such that dkι — k[φ1

+ /C202.

3.2. Proof of Theorem 3.1

Before turning to the proof of Theorem 3.1, we indicate its process in Figure 1.

1
///(dim. 4) Hi (aim. 3)

I

1
HI = H;

1

I
(dim. 4) //'(dim. 2) H,'(dim. 2) ί/ f = {1}

HI = {1}
1

HI = (I)

I

I

//; =

( type (a) ) ( type (b) ) ( type (c) ) ( type (d) ) ( type (e) )

Figure 1
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The detail of the proof of Theorem 3.1 is as follows:

Construction of first order frames

We denote by H the isotropy subgroup of G at the origin o, and g and ί) the

Lie algebra of G and H respectively. (See (1.3), (1.4) and (1.5).) As a vector sub-

space of g complementary to ί), we take the Ad(H) -invariant subspace m. For a

basis of m we choose the following elt e2, e3, e4, e5 :

(3.9)

e1 =

eA =

0

0

0

0

0

0

0

0

0

E<

0

0

Eλ /
0 , e2 =

0/ \

°\
Έ< ) , e s =
0 /

0

0

0

/

\

E2

0

0

0 E5

0 0

.0 0

t

0 /

0

%
0

where

(3.10)

0 l \ / 1 0 \ / 0 1 \ / 0 0 \ / 0 0

- l o / ' 2 \ o o / 3 \ o o / ' 4 \ i o / ' 5 \ o l

The isotropy representation p0: i/—• GL(5, R) is

/άetA 0 0 \ /άetA 0

(3.11) po(P) = * a\E a\E = * flί/2

for P <Ξ H,A= \ a i a<ί U GL(2, R), £ e 0(2). Let Λ denote the former
ί 2

matrix determined by A in (3.11), and E the latter matrix determined by E in

(3.11). With respect to g — ί) + m we decompose the Maurer-Cartan form Ω into

β 0 + <90, and we set θ 0 = Σ 0,0, (ί = 1,2,3,4,5) then

(3.12) θλ = α>6, 02 = ct>3, θ2 = ω4, 04 = ω3, 05 = ω 4.

We need to choose a local cross section Wλ of the action (H, p0) on G 5 2 to

obtain a first order frames on λ. To get orbits of the action of (H, p0), we con-

sider the Maurer-Cartan form Ω on G. Let u be a zeroth order frame field along

>ί, and 01 ? 02 coframe fields on M Set u θt = xίφι + y^2 for some smooth func-

tions xt, yt on M, then
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Λ-1 01

x2 y2

%3 y3
T5,2'

(For further details, see [Jj.) Hence u is a first order frame field along λ with re-

spect to Wx if and only if

[ 1 2 3 4 5[ 1

?/i

PROPOSITION 3.2. We can take two types of Wγ:

(3.13)
o o l o o o l o - 1

Proof. We see that xγ = yι = 0, because λ is a Legendre map and ω6 is a

contact form. We choose coframe fields φlf φ2 on M such that u θ2 — φlf u θ3 =

φ2. From (1.15),

• χ \ y\~

χ2 y2

x3 y3

x, 2/4

^ 5 yJ

=

0 0
1 0

0 1

^ 3 3 ^ 3 4

-hA3 hui

=

0 "

h

We first consider the orbit of the action of E, where E ^ 0(2).

0

h =
0

E

EH _
=

0

h
. EHE'1.

f\0 1 0 ^ 0
Thus those orbits meet ,

- 0 0 1 0 A2

Next we consider the orbit of the action of A, where A ^ GL(2, R).
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A

0

1

0

Λ
L o

o -
0

1

0

=

1 , - 4 1

aι -r λιa2

I
"Γ

0

0

γ + λ2a2

a\ + λ2a\

2

1

0
1

0

•f λ}

2

ft 2

l « 2

0

0

1

0

2 4- ) 2

1 I •> 1

^1 ' ^2^2

( r0 1 0 0 On
In case that /^ = /i2, those orbits meet [ J, and in case that λx

i u u f r0 1 0 1 O-i
λ2, those orbits meet LQ 0 1 0 - l - l '

U

We say that λ : M—• T:S is of type (a) if it has the type of Wλ , and that λ is

of type (B) if it has the type of Wι.

Type (a)

Let λ : M-* T{S be of type (a); i.e. there exists a zeroth order frame field u

along λ such that

(3.14) u ωβ = u ox = 0, u ω3 = u u1 = φlf u ωA = u υ3 = φ2,

(3.15a) u ω3 = u σ4 = 0, u ω4 — u ϋ5 — 0.

Construction of second order frames of type (a)

The isotropy subgroup Hλ

a of i7 at a point of Wγ is

(3.16a)

The Lie algebra

(3.17a) ϊ)i =

0

\0 0

1 1

_ i aγ a2

. 0 al

Γl1 IS

la 0 0

i8 ε 0

o o o\ /o o o\
exp \B 0 0 Uxp 0 0 0

0 'β 0/ \C 0 0/

GL(2, R), E e 0(2), β e M2 2(R), C e o(2)

1 1

0 al
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We decompose ί) — ΐft + m*, and for a basis of mj we take

E, 0

6 =(3.18a)

The representation

(3.19a)

e6 = 0 0

o o -

GL(6, R) is

/ * 0 0 *

a\E

* 0 0 *

* 0 0 *

* 0 0 *

0

0

* 0

* o
* 0
* 0
* o

where P ^ i/f. With respect to ί) = ί)l + m^ we have £?0 = βf + θf, and we set

θι = 0 ^ 6 then

(3.20a) 06

β = ω\.

Taking the exterior derivative of (3.15a), and using (3.14) and the Maurer-Cartan

equation (1.8), we obtain the following equations:

(3.21a) du*θ, = 0! Λ w*0* = 0, du*θ5 = φ2 Λ u*θl = 0,

where ^ is a first order frame field along λ. It follows that

(3.22a) u θ6 = 0.

As a result, we take a local cross section = j J of the

action (H1 , pj on G 6 2 . For this reason, a first order frame field u along /I is a

second order frame field along λ with respect to W2 i.e.

The isotropy subgroup i/2

α of i/f at a point of W/ is equal to H[. In this way we

get a second order frame field u : M—> G/H± along Λ : M—* G/H. Adding an ex-

tra step we lift u from G/H1 to G, then we get a Lie frame of λ. By choosing a

lifting ΰ of u such that /ί βf = 0, we obtain the Lie frame of type (a) in Theorem

3.1.
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Type (B)

Let λ : M—• TγS be of type (B); i.e. there exists a zeroth order frame field u

along λ which satisfies (3.14) and the following equations:

(3.15b) u ω3 = u fl4 — φ l t u ω4 = u u5= ~ φ 2 .

Construction of second order frames of type (B)

The isotropy subgroup H1 of H at a point of Wι is

(3.16b)

o o o\ /o o o
exp ( B 0 0 exp 0 0 0 )

0 *B 0/ \C 0 0,

\a2 ax

The Lie algebra i)t of //i is

la 0 0

GI(2, R), M2 2(R), C e o(2)

(3.17b) f)' = βO 0 ; α = ( α i α 2 ),i8eΛf 2 2 (R), r e o ( 2 )

7 β — a,

We decompose Ij = t)j + 01^ and for a basis of rπj we take

IE, 0 0 \ / £ 5 0 0

(3.18b) e6 = 0 0 0

o o -Έί

Ue. = 1 0 0 0

o o - Έ,

The representation p1: H1 —* GL(8, R) is

(3.19b)

/ * 0 0 0 0

/ * «! 0 a2 0

* a2 0 ax

* 0 a2 0

* pb\-qb\ pb2

2-qbl ~ pb\ + qb\ - pb\

* ~ φ\ + ί&ί ~ ^̂ 2 + Pb\ φ\ — pb\ qb\ —

* - &i &ί - b\

0

01

2 i

bl

0 0

0 0

0 0

0 0

0 0

p -q 0

-q p 0

0 0 1

0

0

0

0

0
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0 0 0 0

ax 0 a2 0

0 aγ 0 a2

002 0

0 a2

0

0

0

0

0

0

0

0

0

0

0

0

0

P

0

0

0

0

0

0 0 0 0

0

0

0

0

0

-q 0

P 0

0 1

where P ^ Hlt p =
y + (a2r
detΛ

/ *

/ *
/ *

*
*

*

V

0

1

0

0

0

bl

bl
- b l

T ~4-

0

0

1

0

0

bl

bl

bl

Λ J

0

0

0

1

0

-bl
-bl

-bl

0

0

0

0

1

-bl

-bl

bl

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

Q — i , Λ . bCL -Π UeilULC LUC lUllllCl llldLI

determined by A, and B the latter matrix determined by B. With respect to tj —

+ xn1 we have Ωo = Ω1 + θ l f and we set θ[ — Σ θieι (i = 6, 7, 8) then

(3.20b) 2 1

= <% — ω 2
^i»

By taking the exterior derivative of (3.15b), and by using (3.14) and the

Maurer-Cartan equation (1.8), we obtain the following equations:

(3.21b)

Set u θj =

(3.21b),

We put

d(φι - u*θA) = - 0 ! Λ u*θb

6 ~ 0χ Λ u*θb

7 ~ 2u*θl Λ φ2 = 0 ,

uθ5) = - u θ; Λφ2 + uθ7 Aφ2- 2 0 ! Λ uθ8 = 0 .

+ y,φ2 (i = 6, 7, 8) for some smooth functions xt, y, on M. From

= 0, yΊ
= 0.

' US Z-1 J-8 ~ Vl

We consider orbits and local sections W2 of the action of (Hγ, pj on G8 2.

PROPOSITION 3.3. We can take four types of W2:

(3.22b)

w:

w;

w;

1 Lo

1 Lo o

= ί'ί° '
L Lo o

1 0 1

0 0 1 0

w: =

0 0 0 0

- 1 0 0 0

0 1 0 1 1 0

0 1 0

0 1

1 0

1 0 1

- 1 0 0 0

0 0 0

- 1

0

0 0 1 0 - 1 1

0

- 1 0

1 0

- 1 0

] ) •
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Proof. We first consider the orbit of the action of B, where B G M 2 2 (R) .

B

" 0
1

0

1

0

x
6

x
7

_x
8

0

0

1

0

- 1

y
Q

y
7

1/8 -

—

- (b\

( 6 i -

0

1

0

1

0

- bl) + x
6
 (bl

,K . /,2
Ό

2
) ~Γ X

Ί
 \t)

ι

+ b
2
) + x

s
 {b.

0

0

1

0

- 1

+ b\)

+ b\)

-bϊ)

Thus those orbits meet
0 1 0 1
0 0 1 0

0 X X 0
- 1 Y - Y 0 ]•

y6

Next we consider the orbit of the action of A, where A = «! a.

,a2 β,

GL(2, R).

"0
1

0

1

0

X
X
- 0

0 "

0

1

0

- 1

Y
- Y
0 -

β,

a,

(P
(P

0

+ «2

0

+ a
2

0

-q)X
0

0

0

«i - «
2

0

- α, + a
2

(p + q)Y
-<φ + q)Y

0

P
a

1

P
a
ι

0
1

0

1

0

- q
+ a

2

- q
+ a

2

A

Y
Λ

P

0
0

1

0
-I

+ Q

- a
2

+ Q

~ a
2

Y

- Y

0 0

In case that X = 0, Y — 0, those orbits meet the point of W2, in case that X Φ 0,

Y — 0, those orbits meet the point of W2, in case that X = 0, Y Φ 0, those orbits

meet the point of W2 and in case that X Φ 0, Y Φ 0, those orbits meet the point

of W . D

We say that λ : M^ TXS
3 is of type (B-b) if it has the type of W2. (We

abbreviate "type (B-b)" to "type (b)".) And we say that λ is type (c), type (d) or

type (e) if it has the type or W2, W2 or W2 respectively.

Type (b)

Let λ : M—• TXS be of type (b); i.e. there exists a first order frame field u

along λ which satisfies (3.14), (3.15b) and the following equations:



CLASSIFICATION OF SURFACES IN THREE-SPHERE 7 7

(3.23b) u (ωι — ω2) — u θ6 = 0, u (ω2 — o)^) = u θ7 = 0, u ω4 = u θ% = 0.

Construction of third order frames of type (b)

The isotropy subgroup H2 of H1 at a point of W2 is

Ό 0 0\ /o 0 0

exp I B 0 0 Uxp 0 0 0
r

0

\o

0

h
0

0
0

Ά-1

(3.24b)

The Lie algebra f)2 of /ί2 is

(3.25b)

'B 0. 0 0,

C e o(2)

«Ί a2

α, α,

(β,

- f t
r e o(2)

We decompose ϊ)1 — t)2 ~^~ m2> a n cl f°r a basis of m2 we take

(3.26b)

0 0 0
E3 0 0

0 0 0

= ί E* 0 0

(3.27b)

i ta

*

4

tion p 2 : //2

0

0

β 2

0

~T
sbλ

t

~b2

~ (b2Ϋ ~
s

2\b2

— GL(10,

0

0

0

a2

s

tb2

s

bx

c 2,bγb2

s

(bf-

R) is

(b2

c 2

0

a2

0

aι

0

t

) 2 - c
5

0

0

« 2

0

ax

s

tb2

s

bi

2bxb2

s

(by + c

where P s = βχ — α2, ί = «! + a2. With respect to §[ = tf2 +

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

s

we have
ί = β* + θl and we set Θ2 = Σ <9̂  (i = 9, 10) then
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(3.28b)
3 3

ω 2 - ωv

4

= ω2

By taking the exterior derivative of (3.23b), and by using (3.14), (3.15b) and the

Maurer-Cartan equation (1.8), we obtain the following equations:

(3.29b)

du θ6 = φλ A u θ9 — u 1 0 Λ 0 2 = 0,

du θ7 = — 0j Λ u θ9 — u io A 0 2 = 0,

*θldu*θl = - 0! Λ w*6>ί0 + u*\ A 02 = 0.

Set u θt = xtφλ + y{φ2 (i — 9, 10) for some smooth functions xίf y{ on M. From

(3.29b),

We consider orbits and local sections W3 of the action of (H2, p2) on G10>2.

•o

1

0

1

0

0

0

0

Xg

L o

o -
0

1
0

- 1

0

0

0

0

x9

 J

0

t

0

t

0

0
0

0

— 2c + Xg

s

0

0
0

s

0

— s

0

0

0

u
— 2C + Xg

0
1

0

1

0

0

0

0

— 2C + Xg

άetA

0

0
0

1

0

- 1

0
0

0

u
— 2c + x9

Λ _ J Λ

Thus we take

(3.30b)
0 0 0 0 0

i.e.

(«J.θlb) Ul l/g W, fct* 1/JQ

Construction of fourth order frames of type (b)

ί3 of H2 at a point υi wz

0 0 \ /0 0 0

u*θϊ = 0, u*θb

10 = 0.

The isotropy subgroup H3 of /ί2 at a point of W3 is

(3.32b) 0 exp

vθ 'B 0,
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A =

The Lie algebra f)3 of H3 is

(3.33b)

We decompose ΐ)2 — ΐ)3 + m3, and for a basis of m3 we take

(3.34b)

The representation p3: H3 —* GL(11, R) is

(3.35b)

b2 — b2

β2 - β2

*

*

0

0

a2

0

0

0

« 1

0

0
02

0

01

0

0

0

0 2

0

ί

* -

tb2

(62)
2 26A

0

0

0

0

* -
(b,)2 (bf

* - st st st st

where P ^ H3, s — aλ — a2, t = a1 ^ a2. With respect to ί)2 = ί)3 + m3 we have

Ω2 = Ω3 4- β 3, and we set θ 3 = θnen then

(3.36b) (9* = ωl

By taking the exterior derivative of (3.31b), and by using (3.14), (3.15b), (3.23b)

and the Maurer-Cartan equation (1.8), we obtain the following equations:
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(3.37b) du*θ\ = - 20! Λ u*θlx = 0, du*θb

10 = 2u*θb

u

It follows that

(3.38b)

Thus we take a local cross section

u*θb

n = 0.

(3.39b) WΛ - ί ' [ 0 1 0 1 0 0 0 0 0 0 0

0 0 1 0 - 1 0 0 0 0 0 0

of the action (H3, p3) on G 1 1 2 For this reason, third order frame fields u along λ

are fourth order frame fields along λ with respect to W4 i.e.

U*(Θ0 + θ[ + ©2 + ®3&) = 01̂ 2 + 02̂ 3 + 01̂ 4 -~ 02̂ 5-

The isotropy subgroup H4 of H3 at a point of W4 is equal to H3. In this way we

get a third order frame field u : M-* G/H3 along λ : Λf —>• G/H. Adding an extra

step we lift u from G/H3 to G, then we get a Lie frame of Λ. By choosing a lifting

w of u such that ^ i33 = 0, we obtain the Lie frame of type (b) in Theorem 3.1.

Type (c) and Type (d)

Let λ:M—> TλS be of type (c); i.e. there exists a first order frame field u

along λ which satisfies (3.14), (3.15b) and the following equations:

(3.23c) M (α>! — ω2; = M σ6 = φιt u {ω2 — ωj = u σ7 = φlt u ω4 — = 0.

Construction of third order frames of type (b)

The isotropy subgroup H2 of H1 at a point of W2 is

(3.24c)

/o o o\ /o o o N

exp 5 0 0 exp 0 0 0
\0 *B 0/ \C 0 0,

, a1- a2= {aι + a2)
2 Φ 0, B =A =

* 1

" * 2

o(2)

The Lie algebra

(3.25c)

/α 0

^ of

0

°
- W

- 3α2 a2

— 3a9 P2 " " Pi

o(2)

We decompose ^ = t)2 ' m 2 ' a n ^ for a basis of τn2 we take
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(3.26c)

\o
The representation p2

(3.27c)

P2(P)

/*
*

*

*

*

*

*

* -

*

=

0

« 1

0

a2

0

tbt

tbx

-h
•b\-c

e
2bxb2

t

4βA

t

0

0

« 1

0

« 2

K
2bxb

e
b\-

t

2a,b
2

0

0

%

•Hi

i b

C CL

2

4
0/

-*GL

0

« 2

0

0

-tb,

-tbx

h
2

t2

lbxb2

t

/°
\

,(11, R) is

0

0

a2

0

ί

T

2bxb2

t2

bl + c
t

2a2b2 axc

t2

0 0N

0 0

0

0

0

0

0

P

-Q

0

t2

h
t

ι2 ~ 3β2

t3

\ ,

. 4 = 1
/ '

0

0

0

0

0

- ί

ί

0

ί2

b2

t

— α 2 + ofljί

0

Vo

0

0

0

*

*

*

*

0

0

0

0

0

0

0

0

1

t2

0

0

0

0

0

0

0

0

0

0

0

0

0

1

t

0

\

•
/

o\
o
0

0

0

0

0

0

0

0

/
1 /

2 2

where P e H2\ t = aγ + a2, p = ——-—-, q = —γ-^-. With respect to fyι — tf2 +
i ΐ

mc

2 we have Ω\ = Ω2 + Θc

2, and we set Θ2 = Σ θ-ec

t (i = 9, 10, 11) then

(o.z8c) uQ — ω2 — ωv o10 — ω2 -r ω1 ? C7Π = c !̂ + 3ω2.

By taking the exterior derivative of (3.23c), and by using (3.14), (3.15b) and the

Maurer-Cartan equation (1.8), we obtain the following equations:

d(u θ6 — φλ) = φι A u θc

9 — u θ[Q A φ2 — φt A u θc

n — 0,

(3.29c) d(u*θϊ ~ φ2) = ~ φλ A u*θc

9 ~ u*θc

10 A φ2 - φx A u*θc

n = 0,

du*θl = u*θc

9 A φ2 - φ1 A u*θ[Q = 0.

d\Set u d\ = xiφι + ytφ2 (i = 9, 10, 11) for some smooth functions xit yt on M.

From (3.29c),
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^9 »10> *̂ Ί<

We consider orbits and local sections

0

t

0
0

1

0

1

0

1

1

0

x9

0

0

1

0

- 1

0

0

0

0

of the action of (H2, pc

2) on Gn2.

0

0

0

t

t

0

-2c + x9

t2

— lo2 r -Γlo

}

a2 - tb{) + txn

0
1

0

1

0

1

1

0

-2cJrx9

,3

t2

^{a2- tb{) +txu

0

0

1

0

- 1

0

0

0

0

f
2b2-χl0

Thus we take

(3.30c) c = [ Ί 0 1 0 1 0 1 1 0 0 0 0 1 ]
3 I Lo o i o - i o o o o o oJ J ;

i.e.

(3.31c) U θa = u*θc

10 = 0,

Construction of fourth order frames of type (c)

The isotropy subgroup H% of H2

C at a point of

IA 0

0 /2

0
0

exp

'0 0 0
0 0

(3.32c)

The Lie algebra \)z of

/
(3.33c) ί)g =

>0 0

= 0.

is

aλ-a2=

is

~ 3 α 2

a2 - 3α 2

a2 a2

0 0
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We decompose fyc

2 = tf3 + xnc

3, and for a basis of mc

3 we take

C/1 o

(3.34c)

Ό 0 0 0 0 01

0 0 0 0 0 0

1 1 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0

e;Λ = I 0 0 0

0 0

The representation p3: H3

(3.35c)

0 0

0

0

1 0 0 0

GL(13, R) is

_ 2

P 2

0

0

a2

0

do

^ 1 0 . 3 -

It1

0

0

0

0

a2

0

0

0

a2

0

0

-a

0

0

a,

0

0

0

0

0

- r 0

0 0 0 0

2 2

* o -4 o -T
t t

Ό
0

0

1

0

,0

0

0

0

- 1

0

0

0

0

0

0

0

0

0

0

0

0

0

-

P

0

0

0

0

0

1
I

o _ 4 α [ o 0^2 ~ 3α2 _-a2

2 + 3 a ^ 2

r

- a2 + 2ta2

2?

Γ

0 (T

0 0

0 0

0 0

0 0

0 0

2/

0 0 0 _ ^
It

* *

* *

r
I , 2 , 2

β ^ + to2 - ίfljflg - a2 * * *

* *

* * *
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0 0 -

c
where P e # 3

C, t = aι + a2, p ==
 1 With respect to f)2 = ^

r r
nζ we have Ω\ = β3

c + Θ3

C, and we set Θ3 = Σ θ\e\ (i = 12, 13, 14) then

By taking the exterior derivative of (3.31c), and by using (3.14), (3.15b), (3.23c)

and the Maurer-Cartan equation (1.8), we obtain the following equations:

(3.37c)

du*θc

9 = - 2 0 ! Λ u*θc

14 = 0,

du*θc

10 = - 2 0 ! Λ u*θc

l3 + 2M

du*θc

n = - 40! Λ w*0ί2 - 2w

^ 4 Λ φ2 =0,

^C3 Λ 02 = 0 .

Set u θc

χ = xtφx + ytφ2 (i = 12, 13, 14) for some smooth functions xt, yι on M.

From (3.37c),

(3.38c) xl2 = - 2yl2 = 2k\ xu = yl3 = k\ yu = 0.

We consider orbits and local sections Wl of the action of (i/ 3, pc

3) on G13>2.

0
1

0

1

0

1

1

0

0

0

0

ϋu

£
k4

0

0

1

0

- 1

0

0

0

0

0

0

- k

k4

0

0
t

0

t

0

/
t

0

0

0

0

axa2 1

,3 f U

0
0

t2

0

- /

0

0

0

0

0

0

1

t

0
1

0

1

0

1

1

0

0

0

0

βjflj 1

t' t2 X u

0
0

1

0

0

0

0

0

0

0

1 k3

- ek

?*•
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Thus we take

(3.39c) Wl
0 1 0 1 0 1 1 0 0 0 0 0 2k k

0 0 1 0 - 1 0 0 0 0 0 0 - A :
3
 k

A
 0

i.e

(3.40c) u*θc

12 = - k3φ2, u*θc

l3 = 2k3φ1 + k*φ2, u*θc

u =

Construction of fifth order frames of type (c)

The isotropy subgroup H4 of H3 is equal to {/6}. For a basis of ί)3 we take

- 3
1

1

0

0

0

1
- 3

1

0

0

0

0
0

0

0

1

1

0
0

0

0

0

0

0
0

0

0

3

— 1

0
0

0

0

- 1
3

(3.41c)

We set Ω3 — θl5el5 then

(3.42c) θc

l5 = col

Set

(3.43c) u*θc

15 = k1φι + k2φ2,

(3.44c) dti = k[φx + k[φ2 (i = 1, 2, 3, 4),

for some smooth functions k , /c;* on M. By taking the exterior derivative of

(3.40c), and by using (3.14), (3.15b), (3.23c), (3.31c), (3.44c) and the

Maurer-Cartan equation (1.8), we obtain the following equations:

d(u*θc

12 + kzφ2) = 0χ Λ u*θc

15

d(u*θ[3- (2/c30i +A:V 2))

6k3u*θc

15 Λ φ2 ^ i Λ 02 = 0,

u*θc

ls ~
(3.45c)

d(u*θc

u - k4φj = 8A40i Λ ^*^ίs +

From (3.43c), (3.44c), and (3.45c),

A:2 + θ/c'A:3 + k\ = 0,

*6>ί5 Λ 0 2 + (2 A:3 - k\)φλ

k9φλ Λ ώ9 = 0.

(3.46c) 12/c2/c3 - δ/c'/c4 + (2/c2

3 - ft?) = 0,

8/c2/c4 + kt = 0.

Thus we take a local cross section
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(3.47c)
ί Γ 0 1 0 1 .0 1 1 0 0 0 0 0 2k3 k4 k1

0 0 1 0 - 1 0 0 0 0 0 0 - / c 3 / c 4 0 A ; 2

of the trivial adjoint action (i/4

c, pc

4) on G 1 5 2 , where k% are smooth functions on M

that satisfy the conditions (3.46c). By taking the exterior derivative (3.43c), and

by using (3.14), (3.15b), (3.23c), (3.31c), (3.40c) and the Maurer-Cartan equation

(1.8), we obtain the following equations:

(3.48c) d(u*θc

ί5 ~ (k1φι + k2φ2)) = ( - 2kιk2 + k3 + k\ - k\)φι Λφ2 = 0.

Then

(3.49c) 2/c1/c2 - k3 - k\ + k\ = 0.

Thus the Lie frame of a Legendre map λ : M—* 7\5 of type (c) is the fifth order

frame field u along Λ with respect to W$. In this way we obtain the Lie frame of

type (c) in Theorem 3.1.

In precisely the same fashion as the case of type (c), we obtain the Lie frame

of type (d) in Theorem 3.1.

Type (e)

Let λ : M ~ » TλS is of type (e); i.e. there exists order frame field u along λ

which satiafies (3.14), (3.15b) and the following equations:

(3.23e)
u (ωι — ω2) — u σ6 = φλ -r φ2, u (ω2 — ωx) = u σ7 — φγ — φ2,

* 3 * / i b ^

w ω 4 = u σ8 — ϋ.

Construction of third order frames of type (e)

The isotropy subgroup H2 of Hx at a point of W2 is

(3.24e)

1 °\ 1° ° °
exp [B 0 0 U 0 0

5 0 0 exp 0 0 0 B = ( ? Wl

0 ' β 0 / \ C 0 0 ^ U z ~

, C e o(2)

The Lie algebra ή 2

(3.25e) ί)2 =

is

ω o o

'β o,
, r e o(2)

We decompose tjj — ^ 2 + m2, and for a basis of tn2 we take
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(3.26e)

0 0 0

, 0 0 '

o o,

'h o
= 10 0

0

0

o - 7 ,

The representation p2 '• H2

(3.27e)

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

GL(15, R) is

-h

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

* - b\ - c 2bxb2 b\ - c 2bJ>2 -

bλ — c

-h
0

0

bι + c

0

0

— b2

0

0

0

0

0

0

0

0

1

0

~b2

0

0

* 0 0 0 0

* 0 0 0 0

* 0 0 0 0

* 0 0 0 0

* 0 0 0 0

* 0 0 0 0

* 0 0 0 0

* 0 0 0 0

* 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

where P e H2. With respect to t)ι = tf2

6>2 = Σ θ'e' (i = 9, 10, 11, 12) then

me

2 we have Ωγ = Ω\ + Θ2, and we set

(3.28e) Ωe 3
υ9 — CO2

4 .

— O)2 ~r

By taking the exterior derivative of (3.23e), and by using (3.14), (3.15b) and the

Maurer-Cartan equation (1.8), we obtain the following equations:

d(u*θl - (φ, φ2))

- u*θe
3u*θe

12) + ( - u*θe

w + u*θe

n - 3u*θe

l2) A φ2

- 2φ, Aφ2 =

= φι A (— u θg — u θe

n — 3 M θ[2) + (— u θe

w — u θe

n + 3M θ[2)
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Λ φ2 = 0,

du*θb

8 = - 0! Λ 1**0*0 + w*09

β Λ φ2 = 0.

Set w #f = x z0! + ytφ2 (i = 9, 10, 11, 12) for some smooth functions xn yt on M

From (3.29e),

XIQ + 2/n + 3z/12 + 1 = 0, z

We consider orbits and local sections

xn - 3x12 - 1 = 0, x9 = y10.

of the action of (H2, pe

2) on G 1 2 2 .

0
1

0

1

0

1

1

0

0
0

1

0

- 1

1

- 1

0

Thus we take

(3.30e) W3

e =

0
1

0

1

0

1

1

0

2 c -

2b2-

h +
W +

I" Xg

<rxlo

- x u

•3̂ 12

0
0

1

0

- 1

1

- 1

0

- 2b, + y9

-2c + y10

- b2 + yn

υ2 "̂  X 12

•̂ 10 VlQ

xn Vn

0 1 0 1 0 1 1 0 0 0 3 A 1 + 1 k 1

0 0 1 0 - 1 1 - 1 0 0 0 - 3/c 2 - 1 k2

i.e

(3.31e)
u θl = 0, u

u*θe

n = (3/c1

= 0,

(3.32e)

ι / o / 3
 - I \ J ^ n e i L

 Λ i 7 Δ
 J.

I V O t\f -L / V^91 v** l/i o /V \1J i I /I/ V^9

Construction of fourth order frames of type (e)

The isotropy subgroup Hζ of i/2 is equal to {/6}. For a basis of tf2 we take

/ 0 0 0 0 0 01

0 0 0 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0

, 0 0 1 0 0 0 ,
0 0 0
0 0 0
E, 0 0

0
0

0

1

0

0

0
0

0

- 1

0

0

0
0

0

0

0

0

0
0

0

0

1

- 1

0
0

0

0

0

0

0
0

0

0

0

0
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We set Ωc

2 = Σ θ'e" (i = 13, 14, 15) then

(3.33e) θe

13 = ωl, θe

u = ω\, θe

l5 = ω\.

Set

(3.34e) dkι = k\φγ + k[φ2 (i = 1,2).

By taking the exterior derivative of (3.31e), and by using (3.14), (3.15b), (3.23e),

(3.34e) and the Maurer-Cartan equation (1.8), we obtain the following equations:

du*θe

9 = - 2 0 ! Λ u*θe

15 + 2u*θe

13 Λ 0 2 = 0,

du*θe

10 - - 2 0 ! Λ u*θe

1A + 2u*θe

15 A 0 2 = 0,

(3.35e) d(u*θb

n ~ ((3k1 + l)φγ + ( - 3/c2 - 1)02))

= - 02 Λ u*θβ

13 + u*θe

u A 02 + (3*2 + 3A1

2)01 Λ 0 2 = 0,

d(u*θβ

l2- (k'φ. + k'φ,))

= - φx A u*θ[z - u*θe

u A 02 + (k\ - k\ + 2kι + 2k2 + 4/c1/c2)01 Λ 02

= 0.

Set u β* = xtφi + y{φ2 (i = 13, 14, 15) for some smooth functions xt, yι on M.

From (3.35e),

xa= (k1 + k2)2 + 2k\ + k\ = k\ xu = (kι + k2)2 - k\ + 2k\ = k\

Thus we take a local cross section

(3.37e)

'Γθ 1 0 1 0 1 1 0 0 0 3Λ1 + 1 k1 ks k4 kβ

2 2 3 6 5

-0 0 1 0 - 1 1 - 1 0 1 0 - 3k - 1 k k k k

of the trivial adjoint action (H^, pe

3) on G15>2 i.e.

(3.38e) u*θe

13 = k5φ, + k3φ2, u*θ'u = k'φx + kβφ2, u*θe

15 = /c60i + k"φ2.

By taking the exterior derivative of (3.38e), and by using (3.14), (3.15b), (3.23e),

(3.34e) and the Maurer-Cartan equation (1.8), we obtain the following equations:

du*{θ{3 - (k5φ1 + k3φ2))

= (6kιk3 + 4k2k5 + 2/c5 + 3/c3 + k\ - tf)φ1 A φ2 = 0,

(3.39e) du*(θ'u ~ (A Vi + kβφ2))

= (4/c1/c6 + θλ V + 2ke + 3/c4 + k\ - k\)φ, A φ2 = 0,



9 0 TAKAYOSHI YAMAZAKI AND ATSUKO YAMADA YOSHIKAWA

?15 — (/C60! + /C502))

— 4/c k — 4k k — 2/c — 2/c 4- kx 4- /c 2 )0! Λ

Then

βk'k3 + 4/cV 4- 2/c5 + 3/c3 4- k\ - k\ = 0,

(3.40e) 4/c1/c6 + 6/c2/c4 + 2/c6 4- 3/c4 4- /c4 - k\ = 0,

- 4/c2/c6 - 4/cV - 2&5 - 2/c6 - A' 4- /c6 = 0.

Thus the Lie frame of a Legendre map λ : M~+ TλS of typy (e) is the fourth order

frame field u along λ with respsct to W±. In this way we obtain the Lie frame of

type (e) in Theorem 3.1.

We have thus proved Theorem 3.1.

4. Classification of Legendre maps in TλS in view of curvature spheres

Let us consider the classification of surfaces obtained in Theorem 3.1 in view

of curvature spheres. The curvature sphere of λ : M —•» TλS of type (a) is [K] =

[F 6], which has multiplicity 2. The curvature spheres of λ of type (b), (c), (d) and

(e) are

COROLLARY 4.1. (1) A Legendre map of type (a) is a oriented hypershpere.

(2) A Legendre map of type (b) is a cyelide of Dupin.

(3) A Legendre map of type (c) (type (d)) is a canal surface if the function y = 0 Or Ξ 0).

Proof (1) [if] is constant since dY6 — 0, so λ is a oriented hypersphere.

(2) Let J^, X> a r e t n e principal vectors corresponding to [KJ, [K2] respec-

tively; i.e. Xv X2 are vectors in TpM such that Φι(Xι) — 0, φ2{X2) — 0. If λ is of

type (b), then

dKγ = 2 0 ^ 3 , dϋΓ2 = - 0 2F 4,

and hence dK^X^ = dK2{X2) — 0. Thus along every line of curvature in M the

corresponding curvature sphere is constant; i.e. λ is a cyclide of Dupin.

(3) Let λ be of type (c). We change the functions k , k in (2.3) so that h =

4/c1, /*2 = 2/c2. Then

- 2 . , h Λ _ , /A - 2 . , AΓ //z1 — 2 h2 \

(4.2) dK, = 2 [φ, Y3 + (~Γ- φx + Ύ φ2) F5
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dK2 = 2 { - , - h2φ2) F5 + ( ^ - ^ φ1 + h2φ2) F6).

Let λ be of type (d). We change the functions k , k in (2.5) so that h — — 2k ,

- 4k\ Then

dκx = 2(0^3 + (/*Vi + f e ^ 1 0 2 ) y5 + (AVI + f t 2 2 (

h2 = - 4k2. Then

dK2 = 2 { - 02F4 + ( - -y Λ -

Thus if λ is of type (c) and k — h = 0, then only [ϋΓ1] is constant along Xv and

if λ is of type (d) and k — h = 0 , then only [K2] is constant along X2 such λ is

classically called a canal surface. D

Let λ be of type (e). We change the functions k , k in (2.7) so that h —

- 2/c1 - 1, h2 = 2k2 + 1. Then

1 H 2^— ^ 2 ' y 5
(4.4)

Hence we can distinguish the type of a given Legendre map λ : M2—+ TλS which

has two curvature spheres [KJ, [K2] with multiplicity 1 in the following way. Set

\ = 2φ1Y3 + C40i + Bφ2)Kx + Cφ2K2,

dK2 = - 2φ2Y, + ΌφγKx + (£0X + Fφ2)K2,

where A, B, C, Z>, £ , F are some smooth functions of M. If C = 0, Z) = 0, then

Λ is of type (b); i.e. a cyclide of Dupin. If C = 0, Z) =£ 0 (C =£ 0, Z) = 0), then λ

is of type (c) (type (d)); moreover if B = 0 (£ = 0), then /I is a canal surface. If

C Φ 0, D Φ 0, then Λ is of type (e).

Finally we obtain the necessary and sufficient condition that two surfaces are

Lie equivalent by virtue of Theorem 3.1 and the theorem in Section 2.2.

COROLLARY 4.2. (a) All oriented spheres in 7\5 are Lie equivalent.

(b) All cyelides of Dupin in TXS are Lie equivalent.

(c) Let λ : M—• TλS , λ : M—• ΓXS 6<? smooth surfaces of type (c), (d) or (e). Lβί A;',

A: 6β the smooth functions which are defined in Theorem 2.1 with respect to λ, λ re-

spectively. Surfaces λ and λ are Lie equivalent if and only if there exists a one-to-one
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correspondance φ: M—> M such that kι = φ /? for all i.
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