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CO VARIANT DERIVATIVES ON KAHLER C-SPACES

KOJI TOJO

0. Introduction

Let (M, g) be a Kahler C-space. R and V denote the curvature tensor and

the Levi-Civita connection of (M, g), respectively.

In [6], Takagi have proved that there exists an integer n such that

Vn~ι RΦO, VnRΦ0,

where V denotes the covariant derivative of (l,0)-type induced from V (see Sec-

tion 3 for the defintion). Moreover, Takagi classified Kahler C-spaces with n = 2

(Hermίtian symmetric spaces of compact type are characterized as Kahler

C-spaces with n = 1).

However, there is a mistake in deduction to lead a certain formula. The

purpose of this paper is to correct the mistake and to classify Kahler

C-spaces with n = 2. Moreover, in Section 5, we shall classify Kahler C-spaces

with n — 3.

The author would like to thank Prof. R. Takagi for his kind advice and con-

tinuous encouragement.

1. Preliminaries

Let G be a Lie group and K a closed subgroup of G. Let g and f be the Lie

algebras of G and K, respectively. Suppose that Ad(K) is compact. Then there ex-

ist an Ad(K) -invariant decomposition g = t + p of g and an Ad(K) -invariant

scalar product (, ) on p. Then

(1

(1

.1)

• 2 ) <[u, x], y> +

[I, p] c

^ U , | / G p).

Moreover, under the canonical identification of p with the tangent space T0(G/K)

(o = {K}) of homogeneous space G/K, the scalar product <, ) can be extended to
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a G-invariant metric on G/K.

Let A be the connection function of (G/K, <, >) (cf.[5]). Then for x, y e p,

(1.3) Λ(x) (z/) = ^ Dc, y\

where

(1.4) <U(x, y), z) =\{(Vz, x]v, φ + <[z, y\, x» (z e p).

Furthermore the curvature tensor R is given by

(1.5) R(x, y)z = M(i), Λ(y)]z - [to, y]v z]

- Λ([x, y]p)z.

In the remaining part of this section we describe irreducible Kahler C-spaces

and recall some properties with respect to the connection functions (see [3] for

example).

Let 9 be a simple Lie algebra over C with rk(g) = /, and ΐ) a Cartan sub-

algebra of g, Δ denotes the set of non-zero roots of g with respect to t). For some

lexicographic order we denote by // — {av . . ., a) the fundamental root system

of Δ. Moreover let Δ be the set of positive roots of Δ with respect to the order.

Since g is simple, we can define Ha £ ί) (α £ Δ) by

B(H, Ha) = αCff) (#<M)

where B is the Killing form of g. We choose root vectors {Ea} (a £= Δ) so that for

(1.6) B(Ea, E_a) = 1,

[Ea, Eβ] = NaSEa+s, Na,B = - N_a,_B e R.

Then [Ea, E_a] = Ha. Moreover the following hold (cf. [2]).

(1.7) NaS = Nβir = Nrιaiίa + β + γ = 0

(18) NN* + NeN+NNo* = 0
-̂L °/ lva,βlyr,δ ' lyβ,r1>a,r J vr.a1*g,δ υ >

if a + β + γ + δ — 0 (no two of which have sum 0). Let {β + na; p < n < q) be

the α-series containing β. Then

(1.9) (NaJI) « a(HJ, —TrTY- = -(p + q).
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As is well-known, the subalgebra gM of g defined in the following is a com-

pact real form of g :

QU= Σ + R γ / ^ T t f α + Σ+(RAa + RBa),

where Aa = Ea - E_a and Ba = y/- l(Ea + E_a).

Consider a non-empty subset Ψ = {α ί χ,..., α^} of //. Set

(1.10) Δ+(W) = [α = Σ ft; α ; e 4+; nik > 0 for some aik e ?pj.

Then we define a subalgebra f̂  as follows:

Let Gu and iί^ be a simply connected Lie group and its connected closed sub-

group which correspond to Qu and tψ respectively. Then Gu/Kψ is an irreducible

C-space.

Put

p = Σ (R^4α + RBa).

Then gM = fψ + p (direct sum) and the tangent space TO(GU/KΨ) of Gu/Kψ at

o = {Kψ} is identified with p. Then a complex structure / is given at o by

(1.11) I(Aa) = Ba, I(Ba) = - Aa(a ^ Δ+{Ψ)).

We set

(1.12) P± = Σ CE±a.
aeΔ+(Ψ)

Then we have p = \X ^ p /(X) = ± y— IX}. An element of p is said to be

of (l,0)-type.

Define a mapping p : Δ (W) —* Ίl as follows:

/)(α) = ( ^ ( α ) , . . . , nir(a)) for α = Σ ni^d)ai e id+(?P).

Let ω and α> be the dual forms of Ea and E_a, respectively. Then any

Gw-invariant Kahler metric g is given at o by

(1.13) g=~2 Σ (cp(a))ωa'ώa

a(=Δ+(Ψ)
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where c = {clf..., cr) (c ; > 0) and c p(a) = Σ^ = 1 c; wίy(α). Conversely, any

bilinear form — 2 Σa{c p{a))ωa ώ a on p X p can be extended to a

GM-invariant metric on Gu/Kψ.

In the following we regard the metrics, connections and tensors as ones ex-

tended naturally over C.

In [3] the connection functions of Kahler spaces are determined.

For α, β e Δ we write p(a) > p(β) if ntk(ά) > nih(β) (k = 1, . . . , r) and

n{(a) > ni}(β) for some/. Then

LEMMA 1.1. For a ^ Δ + (W), identify a with Ea and a with E_a. Then

ΛiaHβ) = \ί
[ 0 otherwise

0 otherwise

2. Covariant derivatives on homogeneous spaces

In this section we shall write the Levi-Civita connections of Riemannian

homogeneous spaces in terms of the Lie algebras.

Let {My g) be an ^-dimensional Riemannian manifold and V the Levi-Civita

connection of {Mfg). Let {ev.t.,en} be local orthonormal frame fields and

{ω ,. . ., ωn) their dual 1-forms. Associated with {ev. . ., en), there uniquely ex-

ist local 1-forms {α>/}(z, j = 1, . . . , n), which are called the connection forms,

such that

(2.1) ωl + ω = 0

(2.2) dω I Σ O J / Λ J = 0.

Then the following holds.

(2.3) Veej= Σω;{et)ek
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(see [4]).

Next, let (G/K, <, )) be a homogeneous space with a G-invariant metric

<, > as stated in Section 1.

Let 7Γ : G—> G/K be the canonical projection and W ΆΏ. open subset in p such

that 0 & W and the mapping

π ° exp : W^> π(exp W)

is diffeomorphic. Let iea}aGA be a basis of f and ie) ieI an orthonormal basis of

(p, <, >). In this section we use the following convention on the range of indices,

unless otherwise stated:

i,j, k,... e /, α, β, r , . . . e A,

/>, ί, r , . . . e / U A

Let {̂ fα} and ίX,} be the left invariant vector fields on G such that (Xa)e — ea

and (Xi)e — e{ (e is the identity of G). Furthermore we define an orthonormal

frame field {E{} on π(exp W) and the mapping μ : π(exp W) —• exp W as fol-

lows:

where r(^) (^ e G) denotes the left transformation of G/K Then since

π*(Xt) = £„ π*(Xa) = 0 and π ^ ^ = id, we can put

(2.4) ^ ( E , ) = X, + Σ r?αjXα.

Let {ωα}, {ω^ and iθ1} be the dual 1-forms of {Xa}, {Xt} and (E), respectively.

Then it is easy to see

(2.5) μ*(ω) = θ\

Set [Xp, Xq] — Σr cPq Xr. Then the following is known as the equation of

Maurer-Cartan (cf. [4]).

(2.6) dω = - \ Σ cjω A ω.
Δ q,r

For the sake of completeness we show the following well-known fact.

LEMMA 2.1 Let iθ/} be the connection forms of {G/K, (, )) associated with

) . Then
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θ. = — μ 12-. cja ω + -K Σ, {cjk — cik — ci} )ω }.
a Δ k

Proof. It follows from (1.1) and (1.2) that

(2.7) cja

β = 0, cia' + cia[ = Q.

Moreover since f is subalgebra of g, we get

(2.8) cj = 0.

From equations (2.5), (2.6), (2.7) and (2.8) it follows that

dθ1 = β*dω

= - Σ μ*(Σ cjω1 A ωa + \ Σ (cjk' - cj - ctl

k)ω' A ωk}

μ (Σ cja ω + -~ Σ (cjk — cik — ctj )ω } Λ θ
j a Δ k

(note that Σj>k(ct

k + cik)a> A ωk = 0).

Put 0/ = - μ*{Σacja

tωa + (1/2) Σ Λ ( ^ Λ ' - c<Jfc' - O ω * > T h e n k i s e a s y
to see 0/ + 0/ = 0.

Consequently, by (2.1) and (2.2), the connection forms coincide with {0; }. O

By (2.3), (2.4) and the above lemma, we have the following.

PROPOSITION 2.2.

VEEj = Σ {Σ cαi ηai + y (c t ; - ctk - cjk ))Ek.
k a Δ

Next we shall rewrite Proposition 2.2 in terms of the bracket operation [, ] of g.

For l e ^ w e define zj(t) e W and hj(t) e if (ί e R, | 11: small enough)

by the following:

(2.9) exp x exp tet = exp &/(£) A^'ίί)

with ^ ( 0 ) = x and ^ ' ( 0 ) = e. Then

expte,-))
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Here, the differential map exp* of exp has the following form (see [2]).

LEMMA 2.3. Let x, y e g. Then

Thus we have

On the other hand, (2.9) and Lemma 2.3 give

(2.1D α e x p x ) *

Considering (2.4), (2.10) and (2.11), we obtain

(2.12) - | | 0 A,'(i) - - Σ ηal(expx)ea.

Therefore, by (2.12) and Proposition 2.2, we have

(2.13) (F^Λcexp*) = τ(expx)^{Λ(eί)(eJ) - [^\ohj(f), e]}.

Remark. For x ^ p(\x\: small), the mapping

is an isomorphism (ppiQ—*p denotes the canonical projection.). So we can assume

that for each x G W the mapping pp ° Φx is an isomorphism. Therefore we

can regard the equation (2.11) as a characterization of -π\Q zj(f) ( ^ p) and

For Jf e p, we denote by X* the vector field on 7r(exp W) defined by
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U πiexv x) = ^(exP X)*(X).

Then the following theorem is easily derived from the above arguments.

THEOREM 2.4. Letx e WandX, F e p, 77κ?n

(rwig f(e«x) = r(exp*)*MUD(Y) - [*,«), Π).

Here hx(X) — — pt ° Φx ° (/>p ° Φ x) (JO (/>f : g—* t denotes the canonical projection).

3. Covariant derivatives on Kahler C-spaces

In this section we shall write higher covariant derivatives of (l,O)-type on

Kahler C-spaces in terms of the connection functions.

Let (Gu/Kψ, (, )) be a Kahlerian C-space as stated in Section 1. For a ^

Δ+(W), since a = (l/2)(Aa — y/— 1 Ba) (under the identification Ea with a), we

have

a* = 2" (Aa* ~ ^~ 15«*)

At first we calculate the value of Vn(X%;aί , . . . , an ) at o (X e p , 6 ^ ^

Let X, (ί = 1,. . ., w) be one of lAi9 B) (A{ = AΛ{9 B{ = Ba). For sl9. . ., sn

^ R (I 5, I : small enough), we define zι(sv . . . , st) ^ W(1 < i < n) inductively

as follows:

(3.1) z\s,) = SlXλ

zι(slf..., sf-)) = ττ(exp z~\slf..., s

Then

(3.2) ^ ' ( s ! , . . . , V i , 0) = >ε'~1(51,..

Then it follows Lemma 2.3, (3.1) and (3.2) that

(3.3) Xi=Pp ° ^ - ^ . . . .

From Theorem 2.4 we have

(3.4)
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where

Xn = pp ° Φz^Hsv..,Sn_1)(Vn-i(sv •> 5«-i))

Thus, by (3.3) we get

(3-5) KW_]: — Q^ \Q Z .

Similarly, we have by (3.4) and Theorem 2.4

(3.6) (V^JxJCJ^Ws^.^

= τ(exp z"-\sl9..., sn_2))*{Λ(Xn-i)Λ(Xn)(X)

— ΛiX^) ([h^ist,..., sn_2, 0), X] — -fi-—|0[An-i^i» •» 5«-i)' ^ J )

- ίhn_2(sv...,sn_2),Λ(Xn)(X) - [A»_i(Si,...,s»-2. 0 ) , * ] ] }

where

A w - 2 ( 5 i , . . . , 5M_2) = - ρt° Φz^Hsv...,sH-AΊrQ— lo z

Therefore, by induction, we can see

(3.7) (Vx ''' Vx X#)o

= Λ(X1) "Λ(Xn)(X)

, ί 9 " I i /

+ jterms containing ~ . _ g U1-...=s t_1=A-i^i,. . . , sΛ-i

for some k, r\.

Here
/O O\ ίi ('ς ς ^ ZZZ f) ° φ lt-Λ ί I

(3.9)
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LEMMA 3.1. Expand zn(sv..., sn) as

/ ( < > ! , . . . , S n ) = Σ S h ' " S i d t j .

Then there exists a multi-linear function

such that

ah,...,,t = Fii,...,ik(Xh,...,Xi).

Proof. At first we note that z"(0,..., 0) = 0 and

zn(sv..., si9 0 , . . . , 0) = z(sv..., Si),

/ ( 0 , . . . , 0 , sit 0 , . . . , 0 ) =8^.

We prove the lemma by induction.

Assume that for any r-tuple (iv . . . , ir) (1 < r < ky iι < < ir) there exists

r-linear function F{ ... , , such that

Then for any (k + 1)-tuple (jίt . . . , j k , jk+ι) (jι < * * < jk+ί) it follows from

(3.9) that

Considering the (5^ * * 5; Λ)-term of the above equation, we have

0 = alv...JtH + Σ ( / + 1 ) , Σ [flΛ,[ • K , fl/l+1] ] p
( = 1 N ' • J1," ,Jn.1

Here, each Jp, 1 < / > < / + 1, is a subset of { Ί , . . ., ; i+1} such that /^ (Ί Jq— 0

(P^Φ,JPC Vi...., Λ} for 1 < /> < / and

Therefore, by the inductive assumption, the (sji * 5; fc+i)-term of z is written as

in the lemma. This completes the proof of the lemma. O

Let hr

]vJk be the (sji sjk)-term of A r(s!,. . ., sr). Then, by (3.8) and the

proof of Lemma 3.1, we have
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(3.10) h\ h

k (_ i)'
= ~ Σ Σ ( / + 1 ) , Vah, [•••, [afι, a,J • • ] t .

l-ί Jι,...,Jί+ι v '

Thus, by Lemma 3.1 and (3.10), there exists /c-linear map

H\ h-ΛpΎ^f

such that

Therefore (3.7) gives

= Λ(a1) '"Λ(an)(X)

+ {terms containing Hr

jv Jk(ajif..., θίj)}>

For α, β e il + (?P), it is obvious that or + 0 e i + ( f ) if α + β e 4. Con-

sidering the form of H j f ; , it is easy to see that

We have thus the following.

PROPOSITION 3.2. Let at (i = 1 , . . . , w) 6̂  in 4+(?P) αnrf X e pC .

Remark 3.3. By similar argument as in the above, we can prove that

ίora.β. ^ + ( i P ) .

Now, we define A R inductively as follows.

(ΛR)(X,Y,Z;T)
= Λ(T)(R(X, Y)Z) -R(Λ(T)(X), Y)Z - R(X,Λ(T)(X))Z

-R(X, Y)Λ{T)(Z),
(ΛnR)(X,Y,Z;T1 Tn)

-Λ(T n)((A^R)(X,Y,Z;TV . . ., Tn_x))
- {An~ιR) (Λ(Tn) (X), Y, Z Γ l f..., Tn_,) - (A^R) (X, Λ(Tn) (Y),
Z;TX Tn_x) - (Λ^R)(X, Y,Λ(Tn)(Z);TV..., Tn_,)
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- Σ (Λn~1R)(X, Y, Z • 7\ Λ(TH)(T,) Tn_,).
i=ί

H e r e * , . . . , Tn<ΞpC.

Since

R(a*,β*)r*= (R(a9β)r)*,

Proposition 3.2 and Remark 3.3 give the following Theorem which is the correc-

tion of (2.11) and (3.11) of [6].

THEOREM 3.4. LetX, Y, Z e p c and δv..., δn e Δ + (W). Then

(VnR)(X, YfZ;δl9..., δn) = (ΛnR)(X, Y,Z;δlt...f δn).

COROLLARY 3.5. Let α, β, and γ be in A such that Ea> Eβ and Eγ are elements

ofp . Moreover, let δv . . . , δn be in Δ iΨ). Then

(V"R)(a, β,rϊδlt...,δj i n

We denote by V the covariant derivative in the direction of p . Then, from

Corollary 3.5, there is a number n such that V"R = 0 and V"~ιR Φ 0. We call

the integer n the degree of (Gu/Kr, (,}). It is known that Hermitian symmetric

spaces of compact type are characterized as Kahler C-spaces with degree one.

4. Degree two

In this section, using a similar method as in [6], we shall determine the class

of Kahlerian C-spaces with degree two.

Let a, β, γ, δ and λ be elements of Δ + (Ψ). From Theorem 3.4, we have

(4.1) (V2R)(a, λ, β γ, δ)

= Λ(δ)Λ(γ)R(a, λ)β - Λ(Λ(δ)r)R(a, λ)β - Λ(r)R(Λ(δ)a, λ)β

- Λ(γ)R(a, A(δ)λ)β - Λ(γ)R(a, λ)Λ(δ)β - Λ(δ)R(Λ(γ)a, λ)β

+ R(Λ(Λ{δ)γ)a, λ)β + R(Λ{γ)Λ{δ)a, λ)β + R(Λ(γ)a, Λ(δ)λ)β

+ R(Mr)a, λ)Λ(δ)β - Λ(δ)R(a, Λ{γ)λ)β + R(Λ(δ)a, Λ(γ)λ)β

+ R(a, Λ(Λ(δ)γ)λ)β + R(a, A(γ)A(δ)λ)β + R(a, Λ(γ)λ)Λ(δ)β

- Λ(δ)R(a, λ)Λ{γ)β + R(Λ(δ)a, λ)Λ(γ)β + R{a, Λ{δ)λ)A(γ)β

+ R(a, λ)Λ{Λ(δ)γ)β + R(a, λ)Λ(γ)Λ(δ)β.
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LEMMA 4.1. Suppose that a, β ( e Δ+(W)) (a Φ β) satisfy the following condi-

tions :

(1) α + j8€= 4, (2) a-β<έΔ, (3) 2a + β<έΔ,(4) a + 2β<έΔ.

Then (V2R)(a, a + β, β α, β) Φ 0.

Proo/. From (4.1) and the conditions in the lemma, we have

= - Λ(a)R(Λ(β)a, a + β)β- Λ(a)R(a, Λ(β)a + β)β

- Λ(β)R(a, Λ(ά)a + β)β + R(Λ(β)a, Λ(a)a + β)β - Λ(β)R(a, a +β)Λ(a)β

+ R(Λ(β)a, a + β)Λ(a)β + R(a, Λ(β)a +β)Λ(a)β

= Λ(ά)ί[Λ(β)a,aTβ],β] +Λ(ά){Λ(Λ(β)a +β)Λ(a)β+ [[a,Λ(β)aTβ],β]}

Λ(β)Λ(A(a)a + β)Λ(a)β - Λ([Λ(β)a, Λ(a)a + β])β

+ Λ(β)Λ([a, a + β])Λ(a)B - [[Λ(β)a, a + β],Λ(a)β]

+ Λ(a)Λ(Λ(β)a + β)Λ(a)β- [[a,Λ(β)a + β],Λ(a)β].

It follows from (1.6) and Lemma 1.1 that

(V2R)(a, a + β, β;a,β)

(c p(a))(c-p(β)) ,ΆT 2 v (

(c />(α + j8))

(c p(a))(c

{c p{a + β)Ϋ

(c p(a))(cp(β))

(c p(a + β))2

C'P(β) ,r Λ;

It follows from (1.7) that
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form which we have

(4.2) (V2R)(a, a + β,β;a,β)

(c-p(a + β))

- 3

ΐa + fb) ( α + ^ iH«^ ~ a { H ^ } ' ( α + β)•

From the conditions of Lemma 4.1, the α-series containing β is given by

ίβ, β + a). Hence, by (1.9) we have

a(He) = - | , (Na,β)
2 = | ,

where e = a(Ha) — β(Hg). Therefore we have from (4.2)

(4.3) (V2R)(a,-^Γβ,β;a,β) = - ^P^^Pf^ . (a + β h

(c-p(a + β))

We have thus proved the lemma. D

Now, we prove the following theorem.

THEOREM 4.2. 77i£ #w/y Kάhlerian C-spaces of which degrees are at most two are

Hermitian symmetric spaces of compact type.

In the following we denote by M(g, Ψ', g") the Kahlerian C-space correspond-

ing to Ψ. We show the theorem by case by case check.

The case where g is of type Aι (/ > 2).

We identify Δ with

{et - ej 1 < i' Φ j < I + 1}

(for example, see [2]), where iev . . ., eι+1] is an orthonormal basis. Moreover, set

Oίi — e{ — ei+1. Then M{g, {α^}, g) (i = 1 , . . . , /) are Hermitian symmetric

spaces.

Suppose that ¥ contains at and a, (i < j). Then a—ax+ + a{ and j8 =

ai+ί + + aι are contained in Zl (W). Furthermore, it is easy to see that a and
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β satisfy the conditions (1), (2), (3) and (4) of Lemma 4.1. Thus the degree of

M(g, Ψ, g) is not equal to two.

The case where g is of type Bι (/ > 3).

Δ = {+ *„ ± e<± ej;l<iΦj< I).

Set

α, = e{ - ei+1 (1 < i < I — 1), ax = £,.

In this case Hermitian symmetric spaces are M(g, {#,-}, #) (ί — 1, /).

Put

a — e1 — e{ = ax + + at_l9 β — e2 + ^_j = α 2 + -f α/_! + 2α,.

Then we can easily see that a and β satisfy the conditions of Lemma 4.1. Then

Kahlerian C-spaces of which degrees are at most two are only Hermitian symmet-

ric spaces. In fact, if Ψ contains some a{ (2 < i < I — 1), then α, β e Δ+(Ψ).

Moreover, α, β ^ ^ ( { α ^ α/}).

g is of type Cι (/ ^ 3).

4 = {± 2e,, ± ^ ± ^ 1 < i Φ j < /}.

Set

a{ = e{ - et+1 (1 < i < I - 1), a, = 2^.

In this case Hermitian symmetric spaces are M(g, {α? }, ^) (ί = 1, /).

If a{ e f for some i (2 < i < I - 1), then

α = 0j + ^ = aλ + " - + alf β = e{ — et = (Xj + + aι_1

are elements of Δ (W) and satisfy the conditions of Lemma 4.1. Therefore the

degree of M(g, Ψf g) is not equal to two.

Let Ψ = {α p a). Then set α = ax and β = α 2 + + av As above, we see

that the degree of M(g, Ψ, g) is not equal to two.

77ιe case where g is o/ type D^l > 4).

Δ = {± ^ ± ^ ; 1 < i ^ ; < /}.

α? = ^ - ^ + 1 (i = 1 , . . . , / - 1), at = et_x + et.

In this case Hermitian symmetric spaces are M(g, {αj , g) (i — 1, / — 1, /).
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If at e Ψ for some i (2 < i < I - 2), then

a = eλ — et = c^ + + #,_!, β = et + eι = ai, + + aι

are in Zl + (?0 and satisfy the conditions of Lemma 4.1.

Next we check M(g, {αx, αz}, ^) and M(g, {«/_!, Qf,}, ^ ) .

Set

a = <xx + + α ^ , j8 = α2 + * + αz_2 + α,.

Then α and j8 satisfy the conditions of Lemma 4.1 and are elements of Δ (30, re-

gardless of whether Ψ = {av a) or Ψ= {a^lf αz}.

The case where g is of type Es.

In this case Δ consists of the following.

±ei±eJ(l<iΦj<8),-^Σ v{iiei ( Σ v(ϊ) : even).

Set

«1 = 2" ^ X + 8̂ ~ 2̂ ~~ 3̂ ~ 4̂ ~ 5̂ ~ 6̂ ~ «?)

^2 = βl +" 2̂» α ί = ei-l ~ ei-2 (3 < ί < 8).

We denote a root α = Σ ί = 1 nβίi by

w8 n7 n6 n5 n4 n3

Then there is no M(g, Ψ, g) with degree two. In fact, the following α, β satisfy

the conditions (1)~(4) of Lemma 4.1 (cf. [1]).

(I 1 1 1 1 1 1\ o (I 2 3 4 5 3

\ 1 / \ 2

case t/ /t̂ re g t5 o/ type E7.

We use the same notation as in the case E8. Then {alf . . . , θίΊ) is a

fundamental root system and Δ consists of the following.

+ et± ej(l <iΦj<6), ±(e7- e8)

1 / 6 \ / 6 \
± -o [e7 — e8 + Σ vidβi) ( Σ v(0 :odd).

^ \ i=ι I \i=ι i
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In this case Hermitian symmetric space is only M(g, {α7}, g). We denote a root

a = ΣLi nιa
ι a i

ίn7 n6 n5 n4 n3 nΛ

Then

0 1 1 2 1 1\ Λ / I 1 2 2 2 1

satisfy (1)~(4) of Lemma 4.1.

w/iere g is 0/ fype E6.

Δ consists of

± et ± ej (l<iΦj< 5)

1 / 5 \ / 5 \
± -o- (β8 — e7 — e6 + Σ y ( β e j ( Σ ι>(0 : even).

6 \ i = ί I \i=1 I

In this case Hermitian symmetric spaces are M(g, {a), g) (z = 1,6). We identify

a = Σ / = 1 wfαf with

/w 6 n 5 w4 n3 nΛ

\ n2 I'

Then

0 1 2 1 1\ o / I 1 1 1 0

satisfy (1)~(4) of Lemma 4.1.

The case where g is of type F 4 .

Δ = {± ei9 ± et ± e, (1 < iΦ j < 4), ~ (± ex ± e2 ± e3 ± e4)]

a x = e 2 - e 3 , a 2 = e 3 - e 4 , a 3 = e A , a 4 = ^ ( « i ~ e 2 - e 3 - e 4 ) .

We identify a = Σ / = 1 n^ with (nv n2, n3, n4).

If ^contains α f for some ί (1 < i < 3), then

α = ( 1 , 1 , 2 , 2 ) and/3= ( 1 , 2 , 2 , 0 )
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are elements of Δ+(W) and satisfy (1)—(4) of Lemma 4.1.

Let Ψ= {α4}, a= (0 ,0 ,0 , 1) and £ = ( 1 , 2 , 3 , 1 ) . Then the degree of

, {α4}, g) is not equal to two.

The case where g is of type G2.

A consists of the following.

± (e2 - e3), ± (e3 - ex), ± {eι - e2)

± (2eί — e2 — e3), ± (2e2 — eλ — e3), ± (2e3 — e1 — e2).

Let aλ = ex — e2 and a2 = — 2ex + e2 + e3. Then M(g, {αj , g) is a Hermitian

symmetric space.

Suppose that a2 ^ Ψ. Then a = 3aγ + α 2 and β = a2 is contained in

Δ+(W) and satisfy ( l)-(4).

Finally we check M(B2, {α, j8}, g) (a = eγ — β2, £ = e2).

We compute {V2R)(a, a + j8, β a, β). Since

(4.4) α + j5,α + 2 ^ 4 and α - j8, 2α + £ £ 4 ,

we have

α, a + β)β- Λ(a)R(a, Λ(β)a + β)β - Λ(β)R(a, Λ(a)a + β)β

+ R(Λ(β)a, Λ(a)a + β)β - Λ(β)R(a, a + β)Λ(a)β + R(Λ(β)a, a + β)Λ(a)β

+ R(a, Λ(β)a + β)Λ(ά)β + R{a, a + β)Λ(Λ(β)a)β.

Comparing the above equation with the right hand side of (4.2), we get

(V2R)(a,a + β,β;a,β)

= R(a, a + β)Λ(Λ(β)a)β + Λ(ά)Λ(a + β)Λ(Λ(β)a)β - Λ(Λ(a)a + β)Λ(Λ(β)a)β

+ the right hand side of (4.2).

Thus

(V2R)(a,a

= ~ 2 ^P^cpiβ)γ ( N a A N g a + β γ . ( α + β)

(cp(a + β))2(c p(2β + a)) J '"*'

+ the right hand side of (4.2).
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From (4.4), we have

(Na,/ = (Ns,aJ
2 = e, a(Hs) = - e,

where e = β(Hβ) = (l/2)a(Ha). Therefore

(V2R)(a, a + β, β;a,β)

c p(β) 2 r 2e(c p(a))(c-p(β)) 2e(c-p(β))
2r 2e(c

a β) I (c pia +c pia + β) κl"a'βJ I (c pia + β)) (c pia + 2β)) ^ c pia + β)

(C'pia + β))ic'p(2β + a))

Therefore the degree of MiB2> {ay β}, g) is not equal to two.

We have thus proved the theorem.

5. Degree three

For a, e 77, set Δ+ik) = {α = Σ ; wyα, e 4 + nf = Λ}.

We devote this section to proving the following theorem.

THEOREM 5.1. Let ai9 aq and ar be elements of Π such that Δ*ik) = 0 ,

Δg

+im) = 0 and Δr

+(n) = 0 for k > 3, m9 n > 2. Then Kahler C-space with de-

gree three is one of M(g, {α? }, g) and M(g, {aq9 ar}, g)

At first we show that the degrees of M(g, {a{}, g) and M(g, {aq, ar}, g) are

at most three.

In the following we suppose that α, β9 γ, δf ω and λ are elements of Δ+(W).

Suppose Ψ= {a). Since

ΛO/Op* cz ρ±

f R(ρC, p 0 ) ^ c p*,

we can see

(F3#)(α, ϊ. δ r, δ,ω) e p+

T h e r e f o r e , If ( F 3 i ? ) ( α , λ , ]8 r , δ , ω ) ^ 0 , t h e n α + ] 8 + r + δ + ω - ^ m u s t

b e i n Z l + ( f ) . S i m i l a r l y , if ( V 3 R ) ( ά , λ,β;r, δ, ω) Φ 0, t h e n a + β - γ - δ~ ω

- λ m u s t b e i n 4 + ( ? P ) .
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Each a e Δ+(Ψ) has 1 < p(a) < 2 so that

/>(α + j8 + 7 + d + ω - ; i ) ^ 1 + 1 + 1 + 1 + 1 - 2 = 3.

However, this is impossible, since Δ^ik) = 0 for k > 3. Similarly we have

Thus the degree of M(g, { α j , £") is not more than three.

Next, suppose Ψ— {aq, ar} (q < r). Since Δq

+(m) = 0 and Δr

+(n) = 0 for

m, n > 2, it is easy to see that the possibilities of p(a) are only (1,0),(0,1) and

(1,1). Therefore

p(a + β+γ + δ + ω-λ)Φ (1,0), (0,1), (1,1)

p(a + β - γ - δ - ω - λ ) Φ (1,0), (0,1), (1,1).

Thus the degree of M(g, {aq, ar}, g) is not more than three.

Next, we prove that Hermitian symmetric spaces, M(g, {cxt}, g) and M(g,

{aq, ar}, g) are only Kahler C-spaces of which degrees are at most three.

As in Section 4, we shall prove the following lemmas.

LEMMA 5.2. Suppose that there are α, β, γ e Λ+(?P) (a Φ β, β Φ γ, γ Φ a)

satisfying the following:

( 1 ) α + j B e d , ( 2 ) α + r e d , ( 3 ) α + β + r E ^

( 8 ) 2/3 + a <έ Δ, ( 9 ) 2a + 7 £ 4, (10) α + 7- - j8 ^ 4

(11) 2α + j8 + γ <έ Δ, (12) 2β + a + r eί Δy (13) 2α + 2^ + γ <έ Δ

(14) a - γ<έΔ, (15) 2 r + α ^ 4 .

the degree of M(Q, Ψ, g) is more than three.

LEMMA 5.3. Let a and β be in Δ+(W) (a Φ β). If the following conditions are

satisfied, then the degree of M{% Ψ, g) is more than three:

(1) a + β e Δ, (2) a-β&Δ, (3) 2a + β <έ Δ

(4) 2β + a e Δ, (5) 3β + a <έ Δ.

Proof of Lemma 5.2. We shall show

( F 3 i ? ) ( α , λ, β a, β, γ) Φ0 U = a +

By Theorem 3.4 and (10) of Lemma 5.2, we have
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(V3R)(a, λ,β;a,β, γ)

= ~(Λ2R)(Λ(r)a,λ,β;a,β)

-(Λ2R)(a,Λ(γ)λ,β;a,β)

-(Λ2R)(a,lβ;Λ(γ)a,β).

By (4.1) and the conditions of the lemma, we have

(V2R)(Λ(γ)aJ,β;a,β)

= - Λ{a)R{Λ{β)A{γ)a, λ)β - Λ{a)R{Λ{γ)a, Λ{β)λ)β + R(Λ(γ)a, Λ{Λ(β)ά)λ)β

+ R(Λ(γ)a, Λ(a)Λ(β)λ)β - Λ(β)R(Λ(γ)a, λ)Λ(a)β

+ R(Λ(β)Λ(γ)a, λ)Λ(ά)β + R(Λ(γ)a, A{β)λ)Λ(a)β

= Λ(a)[[Λ(β)Λ(γ)a,λ],β]

+ Λ(a) U(Λ(β)λ)Λ(Λ(γ)a)β + [{Λ{γ)a, Λ(β)λ]}

- {Λ(Λ(Λ(β)a)λ)Λ(Λ(γ)a)β + Λ([Λ(γ)a, Λ{A{β)a)X\β}

- {Λ(Λ(a)Λ(β)λ)Λ(Λ(r)a)β + Λ([Λ(γ)a, Λ(a)Λ(β)λ]β}

+ Λ(β)Λ([Λ(r)a, λ])Λ(a)β - [[Λ(β)Λ(γ)a, X\, Λ(a)β]

-[[Λ(r)a,Λ(β)λ],Λ(a)β].

Now, put ca = c piά) (a e Δ+(W)). Then, by Lemma 1.1 and (1.7), we have

(5.1)

(V2R)(Λ(γ)a, λ,β;a,β)

ca+βca+r
β(Hr+a)} [a, β]

_ ^cjj^ f J _ w yNJf _ ±Nr,aNs,_λ(Nr,_λ)
2}[a, β]

ca+βca+r ιta+β cλ J

+ ψL ί l (NrιaNs,_r)
2Nr,_λ- (a + β)+^- (Nr,a)%,_λ-[a, β]}

CaCβ

La+βLa+r

For simplicity, put e = a(Ha). Then, by (1.9) and the conditions of the

lemma, we get the following.
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β(He) = γ(Hr) = e, a(Hβ) = a(Hr) = - 1 -

β(Hr) = 0, (NaJ
2 = (Na,7Ϋ = f.

Moreover it follows from (1.8) that

NaJ,Nτ.-x + * r Λ _ , = O

Therefore (5.1) gives

(5.2) ( Λ 2 R ) ( Λ ( γ ) a , X, β ; a , β ) = eN*--*{c°> Ce - ( a + β ) .

Similarly, we have

2

(5.3) (Λ2R)(a, X, β;Λ(γ)a,β) = * V g

2 iVr _, (α + β).
2 ( )

From (4.3) we get

(5.4) U 2 #)(α, Λ(r)J, | 8 ;α f

= ΛΓr,_,(yl2i?) (α, a + β, β a, β)

Therefore it follows from (5.2), (5.3) and (5.4) that

α, X, β a, β, γ)

This completes the proof of Lemma 5.2. •

Proof of Lemma 5.3. We shall show that

(Λ3R)(a, λ, a β, β, β) Φ 0 U = 2β + a).

In fact

(Λ3R)(a,λ, a;β,β,β)

= Λ(β)(Λ2R)(a,λ,a;β,β)
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(Λ2R)(Λ(β)a, λ, a;β,β)
2

- (Λ2R)(a,Λ(β)λ, a;β,β)
2- (ΛΔR)(a,λ,Λ(β)a;β,β)

= 3Λ(β){R(Λ(β)Λ(β)a, Da + R(a, Λ{β)A(β)λ)a

+ R(a, λ)Λ(β)Λ(β)a + 2R(Λ(β)a, Λ(β)λ)a

+ 2R(Λ(β)a, λ)Λ(β)a + 2R(a, Λ(β)λ)Λ(β)ώ

- 3{R(Λ(β)Λ(β)a, Λ(β)λ)a + R(Λ(β)Λ(β)a, λ)Λ(β)a

+ R(Λ(β)a, Λ(β)Λ(β)λ)a + R(a, Λ(β)Λ(β)λ)Λ(β)a

+ R(Λ(β)a, λ)Λ(β)Λ(β)a + R(a, Λ(β)λ)Λ(β)Λ(β)a}

- 6R(Λ(β)a, Λ(β)λ)Λ(β)a.

As before, we set e = a(Ha). Then we obtain

β(HB) = (NaS)
2 - (NB _λΫ = |-, a(Hβ) = - 4

Thus, by a straightforward computation we have

(Λ3R)(a, I a;β,β,β) = 3 e / a C\ Ns^λ (a + β).

We have thus proved the lemma. •

Suppose that g is not of G2 type. For Kahler C-spaces except for those stated

in Theorem 5.1, we take examples of {α, β, γ} satisfying the conditions of Lemma

5.2 or of {a, β) satisfying the conditions of Lemma 5.3.

The case where g is of type Aι (I > 3).

Suppose that av ai and ak are elements of Ψ (i < j < k). Then set

a = aγ + - - + aj_v β = aj9 r = a j + ι + - " + at.

Then a, β and γ satisfy (1) — (15) of Lemma 5.2.

The case where g is of type Bι (I !> 2).

We use the notation in Section 4.

Suppose that Ψcontains at and α ; (i < j). Put

Then α and j8 satisfy (1)~(5) of Lemma 5.3.
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The case where g is of type Cι (I > 3).

Suppose that Ψ contains αt and α ; (i < j). Put β = at,+ + α ; _x = e(

β) and

a = 2e = (
j L2α; + ••• +2aι_1 4-α, iίj< L

Then a and /? satisfy (1)~(5) of Lemma 5.3.

The case where g is of type Dι (/ > 4).

Suppose that Ψcontains {<xi9 a) (2 < i < I - 2). Then put

α = ax = ^_! + /̂, β = a2 -\ + «,_! = ^2 - el9 γ = aλ λ h a^2 = e ι - e^v

Then a, β and γ are contained in Δ + (W) and satisfy (1)—(15) in Lemma 5.2.

Next, we assume that Fcotains {aif a) (1 < i < j < I — 2). Set

α = «! + * 4- aj_v β = α ; + + αz_2 4- α ^ ^ γ = α;- 4- 4- α / - 2 4- at.

Then α, j8 and γ are contained in J+(?P) and satisfy (1)—(15) in Lemma 5.2.

The case where g is of type E8.

Set

0 1 1 2 2 1 1\ / I 1 1 1 2 1 0 '

1 ) ' β ~ \

1 1 2 2 2 2 1

2 1 0\

r = ^ i

Then α, 8̂ and ^ satisfy (1)—(15) in Lemma 5.2.

The case where g is of type E7.

Put

1 1 1 1 1 0
α = ; i 0 ) H 0 1 1 ! 1 1 ) -

(0 0 1 2 1 1
r = \ 1

Then α, /3 and γ satisfy (1) — (15) in Lemma 5.2. Therefore, if Ψ contains α, (i =

3,4 or 5), the degree of M(Q, Ψ, g) is more than three. Moreover, if ψ contains

{av α6}, {av aΊ), {a2, α6) or (α2, α7}, the degree of M(g, ?P", ̂ ) is more than
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three.
Next, set

1 1 1 1 1 1
0

/O 0 1 2 1 1\

Then the degree of M(g, {aίf α2), g) is more than three.

Finally, suppose that Ψ— ia6, a7}. Set

1 0 0 0 0 0\ n _ /0 1 1 1 1 1
) , β - {

0 1 3 3 2 1

(1 0 0 0 0 0\ „ ίO 1 1 1

Then α, β and γ are contained in A (W) and satisfy (1)—(15) in Lemma 5.2.

The case where g is of type E6.

Set

/ I 1 1 0 0
α = ( o

r =
0 1 1 1 0

Thus we can see that the degree of M(g, Ψ, g) is more than three if Ψ contains

one of the following:

{α4}, {α2, α5}, ia2, a6}, {α3, α5}, {α3, α6}.

Finally, we check the case where Ψ= {α5, α6}. Then the following roots a, β

and 7 are contained in Δ (W) and satisfy the conditions in Lemma 5.2:

0 1 0 0 0\ n /0 1 1 1 1

o )> β = \ i
0 1 2 1 0

r

/0 1 2
= \ i

where g Ϊ5 o/ ίy/?e F4.

Set α = (1,1,2,2) and β = (0,1,1,0). Then a and ]8 satisfy (1)^(5) of Lem-

ma 5.3. Thus, if αf e 4+(?P) (t = 2 or 3), than the degree of Af(g, F , #) is more
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than three.

Next, let Ψ= {aίf a4}. Then put a = (1,1,0,0) and β = (0,0,1,1). Then a

and β satisfy (1)~(5) of Lemma 5.3.

Finally we shall prove that the degree of M(G2> {av α2}, g) is more than

three. Set a = a2 and β = av Then Δ consists of the following:

α, β, a + β, a + 2/3, a + 3β, 2a + 3/3.

Therefore we have from (1.9)

(5.5) (Na,B)
2 = §β(H β ) , (Ha+eJ

2 = 2β(Hβ),

W-β,a+3e)
2 = \βiHs), a(Ha) = 3β(He), a(Hβ) = - \

We show that

(V3R)(a, a + 3β,β;β,β,β) Φ 0.

From Theorem 3.4 we have

= - (Λ2R) (Λ(β)a, a + 3β,β;β, β)

- (Λ2R) (a, Λ(β)a + 3β, β;β,β)

= - 3{R(Λ(β)a, Λ(β)Λ(β)a + 3β)β + R(Λ(β)Λ(β)a, Λ(β)a + 3β)β)

- R(a, Λ(β)Λ(β)Λ(β)a + 3β)β - R(Λ(β)Λ(β)Λ(β)a, a + 3β)β

*- (NB_a+βΫ + β(Ha+B))
ca+2β

ca+2β

^~ (NaJ
2 + β(Hj) +^β(Ha+3B)} -β

I2φβ)
2

ΦO.

Therefore the degree of M(G2, {a, β}, g) is more than three.

We have thus proved Theorem 5.1.
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