NOTE ON p-GROUPS

NOBORU ITÔ

In connection with the class field theory a problem concerning p-groups was proposed by W. Magnus 1): Is there any infinite tower of p-groups G_1, G_2, \ldots , G_n , G_{n+1} , . . . such that G_I is abelian and each G_n is isomorphic to $G_{n+1}/\theta_n(G_{n+1})$, $\theta_n(G_{n+1}) \neq 1$, $n=1,2,\ldots$, where $\theta_n(G_{n+1})$ denotes the *n*-th commutator subgroup of G_{n+1} ? The present note 2) is, firstly, to construct indeed such a tower, to settle the problem, and also to refine an inequality for p-groups of P. Hall.31

1. Let p be an odd prime number and let M_i be the principal congruence subgroup of "stufe" (p^i) of the homogeneous modular group in the rational padic number field R_p , that is, the totality of matrices $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ such that a_{11} , a_{12} , a_{21} , $a_{22} \in R_p$, $a_{11} \equiv a_{22} \equiv 1 \pmod{p^i}$, and $a_{12} \equiv a_{21} \equiv 0 \pmod{p^i}$. Let $\theta_r(M_i)$ denote the r-th commutator subgroup of M_i .

LEMMA 1. $\theta_s(M_i) \subseteq M_{2s}$ for $s = 0, 1, 2, \ldots$

Proof. The case s=0 is trivial. Assume s>0 and that $\theta_{s-1}(M_l) \leq M_{2s-1}$. Then $\theta_s(M_I) \leq \theta_1(M_{2^{S-I}})$. We shall prove $\theta_1(M_{2^{S-I}}) \leq M_{2^S}$. Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ be any two elements of $M_{2^{S-I}}$. Then

Let
$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$ be any two elements of $M_{2^{S-I}}$. Then

$$egin{align*} oldsymbol{A^{-1}B^{-1}AB} &= |A|^{-I} ullet | B|^{-I} \ & \left(a_{22}b_{22} + a_{12}b_{21}
ight) (a_{11}b_{11} + a_{12}b_{21}) - (a_{22}b_{12} + a_{12}b_{11}) \left(a_{21}b_{11} + a_{22}b_{21}
ight) \ & \left(- \left(a_{21}b_{22} + a_{11}b_{21}
ight) \left(a_{11}b_{11} + a_{12}b_{21}
ight) + \left(a_{21}b_{12} + a_{11}b_{11}
ight) \left(a_{21}b_{11} + a_{22}b_{21}
ight) \ & \left(a_{22}b_{22} + a_{12}b_{21}
ight) \left(a_{11}b_{12} + a_{12}b_{22}
ight) - \left(a_{22}b_{12} + a_{12}b_{11}
ight) \left(a_{21}b_{12} + a_{22}b_{22}
ight) \ & \left(a_{21}b_{22} + a_{11}b_{21}
ight) \left(a_{11}b_{12} + a_{12}b_{22}
ight) + \left(a_{21}b_{12} + a_{11}b_{11}
ight) \left(a_{21}b_{12} + a_{22}b_{22}
ight) \end{matrix}$$

where |A|, |B| are the determinants of A, B respectively, and therefore $|A|^{-I}a_{11}a_{22}$ $\equiv |B|^{-1}b_{11}b_{22} \equiv 1 \pmod{p^{2^{s}}}$. Now $a_{11} \equiv a_{22} \equiv b_{11} \equiv b_{22} \equiv 1 \pmod{p^{2^{s-1}}}$, $a_{12} \equiv a_{21}$ $\equiv b_{12} \equiv b_{21} \equiv 0 \pmod{p^{2^{s-1}}}$. Then (1,1)- and (2,2)-elements of $A^{-1}B^{-1}AB$ are obviously $\equiv 1 \pmod{p^{2^s}}$. Since

$$a_{22}b_{22}(a_{11}b_{12} + a_{12}b_{22}) - (a_{22}b_{12} + a_{12}b_{11})a_{22}b_{22} = a_{22}b_{22}\{b_{12}(a_{11} - a_{22}) + a_{12}(b_{22} - b_{11})\},\\ - (a_{21}b_{22} + a_{11}b_{21})a_{11}b_{11} + a_{11}b_{11}(a_{21}b_{11} + a_{22}b_{21}) = a_{11}b_{11}\{a_{21}(b_{11} - b_{22}) + b_{21}(a_{22} - a_{11})\},$$

Received March 6, 1950.

- 1) W. Magnus, Beziehung zwishen Gruppen und Idealen in einem speziellen Ring, Math. Annalen 111 (1935).
- 2) An impulse was given to the present work by Dr. K. Iwasawa, through a communication by Mr. M. Suzuki.

(1,2)- and (2,1)-elements of $A^{-1}B^{-1}AB$ are also $\equiv 0 \pmod{p^{2^s}}$. Thus induction proves the lemma.

Remark. More generally it can easily be seen that $(M_k, M_l) \leq M_{k+l}$; we shall use this fact later.

LEMMA 2.

$$M_{2s} = \left\{ \left(egin{array}{ccc} 1+p^{2^s} & 0 \ 0 & 1 \end{array}
ight), \left(egin{array}{ccc} 1 & p^{2^s} \ 0 & 1 \end{array}
ight), \left(egin{array}{ccc} 1 & 0 \ p^{2^s} & 1 \end{array}
ight), \left(egin{array}{ccc} 1 & 0 \ 0 & 1+p^{2^s} \end{array}
ight), \ M_{2s+t}
ight\}$$

for $s, t = 0, 1, 2, \ldots$

Proof. The case t = 0 is trivial. Assume t > 0 and

$$M_{2S} = \left\{ \left(egin{array}{ccc} 1 + p^{2^{S}} & 0 \ 0 & 1 \end{array}
ight), \left(egin{array}{ccc} 1 & p^{2^{S}} \ 0 & 1 \end{array}
ight), \left(egin{array}{ccc} 1 & 0 \ p^{2^{S}} & 1 \end{array}
ight), \left(egin{array}{ccc} 1 & 0 \ 0 & 1 + p^{2^{S}} \end{array}
ight), \ M_{2S+t-I}
ight\}.$$

We shall prove

$$M_{2s+t-1} \subseteq \left\{ \left(egin{array}{ccc} 1 + p^{2^s} & 0 \ 0 & 1 \end{array}
ight), \left(egin{array}{ccc} 1 & p^{2^s} \ 0 & 1 \end{array}
ight), \left(egin{array}{ccc} 1 & 0 \ p^{2^s} & 1 \end{array}
ight), \left(egin{array}{ccc} 1 & 0 \ 0 & 1 + p^{2^s} \end{array}
ight), M_{2s+t}
ight\}.$$

Let $\begin{pmatrix} 1+a'_{11} & a_{12} \\ a_{21} & 1+a'_{22} \end{pmatrix}$ be any element of M_{2S+t-1} . Then

$$\begin{pmatrix} 1 + a'_{11} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 + a'_{22} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ a_{2I} & 1 \end{pmatrix} \begin{pmatrix} 1 & a_{I2} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 + a'_{11} & a_{12} + a'_{11}a_{12} \\ a_{21} + a'_{22}a_{21} & I + a'_{22} + a_{21}a_{12} + a'_{22}a_{21}a_{12} \end{pmatrix} \equiv \begin{pmatrix} 1 + a'_{11} & a_{12} \\ a_{21} & 1 + a'_{22} \end{pmatrix} \mod M^{2^{s+t}}.$$

And
$$\begin{pmatrix} 1+a'_{11} & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 \\ 0 & 1+a'_{22} \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ a_{21} & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & a_{12} \\ 0 & 1 \end{pmatrix}$ are respectively contained

$$\operatorname{in}\left(\left(\begin{matrix}1+p^{2^s}&0\\0&1\end{matrix}\right),\ M_{2^{s+t}}\right),\left\{\left(\begin{matrix}1&0\\0&1+p^{2^s}\end{matrix}\right),\ M_{2^{s+t}}\right\},\left\{\left(\begin{matrix}1&0\\p^{2^s}&1\end{matrix}\right),\ M_{2^{s+t}}\right\},$$

 $\left\{ \begin{pmatrix} 1 & p^{2^s} \\ 0 & 1 \end{pmatrix}, M_{2^{s+t}} \right\}$, because p > 2. Now the lemma is proved by induction.

Remark. More generally it can again easily be seen that

$$M_n = \left\{ \begin{pmatrix} 1+p^n & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & p^n \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ p^n & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1+p^n \end{pmatrix}, M_{n+q} \right\}$$

for $n = 1, 2, \ldots$; $q = 0, 1, 2, \ldots$

LEMMA 3. The centrum $C_1(M_1)$ of M_1 is $\left\{ \begin{pmatrix} 1+a & 0 \\ 0 & 1+a \end{pmatrix}, a \equiv 0 \pmod{p} \right\}$.

Proof. Let $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ be in $C_1(M_1)$, and let $B = \begin{pmatrix} 1 & p \\ 0 & 1 \end{pmatrix}$ or $= \begin{pmatrix} 1 & 0 \\ p & 1 \end{pmatrix}$. Then $B^{-1}AB = A = \begin{pmatrix} a_{11} - pa_{21}, & pa_{11} - p^2a_{21} + a_{12} - pa_{22} \\ a_{21}, & pa_{21} + a_{22} \end{pmatrix}$ or $= \begin{pmatrix} a_{11} + pa_{12} & a_{12} \\ -pa_{11} + a_{21} - p^2a_{12} + pa_{22}, & -pa_{12} + a_{22} \end{pmatrix}$. Therefore $a_{12} = a_{21} = 0$, a_{11}

Lemma 4. $\theta_s(M_I) \cdot M_{2s+t} \cdot C_1(M_I) = M_{2s} \cdot C_1(M_I)$ for $s, t = 0, 1, 2, \ldots$

Proof. The case s=0 is trivial. Assume s>0 and $\theta_{s-1}(M_1) \cdot M_{2s-1+t} \cdot C_1(M_1) = M_{2s-1} \cdot C_1(M_1)$ for $t=0,1,2,\ldots$

Put
$$q = p^{2^{s-1}}$$
. Then $\frac{1}{1+q} \binom{1+q}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1-q}{0} = \binom{1}{0} \binom{1}{1}$, and $\binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} \binom{1}{0} = \binom{1+q^2+q^4-q^3}{-q^3-q^2+1}$ are elements of $\theta_s(M_1) \cdot M_{2s+t} \cdot C_1(M_1)$, because $\theta_1 \{\theta_{s-1}(M_1) \cdot M_{2s-1+t} \cdot C_1(M_1)\}$ $\subseteq \theta_s(M_1) \cdot M_{2s+t} \cdot C_1(M_1)$. Now $\binom{1}{0} \binom{1}{1}$ is contained in $\theta_s(M_1) \cdot M_{2s+t} \cdot C_1(M_1)$.

Symmetrically the same is the case for $\begin{pmatrix} 1 & 0 \\ q^2 & 1 \end{pmatrix}$. Next $\begin{pmatrix} 1+q^2+q^4 & 0 \\ -q^3 & 1-q^2+\dots \end{pmatrix}$ is contained in $\theta_s(M_1) \cdot M_{2s+t} \cdot C_1(M_1)$, because $\begin{pmatrix} 1+q^2+q^4 & 0 \\ -q^3 & 1-q^2+\dots \end{pmatrix}$ $\equiv \begin{pmatrix} 1+q^2+q^4 & q^3 \\ -q^3 & 1-q^2 \end{pmatrix}$ mod. $\theta_s(M_1) \cdot M_{2s+t} \cdot C_1(M_1)$. Similarly $\begin{pmatrix} 1+q^2+q^4 & 0 \\ 0 & 1-q^2+\dots \end{pmatrix}$ is contained in $\theta_s(M_1) \cdot M_{2s+t} \cdot C_1(M_1)$.

Finally

 $= a_{22}$.

$$\begin{pmatrix} 1+q^2+q^4 & 0 \\ 0 & 1-q^2+\dots \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1-2\,q^2+\dots \end{pmatrix} \text{ mod. } \theta_{s}(M_1) \cdot M_{2s+t} \cdot C_1(M_1),$$
 and
$$\begin{pmatrix} 1 & 0 \\ 0 & 1+q^2 \end{pmatrix} \text{ is contained in } \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1-2\,q^2+\dots \end{pmatrix}, \ M_{2s+t} \right\} \text{ because } p>2.$$
 Hence
$$\begin{pmatrix} 1 & 0 \\ 0 & 1+q^2 \end{pmatrix} \text{ and, symmetrically, } \begin{pmatrix} 1+q^2 & 0 \\ 0 & 1 \end{pmatrix} \text{ are contained in }$$

 $\theta_s(M_1) \cdot M_{2s+l} \cdot C_1(M_1)$. Our induction argument is completed. Remark. More generally it can be seen that

$$\theta_m(M_1) \cdot M_n \cdot C_1(M_1) = M_{2m} \cdot C_1(M_1)$$
 for $n = 2^m, 2^m + 1, \dots$

Besides it can be seen analogously that

$$H_m(M_1) \cdot M_n \cdot C_1(M_1) = M_n \cdot C_1(M_1)$$
 for $n = m, m + 1, \ldots$

where H denotes the lower central series.

116 NOBORU ITÔ

Lemma 5.
$$\theta_s \left(\frac{M_1}{M_{2s+t} \cdot C_1(M_1)} \right) = \frac{M_{2s} \cdot C_1(M_1)}{M_{2s+t} \cdot C_1(M_1)}$$
 for $t = 0, 1, 2, \dots$
Proof. $\theta_s \left(\frac{M_1}{M_{2s+t} \cdot C_1(M_1)} \right) = \frac{\theta_s(M_1) \cdot M_{2s+t} \cdot C_1(M_1)}{M_{2s+t} \cdot C_1(M_1)} = \frac{M_{2s} \cdot C_1(M_1)}{M_{2s+t} \cdot C_1(M_1)}$ from

Lemma 4.

Now we can construct actually in the following manner an infinite tower of p-groups satisfying the condition proposed by W. Magnus:

Designate $\frac{M_1}{M_{2n} \cdot C_1(M_1)}$ by G_n . Then $G_1 \neq 1$ is abelien, $\frac{G_n}{\theta_{n-1}(G_n)}$ is isomorphic to G_{n-1} by Lemma 5, and $\theta_{n-1}(G_n) \neq 1$. Therefore $\{G_1, G_2, \ldots, G_n, \ldots\}$ gives surely an infinite tower fulfilling the condition.

Remark. It is very likely that also for p=2 we may start with M_2 to obtain a similar series in a little bit more complicated form.

For non p-groups such a construction is easier than for p-groups.

2. In his celebrated paper P. Hall 3) gave the following theorem: "Let G be a p-group (p > 2) of the smallest order p^n such that $\theta_m(G)$ be different from 1. Then

$$2^{m-1}(2^m-1) \ge n \ge 2^m+m$$

Now we can refine the upper bound of this inequality to be 3.2^m . To this we consider the group $G = \frac{M_1}{M_2^{m}+1} \cdot C_1(M_1)$ which was constructed above. Then $\theta_m(G)$ is obviously different 1. The order of G is $p^{3.2^m}$ because $(M_1:M_{2^m+1})=(M_1:M_{2^m+1}\cdot C_1(M_1))$. $(M_{2^m+1}\cdot C_1(M_1):M_{2^m+1})$ and $(M_1:M_{2^m+1})=p^{4.2^m}$, $(M_{2^m+1}\cdot (C_1(M_1):M_{2^m+1})=p^{2^m}$.

Nagoya University

³⁾ P. Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc. 36 (1934).