NOTE ON p-GROUPS

NOBORU ITÔ

In connection with the class field theory a problem concerning p-groups was proposed by W. Magnus ${ }^{11}$: Is there any infinite tower of p-groups G_{1}, G_{2}, \ldots, G_{n}, G_{n+1}, \ldots such that G_{I} is abelian and each G_{n} is isomorphic to $G_{n+1} / \theta_{n}\left(G_{n+1}\right)$, $\theta_{n}\left(G_{n+1}\right) \neq 1, n=1,2, \ldots$, where $\theta_{n}\left(G_{n+1}\right)$ denotes the n-th commutator subgroup of G_{n+1} ? The present note ${ }^{2)}$ is, firstly, to construct indeed such a tower, to settle the problem, and also to refine an inequality for p-groups of P. Hall. ${ }^{3)}$

1. Let p be an odd prime number and let M_{i} be the principal congruence subgroup of "stufe" (p^{i}) of the homogeneous modular group in the rational p adic number field R_{p}, that is, the totality of matrices $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ such that a_{11}, $a_{12}, a_{21}, a_{22} \in R_{p}, a_{11} \equiv a_{22} \equiv 1\left(\bmod . p^{i}\right)$, and $a_{12} \equiv a_{21} \equiv 0\left(\bmod . p^{i}\right)$. Let $\theta_{r}\left(M_{i}\right)$ denote the r-th commutator subgroup of M_{i}.

Lemma 1. $\theta_{s}\left(M_{i}\right) \subseteq M_{2 s}$ for $s=0,1,2, \ldots$
Proof. The case $s=0$ is trivial. Assume $s>0$ and that $\theta_{s-1}\left(M_{I}\right) \leqq M_{2 s-1}$. Then $\theta_{s}\left(M_{I}\right) \leqq \theta_{1}\left(M_{2 s-I}\right)$. We shall prove $\theta_{1}\left(M_{2 s-I}\right) \leqq M_{2 s}$. Let $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right), B=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$ be any two elements of $M_{2 s-1}$. Then $A^{-1} B^{-1} A B=|A|^{-1} \cdot|B|^{-I}$

$$
\begin{gathered}
\left(a_{22} b_{22}+a_{12} b_{21}\right)\left(a_{11} b_{11}+a_{12} b_{21}\right)-\left(a_{22} b_{12}+a_{12} b_{11}\right)\left(a_{21} b_{11}+a_{22} b_{21}\right) \\
-\left(a_{21} b_{22}+a_{11} b_{21}\right)\left(a_{11} b_{11}+a_{12} b_{21}\right)+\left(a_{21} b_{12}+a_{11} b_{11}\right)\left(a_{21} b_{11}+a_{22} b_{21}\right) \\
\left(a_{22} b_{22}+a_{12} b_{21}\right)\left(a_{11} b_{12}+a_{12} b_{22}\right)-\left(a_{22} b_{12}+a_{12} b_{11}\right)\left(a_{21} b_{12}+a_{22} b_{22}\right) \\
\left.-\left(a_{21} b_{22}+a_{11} b_{21}\right)\left(a_{11} b_{12}+a_{12} b_{22}\right)+\left(a_{21} b_{12}+a_{11} b_{11}\right)\left(a_{21} b_{12}+a_{22} b_{22}\right)\right)
\end{gathered}
$$

where $|A|,|B|$ are the determinants of A, B respectively, and therefore $|A|^{-1} a_{11} a_{22}$ $\equiv|B|^{-1} b_{11} b_{22} \equiv 1\left(\bmod . p^{2^{s}}\right) . \quad$ Now $a_{11} \equiv a_{22} \equiv b_{11} \equiv b_{22} \equiv 1\left(\bmod . p^{2 s-1}\right), \quad a_{12} \equiv a_{21}$ $\equiv b_{12} \equiv b_{21} \equiv 0\left(\bmod . p^{2-1}\right)$. Then (1,1)- and (2,2)-elements of $A^{-1} B^{-1} A B$ are obviously $\equiv 1$ (mod. $\left.p^{p^{s}}\right)$. Since

$$
\begin{array}{r}
a_{22} b_{29}\left(a_{11} b_{12}+a_{12} b_{22}\right)-\left(a_{22} b_{12}+a_{12} b_{11}\right) a_{22} b_{12}=a_{22} b_{22}\left\{b_{12}\left(a_{11}-a_{22}\right)+a_{12}\left(b_{22}-b_{11}\right)\right\}, \\
-\left(a_{21} b_{29}+a_{11} b_{21}\right) a_{11} b_{11}+a_{11} b_{11}\left(a_{21} b_{11}+a_{22} b_{21}\right)=a_{11} b_{11}\left\{a_{21}\left(b_{11}-b_{22}\right)+b_{21}\left(a_{22}-a_{11}\right)\right\},
\end{array}
$$

Received March 6, 1950.
${ }^{1)}$ W. Magnus, Beziehung zwishen Gruppen und Idealen in einem speziellen Ring, Math. Annalen 111 (1935).
2) An impulse was given to the present work by Dr. K. Iwasawa, through a communication by Mr. M. Suzuki.
(1,2)- and (2,1)-elements of $A^{-1} B^{-1} A B$ are also $\equiv 0\left(\bmod . p^{s^{s}}\right)$.
Thus induction proves the lemma.
Remark. More gencrally it can easily be seen that $\left(M_{k}, M_{l}\right) \leqq M_{k+l}$; we shall use this fact later.

Lemma 2.

$$
M_{u s}=\left\{\left(\begin{array}{cc}
1+p^{2^{s}} & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & p^{2^{s}} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
p^{2^{s}} & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & 1+p^{2^{s}}
\end{array}\right), M_{2 s+t}\right\}
$$

for $s, t=0,1,2, \ldots$
Proof. The case $t=0$ is trivial. Assume $t>0$ and

$$
M_{2 s}=\left\{\left(\begin{array}{cc}
1+p^{2^{s}} & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & p^{2^{s}} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
p^{2^{s}} & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & 1+p^{2^{s}}
\end{array}\right), M_{2 s+t-1}\right\}
$$

We shall prove

$$
M_{2 s+t-1} \subseteq\left\{\left(\begin{array}{cc}
1+p^{2^{s}} & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & p^{2^{s}} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
p^{2^{s}} & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & 1+p^{2^{s}}
\end{array}\right), M_{2} s+t\right\}
$$

Let $\left(\begin{array}{lc}1+a_{11}^{\prime} & a_{12} \\ a_{21} & 1+a_{22}^{\prime}\end{array}\right)$ be any element of $M_{2 s+t-1}$. Then

$$
\begin{aligned}
& \left(\begin{array}{cc}
1+a_{11}^{\prime} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1+a_{22}^{\prime}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
a_{2 I} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & a_{12} \\
0 & 1
\end{array}\right) \\
= & \left(\begin{array}{cc}
1+a_{11}^{\prime} & a_{12}+a_{11}^{\prime} a_{12} \\
a_{21}+a_{22}^{\prime} a_{21} & I+a_{22}^{\prime}+a_{21} a_{12}+a_{22}^{\prime} a_{21} a_{12}
\end{array}\right) \equiv\left(\begin{array}{cc}
1+a_{11}^{\prime} & a_{12} \\
a_{21} & 1+a_{22}^{\prime}
\end{array}\right) \text { mod. } M^{2^{s+t}}
\end{aligned}
$$

And $\left(\begin{array}{cc}1+a_{11}^{\prime} & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & 1+a_{22}^{\prime}\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ a_{21} & 1\end{array}\right),\left(\begin{array}{ll}1 & a_{12} \\ 0 & 1\end{array}\right)$ are respectively contained
$\operatorname{in}\left\{\left(\begin{array}{cc}1+p^{2^{s}} & 0 \\ 0 & 1\end{array}\right), M_{2 s+t}\right\},\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & 1+p^{2^{s}}\end{array}\right), M_{2 s+t}\right\},\left\{\left(\begin{array}{cc}1 & 0 \\ p^{2^{s}} & 1\end{array}\right), M_{2 s+t}\right\}$, $\left\{\left(\begin{array}{cc}1 & p^{2^{s}} \\ 0 & 1\end{array}\right), M_{\bullet s+t}\right\}$, because $p>2$. Now the lemma is proved by induction.

Remark. More generally it can again easily be seen that

$$
M_{n}=\left\{\left(\begin{array}{cc}
1+p^{n} & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & p^{n} \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
p^{n} & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & 1+p^{n}
\end{array}\right), M_{n+a}\right\}
$$

for $n=1,2, \ldots ; q=0,1,2, \ldots$.

Lemma 3. The centrum $C_{1}\left(M_{1}\right)$ of M_{1} is $\left\{\left(\begin{array}{cc}1+a & 0 \\ 0 & 1+a\end{array}\right), a \equiv 0(\bmod p)\right\}$.
Proof. Let $A=\left(\begin{array}{ll}a_{11} & a_{19} \\ a_{21} & a_{22}\end{array}\right)$ be in $C_{1}\left(M_{1}\right)$, and let $B=\left(\begin{array}{ll}1 & p \\ 0 & 1\end{array}\right)$ or $=\left(\begin{array}{ll}1 & 0 \\ p & 1\end{array}\right)$. Then $B^{-1} A B=A=\left(\begin{array}{cc}a_{11}-p a_{21}, & p a_{11}-p^{2} a_{21}+a_{12}-p a_{22} \\ a_{21}, & p a_{21}+a_{22}\end{array}\right)$ or $=\left(\begin{array}{cc}a_{11}+p a_{12} & a_{12} \\ -p a_{11}+a_{21}-p^{2} a_{12}+p a_{29}, & -p a_{12}+a_{22}\end{array}\right)$. Therefore $a_{12}=a_{21}=0, a_{13}$ $=a_{22}$.

Lemma 4. $\theta_{s}\left(M_{1}\right) \cdot M_{2 s+t} \cdot C_{1}\left(M_{1}\right)=M_{2 s} \cdot C_{1}\left(M_{1}\right)$ for $s, t=0,1,2, \ldots$
Proof. The case $s=0$ is trivial. Assume $s>0$ and $\theta_{s-1}\left(M_{1}\right) \cdot M_{2 s-1+t} \cdot C_{1}\left(M_{1}\right)$ $=M_{2 S-1} \cdot C_{1}\left(M_{1}\right)$ for $t=0,1,2, \ldots$
Put $q=p^{p^{s m-1}}$. Then $\frac{1}{1+q}\left(\begin{array}{cc}1+q & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ 0\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & 1+q\end{array}\right)\left(\begin{array}{cc}1 & -q \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & q^{q} \\ 0 & 1\end{array}\right)$, and $\left(\begin{array}{cc}1 & -q \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -q & 1\end{array}\right)\left(\begin{array}{ll}1 & q \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ q & 1\end{array}\right)=\left(\begin{array}{cc}1+q^{2}+q^{4} & q^{3} \\ -q^{3} & -q^{2}+1\end{array}\right)$ are elements of $\theta_{s}\left(M_{1}\right) \cdot M_{2 s+t} \cdot C_{1}\left(M_{1}\right)$, because $\theta_{1}\left\{\theta_{s-1}\left(M_{1}\right) \cdot M_{2 s-1+t^{\circ}} C_{1}\left(M_{1}\right)\right\}$ $\cong \theta_{s}\left(M_{1}\right) \cdot M_{2 s+t} \cdot C_{1}\left(M_{1}\right) . \quad$ Now $\left(\begin{array}{cc}1 & q^{2} \\ 0 & 1\end{array}\right)$ is contained in $\theta_{s}\left(M_{1}\right) \cdot M_{2 s+t} \cdot C_{1}\left(M_{1}\right)$.
Symmetrically the same is the case for $\left(\begin{array}{ll}1 & 0 \\ q^{2} & 1\end{array}\right)$. $\operatorname{Next}\left(\begin{array}{cc}1+q^{2}+q^{4} & 0 \\ -q^{3} & 1-q^{2}+\ldots\end{array}\right)$ is contained in $\theta_{s}\left(M_{1}\right) \cdot M_{2 S+t} \cdot C_{1}\left(M_{1}\right)$, because $\left(\begin{array}{cc}1+q^{2}+q^{4} & 0 \\ -q^{3} & 1-q^{2}+\ldots\end{array}\right)$ $\equiv\left(\begin{array}{cc}1+q^{2}+q^{4} & q^{3} \\ -q^{3} & 1-q^{2}\end{array}\right)$ mod. $\theta_{s}\left(M_{1}\right) \cdot M_{2 s^{\prime} t} \cdot C_{1}\left(M_{\mathrm{j}}\right)$. Similarly $\left(\begin{array}{cc}1+q^{q^{2}}+q^{4} & 0 \\ 0 & 1-q^{2}+\ldots\end{array}\right)$ is contained in $\theta_{s}\left(M_{1}\right) \cdot M_{2 s+t} \cdot C_{1}\left(M_{1}\right)$. Finally
$\left(\begin{array}{cc}1+q^{2}+q^{4} & 0 \\ 0 & 1-q^{2}+\ldots\end{array}\right) \equiv\left(\begin{array}{cc}1 & 0 \\ 0 & 1-2 q^{2}+\ldots\end{array}\right) \bmod . \theta_{s}\left(M_{1}\right) \cdot M_{2 s+t} \cdot C_{1}\left(M_{1}\right)$, and $\left(\begin{array}{cc}1 & 0 \\ 0 & 1+q^{2}\end{array}\right)$ is contained in $\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & 1-2 q^{2}+\ldots\end{array}\right), M_{2 s+t}\right\}$ because $p>2$. Hence $\left(\begin{array}{cc}1 & 0 \\ 0 & 1+q^{2}\end{array}\right)$ and, symmetrically, $\left(\begin{array}{cc}1+q^{2} & 0 \\ 0 & 1\end{array}\right)$ are contained in $\boldsymbol{\theta}_{s}\left(M_{1}\right) \cdot M_{2 S+t} \cdot C_{1}\left(M_{1}\right)$. Our induction argument is completed.

Remark. More generally it can be seen that

$$
\theta_{m}\left(M_{1}\right) \cdot M_{n} \cdot C_{1}\left(M_{1}\right)=M_{2 m} \cdot C_{1}\left(M_{1}\right) \text { for } n=2^{m}, 2^{m}+1, \ldots
$$

Besides it can be seen analogously that

$$
H_{m}\left(M_{1}\right) \cdot M_{n} \cdot C_{1}\left(M_{1}\right)=M_{n} \cdot C_{1}\left(M_{1}\right) \text { for } n=m, m+1, \ldots,
$$

where H denotes the lower central series.

Lemma 5. $\quad \theta_{s}\left(\frac{M_{1}}{M_{2 s}+t \cdot C_{1}\left(M_{1}\right)}\right)=\frac{M_{2 s} \cdot C_{1}\left(M_{1}\right)}{M_{2 s}+t \cdot C_{1}\left(M_{1}\right)}$ for $t=0,1,2, \ldots$
Proof. $\quad \theta_{s}\left(\frac{M_{5}}{M_{2 s}+t C_{1}\left(M_{1}\right)}\right)=\frac{\theta_{s}\left(M_{5}\right) \cdot M_{2 s+t} \cdot C_{5}\left(M_{j}\right)}{M_{2 s+t} \cdot C_{1}\left(M_{1}\right)}=\frac{M_{25} \cdot C_{1}\left(M_{1}\right)}{M_{2 s+t} \cdot C_{1}\left(M_{1}\right)} \quad$ from

Lemma 4.

Now we can construct actually in the following manner an infinite tower of p-groups satisfying the condition proposed by W. Magnus:

Designate $\frac{M_{1}}{M_{2 n} \cdot C_{1}\left(M_{1}\right)}$ by G_{n}. Then $G_{1} \neq 1$ is abelien, $\frac{G_{n}}{\theta_{n-1}\left(G_{n}\right)}$ is isomorphic to G_{n-1} by Lemma 5 , and $\theta_{n-1}\left(G_{n}\right) \neq 1$. Therefore $\left\{G_{1}, G_{2}, \ldots, G_{n}, \ldots\right\}$ gives surely an infinite tower fulfilling the condition.

Remark. It is very likely that also for $p=2$ we may start with M_{2} to obtain a similar series in a little bit more complicated form.

For non p-groups such a construction is easier than for p-groups.
2. In his celebrated paper P. Hall ${ }^{3)}$ gave the following theorem: " Let \boldsymbol{G} be a p-group $(p>2)$ of the smallest order p^{n} such that $\theta_{m}(G)$ be different from 1. Then

$$
2^{m-1}\left(2^{m}-1\right) \supseteqq n \supseteqq 2^{m}+m
$$

Now we can refine the upper bound of this inequallity to be 3.2^{m}. To this we consider the group $G=\frac{M_{1}}{M_{\mathrm{e}^{m}+1} \cdot C_{1}\left(M_{1}\right)}$ which was constructed above. Then $\theta_{m}(G)$ is obviously different from 1. The order of G is $p^{3.2^{m}}$ because $\left(M_{1}: M_{2^{m}+1}\right)=\left(M_{1}: M_{9^{m}{ }_{+1}} \cdot C_{1}\left(M_{1}\right)\right)$. ($\left.M_{2^{m}+1} \cdot C_{1}\left(M_{1}\right): M_{9^{n+1}}\right)$ and ($\left.M_{1}: M_{2^{m}+1}\right)$ $=p^{4 \cdot 2^{m}},\left(M_{2^{m}+1} \cdot\left(C_{1}\left(M_{1}\right): M_{2^{m}+1}\right)=p^{n^{m}}\right.$.

Nagoya University

[^0]
[^0]: ${ }^{3)}$ P. Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc. 36 (1934).

