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ON OSGOOD-YANG’S CONJECTURE AND

MUES’ CONJECTURE

HONG-XUN YI and YU-HUA LI

Abstract. In this paper, we deal with the relation between the characteristic
functions of meromorphic functions that share three values CM. As applications
of our main results, we shall affirmatively settle two conjectures proposed by
Mues and Osgood-Yang.

§1. Introduction

In this paper, a meromorphic function always means a function that is

meromorphic in the complex plane C. We use the usual notations in the

Nevanlinna theory of meromorphic functions as explained in [1]. Denote by

E any set of finite Lebesgue measure on (0,+∞), which is not necessarily

the same at each occurrence.

Let f and g be two nonconstant meromorphic functions. We say that

f and g share a value a ∈ Ĉ provided that f(z) = a if and only if g(z) = a.

We say that they share the value a CM resp. IM, when we are counting

the multiplicity, resp. ignoring the multiplicity (see [2]).

In 1976, C. F. Osgood and C. C. Yang [3] proved the following theorem:

Theorem A. Let f and g be two nonconstant entire functions of finite

order. If f and g share 0, 1 CM, then

T (r, f) ∼ T (r, g) (r → ∞).

In [3], C. F. Osgood and C. C. Yang proposed the following conjecture:

Osgood-Yang’s Conjecture. ([3, p. 409]) Let f and g be two non-

constant entire functions sharing 0, 1 CM. Then

T (r, f) ∼ T (r, g) (r → ∞, r /∈ E).
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In 1989, G. Brosch [4] proved the following theorem:

Theorem B. Let f and g be two nonconstant meromorphic functions

sharing three values CM. Then

( 3

8
+ o(1)

)
≤

T (r, f)

T (r, g)
≤

( 8

3
+ o(1)

)
(r → ∞, r /∈ E).

In 1990, W. Bergweiler [5] proved the following theorem:

Theorem C. There exists a set I ⊂ (0,∞) of infinite Lebesgue mea-

sure and there exist meromorphic functions f and g sharing 0, 1,∞ CM

such that

lim inf
r→∞

r∈I

T (r, f)

T (r, g)
≥ 2.

Theorem C implies that the bound 8/3 in Theorem B cannot be re-

placed by any constant less than 2. In 1995, E. Mues [6] proposed the

following conjecture:

Mues’ Conjecture. ([6, p. 28]) Let f and g be two nonconstant

meromorphic functions sharing three values CM. Then

( 1

2
+ o(1)

)
≤

T (r, f)

T (r, g)
≤ (2 + o(1)) (r → ∞, r /∈ E).

In 1998, P. Li and C. C. Yang [7] proved the following theorem:

Theorem D. Let f and g be two nonconstant meromorphic functions

sharing 0, 1,∞ CM. Then, for any positive number ε,

T (r, g) ≤ (2 + ε)T (r, f) + S(r, f).

In this paper, we deal with the relation between the characteristic func-

tions of meromorphic functions that share three values CM. As applications

of our main results, we shall affirmatively settle two conjectures proposed

by Mues and Osgood-Yang.
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§2. Main results

Let f and g be two nonconstant meromorphic functions sharing 0, 1,∞

CM. In this paper, we denote by N0(r) the counting function of the zeros

of f − g that are not zeros of f, f − 1 and 1/f .

Theorem 2.1. Let f and g be two nonconstant meromorphic functions

sharing 0, 1,∞ CM. If

(2.1) lim sup
r→∞

r/∈E

N0(r)

T (r, f)
>

1

2
,

then

(2.2) T (r, f) ∼ T (r, g) (r → ∞).

If

(2.3) 0 < lim sup
r→∞

r/∈E

N0(r)

T (r, f)
≤

1

2
,

then

(2.4) T (r, f) ∼ T (r, g) (r → ∞, r /∈ E).

If

(2.5) lim sup
r→∞

r/∈E

N0(r)

T (r, f)
= 0,

then

(2.6)
( 1

2
+ o(1)

)
≤

T (r, f)

T (r, g)
≤ (2 + o(1)) (r → ∞, r /∈ E).

By Theorem 2.1, we immediately obtain the following corollary, which

shows that Mues’ conjecture is true.

Corollary 2.1. Let f and g be two nonconstant meromorphic func-

tions sharing three values CM. Then

( 1

2
+ o(1)

)
≤

T (r, f)

T (r, g)
≤ (2 + o(1)) (r → ∞, r /∈ E).
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Theorem 2.2. Let f and g be two nonconstant entire functions shar-

ing 0, 1 CM. If

(2.7) lim sup
r→∞

r/∈E

N0(r)

T (r, f)
>

1

2
,

then

(2.8) T (r, f) ∼ T (r, g) (r → ∞).

If

(2.9) lim sup
r→∞

r/∈E

N0(r)

T (r, f)
≤

1

2
,

then

(2.10) T (r, f) ∼ T (r, g) (r → ∞, r /∈ E).

By Theorem 2.2, we immediately obtain the following corollary, which

shows that Osgood-Yang’s conjecture is true.

Corollary 2.2. Let f and g be two nonconstant entire functions

sharing two finite values CM. Then

T (r, f) ∼ T (r, g) (r → ∞, r /∈ E).

§3. Some lemmas

Lemma 3.1. ([1, p. 8] or [8, Theorem 1.11]) Let f and g be two non-

constant meromorphic functions. If f is a fractional linear transformation

of g, then

(3.1) T (r, g) = T (r, f) + O(1).

Lemma 3.2. ([8, Theorem 1.13] or [9]) Let f be a nonconstant mero-

morphic function, and let

R(f) =
n∑

k=0

akf
k

/ m∑

j=0

bjf
j

be an irreducible rational function in f with constant coefficients {ak} and

{bj}, where an 6= 0 and bm 6= 0. Then

(3.2) T (r,R(f)) = max{n,m}T (r, f) + S(r, f).
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Lemma 3.3. ([10, Theorem 1]) Let f and g be two nonconstant mero-

morphic functions sharing 0, 1,∞ CM. If

(3.3) lim sup
r→∞

r/∈E

N0(r)

T (r, f)
>

1

2
,

then f is a fractional linear transformation of g.

Lemma 3.4. ([10, Theorem 2]) Let f and g be two nonconstant mero-

morphic functions sharing 0, 1,∞ CM. If

(3.4) 0 < lim sup
r→∞

r/∈E

N0(r)

T (r, f)
≤

1

2
,

then f is not any fractional linear transformation of g and one of the fol-

lowing relations occurs:

(i) f =
esα − 1

e(k+1)α − 1
, g =

e−sα − 1

e−(k+1)α − 1
,(3.5)

(ii) f =
e(k+1)α − 1

e(k+1−s)α − 1
, g =

e−(k+1)α − 1

e−(k+1−s)α − 1
,(3.6)

(iii) f =
esα − 1

e−(k+1−s)α − 1
, g =

e−sα − 1

e(k+1−s)α − 1
,(3.7)

where s and k (≥ 2) are positive integers such that and 1 ≤ s ≤ k, s and

k + 1 are relatively prime, and α is a nonconstant entire function.

Lemma 3.5. ([11, Lemma 1]) Let h be a nonconstant entire function.

Then

(3.8) T (r, h′) = o(T (r, eh)) (r → ∞, r /∈ E).

Lemma 3.6. ([12, Lemma 1]) Let f and g be two nonconstant mero-

morphic functions sharing 0, 1,∞ CM. If f 6≡ g, then

(3.9) f =
eq − 1

ep − 1
, g =

e−q − 1

e−p − 1
,

where p and q are entire functions such that ep 6≡ 1, eq 6≡ 1, eq−p 6≡ 1, and

(3.10) T (r, g) + T (r, ep) + T (r, eq) = O(T (r, f)) (r /∈ E).
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Lemma 3.7. Let f and g be two nonconstant meromorphic functions

sharing 0, 1,∞ CM. If f is not any fractional linear transformation of g,
then

(3.11)

T (r, f) + T (r, g) = N
(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N(r, f) + N0(r) + S(r, f).

Proof. Suppose that f 6≡ g. Since f and g share 0, 1,∞ CM, by
Lemma 3.6, we obtain (3.9) and (3.10). From (3.9) we get

(3.12)
f

g
= eq−p,

f − 1

g − 1
= eq,

(f − 1)g

f(g − 1)
= ep.

If ep is a constant, from (3.12) we obtain that f is a fractional linear trans-
formation of g, which is a contradiction. Thus ep is not constant. In the
same manner as above, we have eq and eq−p are not constants. In this case,
we have the following ([12, p. 309, (18)]):
(3.13)

T (r, f) + T (r, g) = N
(
r,

1

g

)
+ N

(
r,

1

g − 1

)
+ N(r, g) + N ∗

0 (r) + S(r, f),

where N ∗

0 (r) denotes the counting function of the zero of f − g that are not
zeros of f and f − 1 (in [12], we use N0(r) for N ∗

0 (r) in this paper).
Let

(3.14) N ∗∗

0 (r) := N ∗

0 (r) − N0(r).

Next we proceed to estimate N ∗∗

0 (r). It is obvious that N ∗∗

0 (r) denotes the
counting function of the zero of f − g that are zeros of 1/f . Suppose that
z0 is a zero of 1/f that is a zero of f − g. Since z0 is a zero of 1/f , by (3.9),
we have

(3.15) ep(z0) = 1.

By (3.9), we also have

(3.16) f − g =
eq − ep + ep−q − 1

ep − 1
.

Note that z0 is a zero of f − g. By (3.16), we have

(3.17) eq(z0) − ep(z0) + ep(z0)−q(z0) = 1.
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By (3.15) and (3.17), we obtain

(3.18) eq(z0) = 1.

Since z0 is a zero of 1/f , by (3.9) and (3.18), we get that z0 is a zero of
ep −1 with multiplicity ≥ 2, and hence z0 is a zero of (ep −1)′ = p′ep. Thus

(3.19) N ∗∗

0 (r) ≤ N
(
r,

1

p′

)
≤ T (r, p′) + O(1).

By Lemma 3.5, (3.10) and (3.19), we have

(3.20) N ∗∗

0 (r) = S(r, f).

By (3.13), (3.14) and (3.20), we get (3.11), which proves Lemma 3.7.

§4. Proof of Theorem 2.1 and Theorem 2.2

4.1. Proof of Theorem 2.1

Suppose that f 6≡ g. We consider the following three cases.

Case 1. Suppose that N0(r) satisfies (2.1). By Lemma 3.3, we have

that f is a fractional linear transformation of g. Hence, by Lemma 3.1, we

obtain (2.2).

Case 2. Suppose that N0(r) satisfies (2.3). By Lemma 3.4, we have

that f is not any fractional linear transformation of g and one of (3.5),

(3.6) and (3.7) occurs. We consider the following three subcases.

Subcase 2.1. Assume that f and g satisfy (3.5). Let

(4.1) R(w) :=
ws − 1

wk+1 − 1
.

By (3.5), we have

(4.2) f = R(eα), g = R(e−α).

Since 1 ≤ s ≤ k, and s and k + 1 are relatively prime, by Lemma 3.2, (4.1)

and (4.2), we get

(4.3) T (r, f) = k T (r, eα) + S(r, eα),

and

(4.4) T (r, g) = k T (r, e−α) + S(r, e−α) = k T (r, eα) + S(r, eα).
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By (4.3) and (4.4), we obtain (2.4).

Subcase 2.2. Assume that f and g satisfy (3.6). Let

(4.5) R(w) :=
wk+1 − 1

wk+1−s − 1
.

By (3.6), we have

(4.6) f = R(eα), g = R(e−α).

By Lemma 3.2, (4.5) and (4.6), we get

(4.7) T (r, f) = k T (r, eα) + S(r, eα),

and

(4.8) T (r, g) = k T (r, e−α) + S(r, e−α) = k T (r, eα) + S(r, eα).

By (4.7) and (4.8) we obtain (2.4).

Subcase 2.3. Assume that f and g satisfy (3.7). Let

(4.9) R(w) :=
wk+1−s(ws − 1)

1 − wk+1−s
.

By (3.7), we have

(4.10) f = R(eα), g = R(e−α).

By Lemma 3.2, (4.9) and (4.10), we get

(4.11) T (r, f) = k T (r, eα) + S(r, eα),

and

(4.12) T (r, g) = k T (r, e−α) + S(r, e−α) = k T (r, eα) + S(r, eα).

By (4.11) and (4.12) we obtain (2.4).

Case 3. Suppose that N0(r) satisfies (2.5). We consider the following

two subcases.

Subcase 3.1. Assume that f is a fractional linear transformation of g.

By Lemma 3.1, we obtain (2.2).
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Subcase 3.2. Assume that f is not any fractional linear transformation

of g. By Lemma 3.7, we obtain (3.11). By (2.5), we have

(4.13) N0(r) = S(r, f).

Combining (3.11) and (4.13), we get

(4.14) T (r, f) + T (r, g) = N
(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N(r, f) + S(r, f).

It is clear that

(4.15) N
(
r,

1

f

)
+ N

(
r,

1

f − 1

)
+ N(r, f) ≤ 3T (r, f) + O(1).

Combining (4.14) and (4.15), we obtain

(4.16) T (r, g) ≤ 2T (r, f) + S(r, f).

Similarly, we have

(4.17) T (r, f) ≤ 2T (r, g) + S(r, f).

Combining (4.16) and (4.17), we get (2.6). This completes the proof of

Theorem 2.1.

4.2. Proof of Corollary 2.1

Let f and g share a1, a2, a3 CM, where a1, a2, a3 are three distinct

elements in Ĉ. Set

L(w) :=
(w − a1)(a2 − a3)

(w − a3)(a2 − a1)
.

Let F := L(f) and G := L(g). Then F and G share 0, 1,∞ CM. By

Theorem 2.1, we have

(4.18)
( 1

2
+ o(1)

)
≤

T (r, F )

T (r,G)
≤ (2 + o(1)) (r → ∞, r /∈ E).

By Lemma 3.1, we have

(4.19) T (r, f) = T (r, F ) + O(1), T (r, g) = T (r,G) + O(1).

Combining (4.18) and (4.19), we obtain

( 1

2
+ o(1)

)
≤

T (r, f)

T (r, g)
≤ (2 + o(1)) (r → ∞, r /∈ E).

This completes the proof of Corollary 2.1.
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4.3. Proof of Theorem 2.2

Since f and g are two nonconstant entire functions, f and g share ∞

CM. By Theorem 2.1, if N0(r) satisfies either (2.7) or (2.3), then we have

the desired conclusion. Next, we assume that N0(r) satisfies (2.5). Then

we have

(4.20) N0(r) = S(r, f).

Since N(r, f) = N(r, g) = 0, we get (2.10) as in the proof of Theorem 2.1.

This completes the proof of Theorem 2.2.

4.4. Proof of Corollary 2.2

Let f and g share a1, a2 CM, where a1, a2 are two distinct points in C.

Set L(w) = (w− a1)/(a2 − a1). Let F := L(f) and G := L(g). Then F and

G are two nonconstant entire functions sharing 0, 1 CM. By Theorem 2.2,

we get

(4.21) T (r, F ) ∼ T (r,G) (r → ∞, r /∈ E).

By Lemma 3.1, we see

(4.22) T (r, f) = T (r, F ) + O(1), T (r, g) = T (r,G) + O(1).

Combining (4.21) and (4.22), we obtain

T (r, f) ∼ T (r, g) (r → ∞, r /∈ E).

This completes the proof of Corollary 2.2.
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