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HARDY SPACES ESTIMATES FOR MULTILINEAR

OPERATORS WITH HOMOGENEOUS KERNELS

YONG DING and SHANZHEN LU

Abstract. In this paper the authors prove that a class of multilinear op-
erators formed by the singular integral or fractional integral operators with
homogeneous kernels are bounded operators from the product spaces Lp1

×

Lp2
× · · · × LpK (Rn) to the Hardy spaces Hq(Rn) and the weak Hardy space

Hq,∞(Rn), where the kernel functions Ωij satisfy only the Ls-Dini conditions.
As an application of this result, we obtain the (Lp, Lq) boundedness for a class
of commutator of the fractional integral with homogeneous kernels and BMO
function.

§1. Introduction and statements of results

It is known that the Jacobin determinant J(f, g) of the functions pair

(f, g) is defined by J(f, g) = ∂f
∂x1

∂g
∂x2

− ∂f
∂x2

∂g
∂x1

. Lions and Meyer proved

that J is bounded from the product space L2
1 × L2

1 of the Sobolev spaces

to the Hardy space H1(Rn). Because of its importance in the harmonic

analysis and partial differential equations, it has been studied by some

authors in recent years. In 1992, Coifman and Grafakos extended the above

result to give the mapping properties on the Hardy space for a class of the

multilinear operator formed by the Calderón-Zygmund singular integrals

[CG], [G]. Recently, Miyachi [Mi] studied the similar mapping properties

for a class of the multilinear operator formed by the Calderón-Zygmund

singular integrals and the Riesz potential operators. This is an extension of

Coifman-Grafakos’s results. In [DL4], we also obtained the same conclusion

as in [G] but under a weaker condition.

In this paper, we will use the Lp boundedness of the singular integral

with rough kernel and the (Lp, Lq) boundedness of rough fractional integral

operator to prove that the multilinear operator formed by the products
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of the singular integral or fractional integral operators with homogeneous

kernels are bounded from the product space Lp1 × Lp2 × · · · × LpK (Rn)

into the Hardy spaces Hq(Rn) and the weak Hardy space Hq,∞(Rn). In our

results, we need only that the kernel function Ω to satisfy Ls-Dini condition,

which is weaker than the smoothness condition assumed in [CG], [G] and

[Mi], respectively.

Now let us give some definitions. Suppose that Sn−1 is the unit sphere

of R
n (n ≥ 2) equipped with normalized Lebesgue measure dσ(x′) and Ω ∈

L1(Sn−1) is homogeneous of degree zero on R
n. Then the singular integral

and fractional integral operators with homogeneous kernel are respectively

defined by

(1.1) TΩf(x) = p.v.

∫

Rn

Ω(x − y)

|x − y|n
f(y) dy

and

(1.2) TΩ,αf(x) =

∫

Rn

Ω(x − y)

|x − y|n−α
f(y) dy,

where 0 < α < n. Obviously, when Ω ≡ 1 the operator TΩ,α is just the

Riesz potential operator. See [CWW], [MW], [DL1]–[DL3] and [D] for the

boundedness of TΩ,α on the various spaces (or weighted spaces).

We say that Ω satisfies the Ls-Dini condition (s ≥ 1) if Ω is homoge-

neous of degree zero on R
n with Ω ∈ Ls(Sn−1) and

∫ 1

0
ωs(δ)

dδ

δ
< ∞,

where ωs(δ) denotes the integral modulus of continuity of order s of Ω

defined by

ωs(δ) = sup
‖ρ‖<δ

(
∫

Sn−1

|Ω(ρx′) − Ω(x′)|s dσ(x′)

)1/s

and ρ is a rotation on Sn−1 with ‖ρ‖ = supx′∈Sn−1 |ρx′ − x′|.

Throughout this article, N and K will denote fixed integers satisfying

K,N ≥ 2. It is said that r is the harmonic mean of p1, p2, . . . , pK > 1 if

1/r = 1/p1+1/p2+· · ·+1/pK . Moreover, for i = 1, 2, . . . , N ; j = 1, 2, . . . ,K,

(i) 0 ≤ αij < n/pj and α :=
∑K

j=1 αij ≥ 0 (i = 1, 2, . . . , N);
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(ii) Ωij satisfies Lsij -Dini condition with sij ≥ 1.

(iii) If αij = 0, then

(1.3)

∫

Sn−1

Ωij(x
′) dσ(x′) = 0.

Now we define the K-linear operator by

LΩ,α(~f)(x) =

N
∑

i=1

[TΩi1,αi1
f1(x)][TΩi2 ,αi2

f2(x)] · · · [TΩiK ,αiK
fK(x)],

where ~f = (f1, f2, . . . , fK) and TΩij ,αij
defined in (1.2). When αij = 0,

TΩij ,αij
becomes indeed into the singular integral operator TΩij

defined in

(1.1). In this case, we need Ωij to satisfy (1.3).

Let us now formulate our main result as follows. In Theorem 1, the

multilinear operator LΩ,α is formed by the fractional integral operators

TΩij ,αij
or the singular integral operators TΩij

.

Theorem 1. Suppose that r is the harmonic mean of p1, p2, . . . , pK >
1. For i = 1, 2, . . . , N and j = 1, 2, . . . ,K, αij ≥ 0 satisfy (i) and Ωij

satisfies (ii) with sij > p′j and (iii), respectively. Moreover, 0 ≤ α < n − 1
and 1/q = 1/r −α/n. If the harmonic mean of any proper subset of the set

{p1, p2, . . . , pK} is greater than one and for all ~f ∈ (C∞
0 )K,

(1.4)

∫

xβLΩ,α(~f)(x) dx = 0 for |β| ≤ m,

where m satisfies 0 ≤ m < n − 1 − α. Then we have the following conclu-

sions:

(a) When n
n+m+1+α < r ≤ n

n+α (equivalently n
n+m+1 < q ≤ 1), LΩ,α can

be extended into a bounded mapping from Lp1 ×Lp2 ×· · ·×LpK to Hq.

(b) When r = n
n+m+1+α (equivalently q = n

n+m+1), LΩ,α can be extended

into a bounded mapping from Lp1 × Lp2 × · · · × LpK to Hq,∞.

Remark 1. If α = m = 0, then the Theorem 1 is just the main conclu-
sion obtained in [DL4]. Thus Theorem 1 generalized the main theorem in
[DL4] in two ways, i.e., α ≥ 0 and m ≥ 0.

As a direct application of Theorem 1, we prove that the commutator

TΩ,α,b formed by the homogeneous fractional integral operator TΩ,α Gand

a function b(x) in BMO is bounded from Lp(Rn) to Lq(Rn). This is an

extension of Chanillo’s famous result on commutator of the Riesz potential

operator [Cha].
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Theorem 2. Suppose that 0 < α < n − 1, 1 < p < n/α and 1/q =
1/p−α/n. If Ω ∈ Ls(Sn−1) (s > max{p′, q}) satisfying Ls-Dini condition,

then there is a constant C > 0, independent of f , such that

‖TΩ,α,b(f)‖q ≤ C‖b‖BMO‖f‖p,

where the commutator TΩ,α,b is defined by TΩ,α,b(f)(x) = b(x)TΩ,αf(x) −
TΩ,α(bf)(x).

§2. Some elementary results and lemmas

In this section let us recall some known results and give some lemmas

which will be used in the proofs of our theorems.

Theorem A. ([DL3]) Suppose that 0 < α < n, 1 < p < n/α and

1/q = 1/p − α/n. If Ω ∈ Ls(Sn−1) (s > n/(n − α)) to be homogeneous of

degree zero on R
n, then TΩ,α is bounded operator from Lp(Rn) to Lq(Rn).

Theorem B. ([CZ], [Che]) Let Ω ∈ Ls(Sn−1) (s > 1) to be homoge-

neous of degree zero on R
n and satisfy (1.3). Then for 1 < p < ∞ there

exists a C > 0, independent of f , such that

‖TΩf‖p ≤ C‖f‖p and ‖T ∗
Ωf‖p ≤ C‖f‖p,

where T ∗
Ω denotes the maximal operator of TΩ defined by

T ∗
Ωf(x) = sup

ε>0

∣

∣

∣

∣

∫

|x−y|≥ε

Ω(x − y)

|x − y|n
f(y) dy

∣

∣

∣

∣

.

Lemma 1. ([KW]) Suppose that Ω satisfies the Ls-Dini condition (s >
1). If there is a constant a0 with 0 < a0 < 1/2 such that |x| < a0R, then

(
∫

R<|y|<2R

∣

∣

∣

∣

Ω(y − x)

|y − x|n
−

Ω(y)

|y|n

∣

∣

∣

∣

s

dy

)1/s

≤ CRn/s−n

{

|x|

R
+

∫

|x|/2R<δ<|x|/R
ωs(δ)

dδ

δ

}

,

where the constant C is independent of R and x.
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Lemma 2. Suppose that Ω satisfies the Ls-Dini condition for s > 1.
Then there is a C > 0, i ndependent of f , such that for any x0 ∈ R

n, t > 0
and any x with |x − x0| ≤ t,

∣

∣

∣

∣

∫

|y−x0|≥2t

(

Ω(x − y)

|x − y|n
−

Ω(x0 − y)

|x0 − y|n

)

f(y) dy

∣

∣

∣

∣

≤ C
[

M(|f |s
′

)(x0)
]1/s′

,

where M denotes the Hardy-Littlewood maximal operator defined by

Mf(x) = sup
r>0

1

rn

∫

|x−y|<r
|f(y)| dy.

In fact, by Hölder’s inequality and Lemma 1 we have

∣

∣

∣

∣

∫

|y−x0|≥2t

(

Ω(x − y)

|x − y|n
−

Ω(x0 − y)

|x0 − y|n

)

f(y) dy

∣

∣

∣

∣

≤
∞

∑

j=1

(
∫

2j t≤|y−x0|<2j+1t

∣

∣

∣

∣

Ω(x − y)

|x − y|n
−

Ω(x0 − y)

|x0 − y|n

∣

∣

∣

∣

s

dy

)1/s

×

(
∫

|y−x0|<2j+1t
|f(y)|s

′

dy

)1/s′

≤ C

∞
∑

j=1

(

1

2j
+

∫ |x−x0|/2jt

|x−x0|/2j+1t
ωs(δ)

dδ

δ

)(

1

(2j+1t)n

∫

|y−x0|<2j+1t
|f(y)|s

′

dy

)1/s′

≤ C
[

M(|f |s
′

)(x0)
]1/s′

(

1 +

∫ 1

0
ωs(δ)

dδ

δ

)

≤ C
[

M(|f |s
′

)(x0)
]1/s′

.

Lemma 3. ([DL3]) Suppose that 0 < α < n and Ω satisfies the Ls-Dini

condition with s > 1. If there is a constant a0 with 0 < a0 < 1/2 such that

|x| < a0R, then

(
∫

R<|y|<2R

∣

∣

∣

∣

Ω(y − x)

|y − x|n−α
−

Ω(y)

|y|n−α

∣

∣

∣

∣

s

dy

)1/s

≤ CRn/s−(n−α)

{

|x|

R
+

∫

|x|/2R<δ<|x|/R

ωr(δ)

δ
dδ

}

,

where the constant C > 0 is independent of R and x.
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Lemma 4. Suppose that 0 < α < n and Ω satisfies the Ls-Dini con-

dition with s > 1. Then there is a C > 0, independent of f , such that for

any x0 ∈ R
n, t > 0 and any x with |x − x0| ≤ t,

∣

∣

∣

∣

∫

|y−x0|≥2t

(

Ω(x − y)

|x − y|n−α
−

Ω(x0 − y)

|x0 − y|n−α

)

f(y) dy

∣

∣

∣

∣

≤ C
[

Mαs′(|f |
s′)(x0)

]1/s′
,

where Mλ denotes the fractional maximal operator defined by

Mλf(x) = sup
r>0

1

rn−λ

∫

|x−y|<r
|f(y)| dy for 0 < λ < n.

By Lemma 3 and using the same method in proving Lemma 2, we may

get Lemma 4.

Lemma 5. Suppose that 0 < α < n, 1 < p < n/α and 1/r = 1/p −
α/n. If 1 ≤ s′ < p, then

∥

∥

[

Mαs′(|f |
s′)( · )

]1/s′∥
∥

r
≤ C‖f‖p.

In fact, this is a direct result of the (Lp, Lr) boundedness the fractional

maximal operator Mλ (see [T], for example).

§3. Proof of Theorem 1

First let us consider the case of αij > 0 for all i, j. In the proof of The-

orem 1 we use some idea from [G]. Take φ ∈ C∞
0 (Rn) such that supp(φ) ⊂

{x ∈ R
n : |x| ≤ 1}. For x, x0 ∈ R

n we define φt,x0
(x) = 1

tn φ
(

x−x0

t

)

. By

the maximal function characterization of the Hardy spaces and weak Hardy

spaces (see [S] and [FS], or [Lu]), we need to verify that

(3.1)

sup
t>0

∣

∣

∣

∣

∫

φt,( · )(x)LΩ,α(~f)(x) dx

∣

∣

∣

∣

∈

{

Lq(Rn), for n/(n + m + 1) < q ≤ 1

Lq,∞(Rn), for q = n/(n + m + 1).

Fix a smooth cut-off η(x) such that η(x) ≥ 0 and η(x) ≡ 1 on |x| < 2,

η(x) = 0 on |x| ≥ 4. Let η0(x) = η
(

x−x0

t

)

and η1(x) = 1 − η0(x). By

expanding the following equality

LΩ,α(η0f1, . . . , η0fK) = LΩ,α(f1 − η1f1, . . . , fK − η1fK),
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and solving out LΩ,α(~f), we may get LΩ,α(~f)(x) = L0 + L1 + · · · + LK ,

where

L0 = LΩ,α(η0f1, η0f2, . . . , η0fK)

L1 =

K
∑

j=1

LΩ,α(f1, . . . , η1fj, . . . , fK)

L2 = −
∑

1≤j1<j2≤K

LΩ,α(f1, . . . , η1fj1, . . . , η1fj2 , . . . , fK)

· · · · · · · · ·

Ll = (−1)l+1
∑

1≤j1<j2<···<jl≤K

LΩ,α(f1, . . . , η1fj1 , . . . , η1fj2 , . . . , η1fjl
, . . . , fK)

· · · · · · · · ·

LK = (−1)K+1LΩ,α(η1f1, η1f2, . . . , η1fK).

To prove (3.1), it suffices to show for 0 ≤ l ≤ K

(3.2) sup
t>0

∣

∣

∣

∣

∫

φt,( · )(x)Ll(x) dx

∣

∣

∣

∣

∈ Lq(Rn), if n/(n + m + 1) < q ≤ 1,

and

(3.3)

∣

∣

∣

∣

{

x0 ∈ R
n : sup

t>0

∣

∣

∣

∫

φt,x0
(x)Ll(x) dx

∣

∣

∣
> λ

}

∣

∣

∣

∣

≤
C

λq

K
∏

j=1

‖fj‖
q
pj

,

if q = n/(n + m + 1),

where C > 0 is independent of λ and ~f .

Let us begin by giving the estimate for the term L1. Note that

|L1(x)| ≤

K
∑

j=1

( N
∑

i=1

|TΩi1,αi1
f1(x)| · · ·

[

|TΩij ,αij
(η1fj)(x) − TΩij ,αij

(η1fj)(x0)|

+ |TΩij ,αij
(η1fj)(x0)|

]

· · · |TΩiK ,αiK
fK(x)|

)

,

and by Lemmas 3 and 4 if |x − x0| ≤ t, Ω ∈ Ls′(Sn−1) then

sup
t>0

|TΩ,α(η1f)(x0)| ≤ sup
t>0

∫

|x0−y|≥2t

|Ω(x0 − y)|

|x0 − y|n−α
|f(y)| dy ≤ T|Ω|,α(|f |)(x0),

(3.4)

sup
t>0

|TΩ,α(η1f)(x) − TΩ,α(η1f)(x0)| ≤ C[Mαs′(|f |
s′)(x0)]

1/s′ .
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Thus we get

sup
t>0

∣

∣

∣

∣

∫

φt,x0
(x)L1(x) dx

∣

∣

∣

∣

(3.5)

≤

K
∑

l=1

N
∑

i=1

sup
t>0

∫

|φt,x0
(x)|

∏

1≤j≤K
j 6=l

|TΩij ,αij
fj(x)|

×
(

|TΩil,αil
(η1fl)(x) − TΩil,αil

(η1fl)(x0)| + |TΩil,αil
(η1fl)(x0)|

)

dx

≤ C

K
∑

l=1

N
∑

i=1

(

∏

1≤j≤K
j 6=l

|TΩij ,αij
fj|

)∗

(x0)

×
(

[Mαils
′

il
(|fl|

s′
il)(x0)]

1/s′
il + T|Ωil|,αil

(fl)(x0)
)

,

where we denote the Hardy-Littlewood maximal function of g at x0 by

g∗(x0). Let 1/rij = 1/pj − αij/n for 1 ≤ j ≤ K. If taking 1/σil =
∑

1≤j≤K
j 6=l

1/rij , then we have 1/q = 1/σil + 1/rij . Since the harmonic mean

of any proper subset of the p′js is greater than one, we have

1/σil =
∑

1≤j≤K
j 6=l

(1/pj − αij/n) <
∑

1≤j≤K
j 6=l

1/pj < 1.

Thus by Hölder’s inequality, Theorem A and the Lp-boundedness of the

Hardy-Littlewood maximal function and Lemma 5 (note that s′il < pl), the

Lq norm in x0 of the last term in (3.5) is bounded by

C
K

∑

l=1

N
∑

i=1

∥

∥[Mαils
′

il
(|fl|

s′
il)( · )]1/s′

il + T|Ωil|,αil
(|fl|)( · )

∥

∥

ril

×

∥

∥

∥

∥

(

∏

1≤j≤K
j 6=l

|TΩij ,αil
fj|

)∗∥
∥

∥

∥

σil

≤ C

K
∑

l=1

N
∑

i=1

(

‖[Mαils
′

il
(|fl|

s′
il)1/s′

il‖ril
+ ‖T|Ωil|,αil

(|fl|)‖ril

)

×

∥

∥

∥

∥

∏

1≤j≤K
j 6=l

TΩij ,αil
(fj)

∥

∥

∥

∥

σil
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≤ C

K
∑

l=1

N
∑

i=1

‖fl‖pl

∏

1≤j≤K
j 6=l

‖TΩij ,αil
(fj)‖ril

≤ C

K
∑

l=1

‖fl‖pl

∏

1≤j≤K
j 6=l

‖fj‖pj
≤ C

K
∏

j=1

‖fj‖pj
.

Hence

(3.6)

∥

∥

∥

∥

sup
t>0

∣

∣

∣

∫

φt,( · )(x)L1(x) dx
∣

∣

∣

∥

∥

∥

∥

q

≤ C

K
∏

j=1

‖fj‖pj
.

From the proof (3.6) it is easy to see that (3.6) holds indeed for n/(n+m+

1) ≤ q ≤ 1. Thus for q = n/(n+ m +1) we can get the following inequality

by (3.6)

(3.7)

∣

∣

∣

∣

{

x0 ∈ R
n : sup

t>0

∣

∣

∣

∫

φt,x0
(x)L1(x) dx

∣

∣

∣
> λ

}

∣

∣

∣

∣

≤
C

λq

K
∏

j=1

‖fj‖
q
pj

,

where C is independent of λ and ~f .

Term L2 is treated similarly. We write L2 = L21 + L22 + L23 + L24,

where

L21 = −
∑

1≤j1<j2≤K

( N
∑

i=1

[TΩi1,αi1
f1(x)] · · ·

· · · [TΩij1
,αij1

(η1fj1)(x) − TΩij1
,αij1

(η1fj1)(x0)] · · ·

· · · [TΩij2
,αij2

(η1fj2)(x) − TΩij2
,αij2

(η1fj2)(x0)] · · ·

· · · [TΩiK ,αiK
fK(x)]

)

L22 =
∑

1≤j1<j2≤K

( N
∑

i=1

[TΩi1,αi1
f1(x)] · · · [TΩij1

,αij1
(η1fj1)(x0)] · · ·

· · · [TΩij2
,αij2

(η1fj2)(x) − TΩij2
,αij2

(η1fj2)(x0)] · · ·

· · · [TΩiK ,αiK
fK(x)]

)

L23 =
∑

1≤j1<j2≤K

( N
∑

i=1

[TΩi1,αi1
f1(x)] · · ·
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· · · [TΩij1
,αij1

(η1fj1)(x) − TΩij1
,αij1

(η1fj1)(x0)] · · ·

· · · [TΩij2
,αij2

(η1fj2)(x0)] · · · [TΩiK ,αiK
fK(x)]

)

L24 = −
∑

1≤j1<j2≤K

( N
∑

i=1

[TΩi1,αi1
f1(x)] · · · [TΩij1

,αij1
(η1fj1)(x0)] · · ·

· · · [TΩij2
,αij2

(η1fj2)(x0)] · · · [TΩiK ,αiK
fK(x)]

)

.

By Lemma 4 and (3.4) we may show that any term L2u (u = 1, 2, 3, 4)

satisfy the following estimate

sup
t>0

∣

∣

∣

∣

∫

φt,x0
(x)L2u(x) dx

∣

∣

∣

∣

≤ C
∑

1≤j1<j2≤K

N
∑

i=1

(

∏

1≤l≤K
l 6=j1, j2

|TΩil,αil
fl|

)∗

(x0)

× Cij1(fj1)(x0)Cij2(fj2)(x0).

By (3.4), we know that each Cijm(fjm) (m = 1, 2) is either

[Mαijm s′ijm
(|fjm |s

′

ijm )]1/s′ijm or T|Ωijm |,αijm
(|fjm |).

By Theorem A and Lemma 5 (note that s′ijm
< pjm), we have

‖Cijm(fjm)‖rijm
≤ C‖fjm‖pjm

. Now define σiv by 1/q = 1/rij1 + 1/rij2 +

1/σiv. From the conditions of Theorem 1 we know that σiv > 1. Using the

same method treated L1, for u = 1, 2, 3, 4, we get

∥

∥

∥

∥

sup
t>0

∣

∣

∣

∫

φt,( · )(x)L2u(x) dx
∣

∣

∣

∥

∥

∥

∥

q

(3.8)

≤ C
∑

1≤j1<j2≤K

N
∑

i=1

∥

∥

∥

∥

(

∏

1≤l≤K
l 6=j1, j2

|TΩil,αil
fl|

)∗∥
∥

∥

∥

σiv

‖Cij1(fj1)‖rij1
‖Cij2(fj2)‖rij2

≤ C
∑

1≤j1<j2≤K

N
∑

i=1

∥

∥

∥

∥

∏

1≤l≤K
l 6=j1, j2

TΩil,αil
fl

∥

∥

∥

∥

σiv

‖fj1‖pj1
‖fj2‖pj2

≤ C
∑

1≤j1<j2≤K

N
∑

i=1

(

∏

1≤l≤K
l 6=j1, j2

‖fl‖pl

)

‖fj1‖pj1
‖fj2‖pj2

≤ C
∏

1≤l≤K

‖fl‖pl
.
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Since (3.8) holds for n/(n + m + 1) ≤ q ≤ 1, we have

(3.9)

∣

∣

∣

∣

{

x0 ∈ R
n : sup

t>0

∣

∣

∣

∫

φt,x0
(x)L2(x) dx

∣

∣

∣
> λ

}

∣

∣

∣

∣

≤
C

λq

K
∏

j=1

‖fj‖
q
pj

.

where q = n/(n + m + 1) and C is independent of λ and ~f .

Applying the method treated L1 and L2, we may prove that (3.2) and

(3.3) hold also for the terms L3, L4, . . . , LK . Here we omit the details.

Thus, to complete the proof of Theorem 1, it remains to verify that (3.2)

and (3.3) hold still for L0. In order to do this, we need the following lemma.

Lemma 6. Under the conditions of Theorem 1, we have

(i) if n/(n + m + 1 + α) < r ≤ n/(n + α), then there exists 1 < dj < pj,

(1 ≤ j ≤ K) such that

(3.10) sup
t>0

∣

∣

∣

∣

∫

φt,x0
(x)L0(x) dx

∣

∣

∣

∣

≤ C

K
∏

j=1

[

Mαijdj
(|fj|

dj )(x0)
]1/dj ;

(ii) if r = n/(n + m + 1 + α), then

(3.11) sup
t>0

∣

∣

∣

∣

∫

φt,x0
(x)L0(x) dx

∣

∣

∣

∣

≤ C

K
∏

j=1

[

Mαijpj
(|fj |

pj )(x0)
]1/pj .

Proof. First we give the proof of (3.11). By the definition of L0(x)
and the moment condition (1.4), we have

∣

∣

∣

∣

∫

φt,x0
(x)L0(x) dx

∣

∣

∣

∣

(3.12)

=

∣

∣

∣

∣

N
∑

i=1

∫
[

φt,x0
(x) −

∑

|β|≤m

1

β!
φ

(β)
t,x0

(y1)(x − y1)
β

]

×

∫

Ωi1(x − y1)

|x − y1|n−αi1
(η0f1)(y1) dy1

K
∏

j=2

TΩij ,αij
(η0fj)(x) dx

∣

∣

∣

∣

≤

N
∑

i=1

∫∫
∣

∣

∣

∣

φt,x0
(x) −

∑

|β|≤m

1

β!
φ

(β)
t,x0

(y1)(x − y1)
β

∣

∣

∣

∣

×
|Ωi1(x − y1)|

|x − y1|n−αi1
|(η0f1)(y1)| dy1

K
∏

j=2

|TΩij ,αij
(η0fj)(x)| dx.
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Since
∣

∣

∣

∣

φt,x0
(x) −

∑

|β|≤m

1

β!
φ

(β)
t,x0

(y1)(x − y1)
β

∣

∣

∣

∣

≤ Ct−n−m−1|x − y1|
m+1,

we have

∫
∣

∣

∣

∣

φt,x0
(x) −

∑

|β|≤m

1

β!
φ

(β)
t,x0

(y1)(x − y1)
β

∣

∣

∣

∣

|Ωi1(x − y1)|

|x − y1|n−αi1
|(η0f1)(y1)| dy1

(3.13)

≤ C

∫

t−n−m−1|x − y1|
m+1 |Ωi1(x − y1)|

|x − y1|n−αi1
|(η0f1)(y1)| dy1

= Ct−n−m−1T|Ωi1|,m+1+αi1
(|η0f1|)(x).

Since
∑K

j=1 1/pj = (n + m + 1 + α)/n and
∑K

j=2 1/pj < 1, we have 1/p1 >
(m + 1 + αi1)/n. Denote 1/σi1 = 1/p1 − (m + 1 + αi1)/n and 1/rij =
1/pj −αij/n for j = 2, . . . ,K, then by (3.12), (3.13) and applying Hölder’s
inequality and Theorem A we have

sup
t>0

∣

∣

∣

∣

∫

φt,x0
(x)L0(x) dx

∣

∣

∣

∣

≤ C sup
t>0

N
∑

i=1

t−n−m−1‖T|Ωi1|,m+1+αi1
(|η0f1|)‖σi1

K
∏

j=2

‖T|Ωij |,αij
(|η0fj|)‖rij

≤ C sup
t>0

t−n−m−1‖η0f1‖p1

K
∏

j=2

‖η0fj‖pj

≤ C

K
∏

j=1

[

Mαijpj
(|fj |

pj )(x0)
]1/pj ,

where we use the assumption α =
∑K

j=1 αij for all i = 1, 2, . . . , N . This is
just (3.11). Let us now consider (3.10). First we show that by

1/p1 + · · · + 1/pK = 1/r < (n + m + 1 + α)/n,

we can choose some dj (1 ≤ j ≤ K) such that

(a) 1 < dj < pj for 1 ≤ j ≤ K;
(b) 1/d2 + · · · + 1/dK < 1;
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(c) 1/d1 + · · · + 1/dK = (n + m + 1 + α)/n.

In fact, under the conditions of Theorem 1, it is easy to see that

max{1/p2 + · · · + 1/pK , (m + 1 + α)/n} < min{1, 1/p′1 + (m + 1 + α)/n}.

Thus, we can choose δ such that

max{1/p2 + · · ·+1/pK , (m+1+α)/n} < δ < min{1, 1/p′1 +(m+1+α)/n}.

Taking ε2, . . . , εK > 0, such that

(3.14) (1 + ε2)/p2 + · · · + (1 + εK)/pK = δ.

Obviously, for 2 ≤ j ≤ K we have 1 + εj < pj. Let

ε = (n + m + 1 + α)/n − (1/p1 + · · · + 1/pK) > 0.

Then by (3.14) we know that ε > ε2/p2 + · · · + εK/pK . Denote

ε1 = [ε − (ε2/p2 + · · · + εK/pK)]p1 > 0,

then

(n+m+1+α)/n = ε+1/p1 + · · ·+1/pK = (1+ ε1)/p1 + · · ·+(1+ εK)/pK

and 1 + ε1 < p1. In fact, by (m + 1 + α)/n < δ, we have

1 + ε1 = [ε − (ε2/p2 + · · · + εK/pK)]p1 + 1

=

[

n + m + 1 + α

n
−

1

p1
−

(1 + ε2

p2
+ · · · +

1 + εK

pK

)

]

p1 + 1

=
[

1/p′1 + (1 + α)/n − δ
]

p1 + 1 < p1/p
′
1 + 1 = p1.

Now set dj = pj/(1 + εj), 1 ≤ j ≤ K, then dj
′s satisfy (a), (b) and (c).

Thus by the conclusion of (3.11), we obtain (3.10). Thus we complete the
proof of Lemma 6.

Below we use Lemma 6 to prove that (3.2) and (3.3) hold for L0. First

let us consider (3.2). By (3.10) and 1/q = 1/ri1 + · · · + 1/riK , we have

∥

∥

∥

∥

sup
t>0

∣

∣

∣

∫

φt,( · )(x)L0(x) dx
∣

∣

∣

∥

∥

∥

∥

Lq

≤ C

∥

∥

∥

∥

K
∏

j=1

[

Mαijdj
(|fj |

dj )( · )
]1/dj

∥

∥

∥

∥

Lq

≤ C

K
∏

j=1

∥

∥

∥

[

Mαijdj
(|fj|

dj )( · )
]1/dj

∥

∥

∥

Lrij
.
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Since dj < pj and 1/rij = 1/pj − αij/n, by the above inequality and

Lemma 5 we have

∥

∥

∥

∥

sup
t>0

∣

∣

∣

∫

φt,( · )(x)L0(x) dx
∣

∣

∣

∥

∥

∥

∥

Lq

≤ C

K
∏

j=1

‖fj‖Lpj .

Finally let us give the weak estimate for L0. For any λ > 0, let θ0 = λ,

θK = 1, and θ1, θ2, . . . , θK−1 > 0 be arbitrary which be chosen later. Then

by (3.11) we get
{

x0 : sup
t>0

∣

∣

∣

∫

φt,x0
L0 dx

∣

∣

∣
> λ

}

(3.15)

⊂
K
⋃

j=1

{

x0 :
[

Mαijpj
(|fj |

pj )(x0)
]1/pj > θj−1/θj

}

.

We now take θ1, θ2, . . . , θK−1 > 0 such that

(3.16)

(

θj

θj−1

)rij

=

∏K
j=1 ‖fj‖

q
pj

λq‖fj‖
rij
pj

, j = 1, 2, . . . ,K.

By 1/q = 1/ri1 + 1/ri2 + · · · + 1/riK , we have

K
∏

j=1

(

θj

θj−1

)

=

K
∏

j=1

(
∏K

j=1 ‖fj‖pj

)q/rij

λq/rij‖fj‖pj

=
1

λ
.

Combining (3.15), (3.16) with the weak boundedness of the fractional max-

imal operator Mα (see [T]) and noting that 1/(rij/pj) = 1 − (αijpj)/n, we

have
∣

∣

∣

∣

{

x0 ∈ R
n : sup

t>0

∣

∣

∣

∫

φt,x0
L0 dx

∣

∣

∣
> λ

}

∣

∣

∣

∣

(3.17)

≤

K
∑

j=1

∣

∣

∣

∣

{

x0 ∈ R
n : Mαijpj

(|fj |
pj )(x0) >

(θj−1

θj

)pj
}

∣

∣

∣

∣

≤ C
K

∑

j=1

(

( θj

θj−1

)pj

∫

Rn

|fj(x0)|
pj dx0

)rij/pj

= C

K
∑

j=1

(

θj

θj−1
‖fj‖pj

)rij

≤
C

λq

K
∏

j=1

‖fj‖
q
pj

.
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In the last inequality we use (3.16). Thus (3.3) holds for L0 and we prove

Theorem 1 for the case of all αij > 0.

As for the case of αij = 0 with some i, j, the proof is almost the same

as before. In fact, when αij = 0, we have rij = pj. By the definition of T ∗
Ω

and Lemmas 1 and 2 we get

(3.18) sup
t>0

|TΩ(η1f)(x0)| ≤ T ∗
Ωf(x0) + C[M(|f |s

′

)(x0)]
1/s′ .

Moreover, for any x of satisfying |x − x0| ≤ t and Ω ∈ Ls′(Sn−1)

(3.19) |TΩ(η1f)(x) − TΩ(η1f)(x0)| ≤ C[M(|f |s
′

)(x0)]
1/s′ .

By (3.18), (3.19) and Theorem B and using the same method above, we

may obtain the conclusion of Theorem1 for this case. Here we omit the

details.

§4. Proof for Theorem 2

Now we apply the conclusion of Theorem 1 (taking K = N = 2) to give

the proof of Theorem 2. In fact, it is easy to verify that

‖TΩ,α,b(f)‖q = sup
g

∣

∣

∣

∣

∫

Rn

g(x)
[

b(x)TΩ,αf(x) − TΩ,α(bf)(x)
]

dx

∣

∣

∣

∣

(4.1)

= sup
g

∣

∣

∣

∣

∫

Rn

b(x)
[

g(x)TΩ,αf(x) − f(x)T ′
Ω,αg(x)

]

dx

∣

∣

∣

∣

,

where the supremun is taken over all functions g(x) ∈ Lq′ with ‖g‖q′ ≤ 1.

Moreover, T ′
Ω,α denotes the adjoint operator of TΩ,α.

On the other hand, if replacing the singular integral operator by the

identical operator in the K-linear operator LΩ,α(~f), then the conclusion of

Theorem 2 still holds. Note that

(4.2)

∫

Rn

(

g(x)TΩ,αf(x) − f(x)T ′
Ω,αg(x)

)

dx = 0.

Hence, by the conditions of Theorem 2 and (4.2), and using the result of

Theorem 1, we have

(4.3) ‖gTΩ,αf − fT ′
Ω,αg‖H1 ≤ C‖f‖p‖g‖q′ .
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Since b(x) ∈ BMO and (H1)∗ = BMO, by (4.1), (4.3) and the choice of g,

we get

‖TΩ,α,b(f)‖q ≤ sup
g

‖b‖BMO‖gTΩ,αf − fT ′
Ω,αg‖H1 ≤ C‖b‖BMO‖f‖p.

Thus, we obtain the conclusion of Theorem 2.
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