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Dedicated to Professor Kichi-Suke Saito on his 65th birthday

Abstract. We consider the pointwise multipliers on Musielak-Orlicz spaces. We

treat a wide class of Musielak-Orlicz spaces with generalized Young functions

which include quasi-normed spaces.

1. Introduction

Let (Ω, µ) be a complete σ-finite measure space. We denote by L0(Ω) the set of

all measurable functions from Ω to R or C. Let E1 and E2 be subspaces of L0(Ω).

We say that a function g ∈ L0(Ω) is a pointwise multiplier from E1 to E2, if the

pointwise multiplication fg is in E2 for any f ∈ E1. We denote by PWM(E1, E2)

the set of all pointwise multipliers from E1 to E2. We abbreviate PWM(E,E) to

PWM(E).

In this paper we consider the pointwise multipliers on Musielak-Orlicz spaces

LΦ(Ω). For the definitions and basic properties of Orlicz and Musielak-Orlicz spaces,

see [3, 6, 8, 10], etc. For p ∈ (0,∞], we denote by Lp(Ω) the usual Lebesgue spaces.

Then it is known that

PWM(Lp1(Ω), Lp2(Ω)) = Lp3(Ω),

if 1/p1 + 1/p3 = 1/p2 (pi ∈ [1,∞], i = 1, 2, 3). This result was extended to Orlicz

spaces by [4, 5]. Our results in this paper are their further extension. We treat a

wide class of Musielak-Orlicz spaces with generalized Young functions which include
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quasi-normed spaces, for example, generalized Lebesgue spaces Lp(·)(Ω) with variable

exponent p(·) : Ω → (0,∞]. For the space Lp(·)(Ω), see [1, 2], for example.

Note that Hölder’s inequality implies the inclusion

Lp3(Ω) ⊂ PWM(Lp1(Ω), Lp2(Ω)),

if 1/p1 + 1/p3 = 1/p2. In this paper we also use a generalized Hölder’s inequality

for Musielak-Orlicz spaces (Proposition 3.4). However, the reverse inclusion is non-

trivial. Actually, in our result on Musielak-Orlicz spaces (Theorem 4.1), the difficulty

is in the proof of the reverse inclusion.

Our proof method is the same as in [4]. However, we must adapt the method

to Musielak-Orlicz spaces. To do this we first investigate the properties of Young

functions and their generalization in Section 2. Next, in Section 3, we give several

examples and state propositions and lemmas on Musielak-Orlicz spaces with gener-

alized Young functions. Then we state the main results in Section 4 and prove them

in Section 5.

2. Young functions and their generalization

Let Φ̄ be the set of all functions Φ : [0,∞] → [0,∞] such that

lim
t→+0

Φ(t) = Φ(0) = 0 and lim
t→∞

Φ(t) = Φ(∞) = ∞. (2.1)

Let

a(Φ) = sup{t ≥ 0 : Φ(t) = 0}, b(Φ) = inf{t ≥ 0 : Φ(t) = ∞}.

Definition 2.1. A function Φ ∈ Φ̄ is called a Young function (or sometimes also

called an Orlicz function) if Φ is nondecreasing on [0,∞) and convex on [0, b(Φ)),

and

lim
t→b(Φ)−0

Φ(t) = Φ(b(Φ)) (≤ ∞).

We denote by ΦY the set of all Young functions. Any Young function is neither

identically zero nor identically infinity on (0,∞). We define three subsets of Young

functions Y(i) (i = 1, 2, 3) as

Y(1) = {Φ ∈ ΦY : b(Φ) = ∞} ,

Y(2) = {Φ ∈ ΦY : b(Φ) < ∞, Φ(b(Φ)) = ∞} ,

Y(3) = {Φ ∈ ΦY : b(Φ) < ∞, Φ(b(Φ)) < ∞} .

Then we have the following properties of Φ ∈ ΦY :
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(i) If Φ ∈ Y (1), then Φ is absolutely continuous on any closed interval in [0,∞),

by the convexity and nondecreasingness, and Φ is bijective from [a(Φ),∞)

to [0,∞).

(ii) If Φ ∈ Y (2), then Φ is absolutely continuous on any closed interval in

[0, b(Φ)), and Φ is bijective from [a(Φ), b(Φ)) to [0,∞).

(iii) If Φ ∈ Y (3), then Φ is absolutely continuous on [0, b(Φ)] and Φ is bijective

from [a(Φ), b(Φ)] to [0,Φ(b(Φ))].

Next we recall the generalized inverse of Young function Φ in the sense of O’Neil

[9, Definition 1.2]. For a Young function Φ and u ∈ [0,∞], let

Φ−1(u) = inf{t ≥ 0 : Φ(t) > u}, (2.2)

where inf ∅ = ∞. Then Φ−1(u) is finite for all u ∈ [0,∞). If Φ is bijective from

[0,∞) to itself, then Φ−1 is the usual inverse function of Φ.

We have the following properties of Φ ∈ ΦY and its inverse:

(P1) Φ(Φ−1(u)) ≤ u for all u ∈ [0,∞) and t ≤ Φ−1(Φ(t)) if Φ(t) ∈ [0,∞)

(Property 1.3 in [9]).

(P2) Φ−1(Φ(t)) = t if Φ(t) ∈ (0,∞).

(P3) If Φ ∈ Y(1) ∪ Y(2), then Φ(Φ−1(u)) = u for all u ∈ [0,∞).

(P4) If Φ ∈ Y (3) and 0 < δ < 1, then there exists a Young function Ψ ∈ Y (2) such

that b(Φ) = b(Ψ) and

Ψ(δt) ≤ Φ(t) ≤ Ψ(t) for all t ∈ [0,∞).

To see (P4) we only set Ψ = Φ +Θ, where we choose Θ ∈ Y(2) such that a(Θ) =

δ b(Φ) and b(Θ) = b(Φ).

Definition 2.2. Let Φv
Y be the set of all Φ : Ω× [0,∞] → [0,∞] such that Φ(x, ·)

is a Young function for every x ∈ Ω, and that Φ(·, t) is measurable on Ω for every

t ∈ [0,∞]. Assume also that, for any subset A ⊂ Ω with finite measure, there exists

t ∈ (0,∞) such that Φ(·, t)χA is integrable.

Definition 2.3. (i) Let ΦGY be the set of all Φ ∈ Φ̄ such that Φ((·)1/ℓ) is in
ΦY for some ℓ ∈ (0, 1].

(ii) Let Φv
GY be the set of all Φ : Ω× [0,∞] → [0,∞] such that Φ(·, (·)1/ℓ) is in

Φv
Y for some ℓ ∈ (0, 1].

For Φ,Ψ ∈ Φ̄, we write Φ ≈ Ψ if there exists a positive constant C such that

Φ(C−1t) ≤ Ψ(t) ≤ Φ(Ct) for all t ∈ (0,∞).
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For Φ,Ψ : Ω×[0,∞] → [0,∞], we also write Φ ≈ Ψ if there exists a positive constant

C such that

Φ(x,C−1t) ≤ Ψ(x, t) ≤ Φ(x,Ct) for all (x, t) ∈ Ω× (0,∞).

Definition 2.4. Let Φ̄Y , Φ̄
v
Y , Φ̄GY and Φ̄v

GY be the sets of all Φ such that Φ ≈ Ψ

for some Ψ in ΦY , Φ
v
Y , ΦGY and Φv

GY , respectively.

For Φ ∈ Φ̄v
GY , let

a(Φ;x) = sup{t ≥ 0 : Φ(x, t) = 0}, b(Φ;x) = inf{t ≥ 0 : Φ(x, t) = ∞}.

From the property (P4) we have the following:

(P5) For any Φ ∈ Φv
GY and 0 < δ < 1, there exists Ψ ∈ Φv

GY such that

Ψ(x, (·)1/ℓ) ∈ Y(1) ∪ Y(2) for all x ∈ Ω and for some ℓ ∈ (0, 1], and

Ψ(x, δt) ≤ Φ(x, t) ≤ Ψ(x, t) for all (x, t) ∈ Ω× [0,∞).

To see (P5) we only set Ψ = Φ+Θ, where we choose Θ(x, t) by the following way:

If Φ(x, (·)1/ℓ) ∈ Y (1)∪Y (2), then Θ(x, ·) ≡ 0. If Φ(x, (·)1/ℓ) ∈ Y (3), then Θ(x, ·) ∈ Y (2)

such that a(Θ; x) = δ b(Φ;x) and b(Θ; x) = b(Φ;x).

At the end of this section we give a lemma.

Lemma 2.1. Let Φ ∈ Φv
GY . For a subset A ⊂ Ω with 0 < µ(A) < ∞, let ΦA(t) =∫

A
Φ(x, t) dµ(x). Then ΦA ∈ ΦGY .

Proof. By the definition of Φv
GY we have that ΦA(t) < ∞ for some t ∈ (0,∞). As-

sume that Φ(·, (·)1/ℓ) ∈ Φv
Y for some ℓ ∈ (0, 1]. Then by the properties of Young

function and the Lebesgue dominated convergence and monotone convergence the-

orems, we see that ΦA((·)1/ℓ) is a Young function. □

3. Musielak-Orlicz spaces

In this section we define Musielak-Orlicz spaces LΦ(Ω) for Φ ∈ Φ̄v
GY and give their

properties.

Definition 3.1 (Musielak-Orlicz space). For a function Φ ∈ Φ̄v
GY , let

LΦ(Ω) =

{
f ∈ L0(Ω) :

∫
Ω

Φ(x, c|f(x)|) dµ(x) < ∞ for some c > 0

}
,

∥f∥LΦ = inf

{
λ > 0 :

∫
Ω

Φ

(
x,

|f(x)|
λ

)
dµ(x) ≤ 1

}
.
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Then |f(x)| < ∞ a.e.x ∈ Ω for all f ∈ LΦ(Ω). By the assumption in Definition 2.2

all simple functions are in LΦ(Ω). Moreover, ∥ · ∥LΦ is a quasi-norm, that is, there

exists κ ∈ [1,∞) such that, for all f, g ∈ LΦ(Ω) and a scalar c,

(i) ∥f∥LΦ ≥ 0, ∥f∥LΦ = 0 ⇔ f = 0,

(ii) ∥cf∥LΦ = |c|∥f∥LΦ ,

(iii) ∥f + g∥LΦ ≤ κ(∥f∥LΦ + ∥g∥LΦ).

If Φ ∈ Φv
GY and Φ(·, (·)1/ℓ) ∈ Φv

Y , then

(iv) ∥f + g∥ℓLΦ ≤ ∥f∥ℓLΦ + ∥g∥ℓLΦ .

If Φ ∈ Φv
Y , then ∥ · ∥LΦ is a norm.

The following is clear:

(v) If g ∈ LΦ(Ω) and |f(x)| ≤ |g(x)| a.e.x ∈ Ω, then f ∈ LΦ(Ω) and ∥f∥LΦ ≤
∥g∥LΦ .

The property (v) is called the lattice property or ideal property.

Let Φ ∈ Φv
GY . Then by the left-continuity of Φ(x, t) with respect to t and the

theory of the Lebesgue integral we have the following:

(vi) If lim infj→∞ ∥fj∥LΦ < ∞ and limj→∞ fj = f a.e. Ω, then f ∈ LΦ(Ω) and

∥f∥LΦ ≤ lim infj→∞ ∥fj∥LΦ .

(vii) If supj ∥fj∥LΦ < ∞, 0 ≤ f1 ≤ f2 ≤ · · · → f a.e. Ω, then f ∈ LΦ(Ω) and

limj→∞ ∥fj∥LΦ = ∥f∥LΦ .

The properties (vi) and (vii) are called the Fatou property.

Let Φ,Ψ ∈ Φ̄v
GY . If Φ ≈ Ψ, then LΦ(Ω) = LΨ(Ω) with equivalent quasi-norms. If

there exist t0, t1 ∈ (0,∞) such that

Φ(x, t) = Ψ(x, t) for (x, t) ∈ Ω× ((0, t0] ∪ [t1,∞)),

then Φ ≈ Ψ.

In the following examples we always interpret Φ(x, 0) = 0 and Φ(x,∞) = ∞ for

all x ∈ Ω.

Example 3.1. Let p ∈ (0,∞] and Φ(x, t) = tp. Then LΦ(Ω) is the usual Lebesgue

space Lp(Ω). Here we use the following interpretation:

t∞ =

{
0, t ∈ [0, 1],

∞, t ∈ (1,∞].
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Example 3.2. Let p ∈ (0,∞] and

Φ(x, t) =

{
1/ exp(1/tp), t ∈ [0, 1],

exp(tp), t ∈ (1,∞].

Here we use the following interpretation:{
1/ exp(1/t∞) = 0, t ∈ [0, 1],

exp(t∞) = ∞, t ∈ (0,∞].

Note that, if p ∈ (0,∞), then we can choose a convex function Ep such that Ep(t) =

1/ exp(1/tp) for small t and Ep(t) = exp(tp) for large t, that is, Φ ∈ Φ̄Y . In this case

we denote LΦ(Ω) by exp(Lp)(Ω).

Example 3.3. Let p be a variable exponent, that is, it is a measurable function

defined on Ω valued in (0,∞], and let Φ(x, t) = tp(x). If p− ≡ infx∈Ω p(x) > 0, then

Φ ∈ Φv
GY and Φ(x, (·)max(1,1/p−)) ∈ Φv

Y . In this case we denote LΦ(Ω) by Lp(·)(Ω)

which is a generalized Lebesgue space with variable exponent p.

Example 3.4. Let w be a weight function, that is, it is a measurable function

defined on Ω valued in (0,∞) a.e., and
∫
A
w(x) dµ(x) < ∞ for any A ⊂ Ω with

finite measure. Let p be a variable exponent, and let

Φ(x, t) = tp(x)w(x).

If infx∈Ω p(x) > 0, then Φ ∈ Φv
GY . In this case we denote LΦ(Ω) by L

p(·)
w (Ω).

Example 3.5. Let p be a variable exponent, and let

Φ(x, t) =

{
1/ exp(1/tp(x)), t ∈ [0, 1],

exp(tp(x)), t ∈ (1,∞].

If infx∈Ω p(x) > 0, then Φ ∈ Φ̄v
Y . In this case we denote LΦ(Ω) by exp(Lp(·))(Ω).

Remark 3.1. In Examples 3.3, 3.4 and 3.5, let

Ω∞ = {x ∈ Ω : p(x) = ∞}.

If supx∈Ω\Ω∞ p(x) < ∞, then there exists Ψ ∈ Φv
GY such that Φ ≈ Ψ and ΨA((·)1/ℓ) ∈

Y (1) ∪ Y(2) for some ℓ ∈ (0, 1] and for any A ⊂ Ω with 0 < µ(A) < ∞, where

ΨA(t) =
∫
A
Ψ(x, t) dµ(x). To see this we have only to set

Ψ(x, t) =

{
Φ(x, t), x ∈ Ω \ Ω∞,

Φ(x, t) + Θ(t), x ∈ Ω∞,

where we choose Θ ∈ Y(2) such that a(Θ) = 1/2 and b(Θ) = 1.
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By using the method in [1, pages 38–40] or [6, pages 35–36], we can prove the

following proposition and lemma:

Proposition 3.1. Let Φ ∈ Φ̄v
GY . Then LΦ(Ω) is complete.

Lemma 3.2. Let Φ ∈ Φ̄v
GY . If a sequence {fj} converges in LΦ(Ω) to f , then there

exists a subsequence {fj(k)} which converges µ-almost everywhere to f .

The next lemma follows from Lemma 3.2 and the closed graph theorem, see [7]

for example. See also [11, Theorem 1 in page 79] for the closed graph theorem on

complete quasi-normed spaces (F -spaces).

Lemma 3.3. Let Φ1,Φ2 ∈ Φ̄v
GY . Then every pointwise multiplier g from LΦ1(Ω) to

LΦ2(Ω) is a bounded operator.

For Φ ∈ Φ̄GY , we define its generalized inverse by the same way as (2.2). Then

Φ−1(u) = (Ψ−1(u))ℓ if Ψ(t) = Φ(t1/ℓ), and Ψ−1(u)/C ≤ Φ−1(u) ≤ CΨ−1(u) if

Ψ(t/C) ≤ Φ(t) ≤ Ψ(Ct). For Φ ∈ Φ̄v
GY , we denote by Φ−1 the generalized inverse

with respect to t. Then we give a proposition on a generalized Hölder’s inequality,

which can be proven in the same way as O’Neil [9].

Proposition 3.4. Let Φi ∈ Φ̄v
GY , i = 1, 2, 3. Assume that there exists a constant

C > 0 such that

Φ−1
1 (x, t)Φ−1

3 (x, t) ≤ C Φ−1
2 (x, t) for (x, t) ∈ Ω× (0,∞). (3.1)

If f ∈ LΦ1(Ω) and g ∈ LΦ3(Ω), then fg ∈ LΦ2(Ω) and

∥fg∥LΦ2 ≤ C ′∥f∥LΦ1∥g∥LΦ3 ,

where C ′ is a positive constant dependent only on Φi, i = 1, 2, 3, and C.

4. Main results

In this section we state the main results. For Φ ∈ Φ̄v
GY , we denote by Φ−1 the

generalized inverse with respect to t.

Theorem 4.1. Let Φi ∈ Φ̄v
GY , i = 1, 2, 3. Assume that there exists a constant C > 0

such that

1

C
Φ−1

2 (x, t) ≤ Φ−1
1 (x, t)Φ−1

3 (x, t) ≤ CΦ−1
2 (x, t) for (x, t) ∈ Ω× (0,∞). (4.1)
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Assume also that there exists Ψ3 ∈ Φv
GY such that

Φ3 ≈ Ψ3 and ΨA
3 ((·)1/ℓ) ∈ Y (1) ∪ Y(2), (4.2)

for some ℓ ∈ (0, 1] and for any A ⊂ Ω with 0 < µ(A) < ∞, where ΨA
3 (t) =∫

A
Ψ3(x, t) dµ(x). Then

PWM(LΦ1(Ω), LΦ2(Ω)) = LΦ3(Ω).

Moreover, the operator norm of g ∈ PWM(LΦ1(Ω), LΦ2(Ω)) is comparable to ∥g∥LΦ3 .

Remark 4.1. There exists Φ ∈ Φv
Y such that Φ(x, ·) ∈ Y (1) for all x ∈ Ω and

ΦΩ ∈ Y (3). Actually, let Ω = (0, 1) be the open interval in the real line with

the Lebesgue measure and take Young functions Φ(x, t) for all x ∈ Ω such that

Φ(x, 1) = 1 and Φ(x, 1 + x) = 2/x. Then∫ 1

0

Φ(x, 1) dx = 1,

∫ 1

0

Φ(x, 1 + ϵ) dx ≥
∫ ϵ

0

Φ(x, 1 + x) dx = ∞,

for any ϵ ∈ (0, 1). In this case we can find Ψ ∈ Φv
Y such that Φ ≈ Ψ and ΨA ∈

Y (1)∪Y(2) for any A ⊂ (0, 1). However, it is unknown whether we can take Ψ ∈ Φv
GY

which satisfies (4.2) for any Φ ∈ Φ̄v
GY , in general.

Corollary 4.2. Let Φ ∈ Φ̄v
GY . Then

PWM(LΦ(Ω)) = L∞(Ω).

Moreover, the operator norm of g ∈ PWM(LΦ(Ω)) is comparable to ∥g∥L∞.

Next we give three examples of Theorem 4.1, by using the properties in Exam-

ples 3.3, 3.4, 3.5, and Remark 3.1.

Example 4.1. Let pi be variable exponents, i = 1, 2, 3, and

Ω∞ = {x ∈ Ω : p3(x) = ∞}.

Assume that infx∈Ω pi(x) > 0, i = 1, 2, 3, supx∈Ω\Ω∞ p3(x) < ∞ and

1

p1(x)
+

1

p3(x)
=

1

p2(x)
for x ∈ Ω. (4.3)

Then

PWM(Lp1(·)(Ω), Lp2(·)(Ω)) = Lp3(·)(Ω).

Moreover, the operator norm of g ∈ PWM(Lp1(·)(Ω), Lp2(·)(Ω)) is comparable to

∥g∥Lp3(·) .
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Example 4.2. Let pi be variable exponents, wi be weight functions, i = 1, 2, 3, and

Ω∞ = {x ∈ Ω : p3(x) = ∞}.

Assume that infx∈Ω pi(x) > 0, i = 1, 2, 3, supx∈Ω\Ω∞ p3(x) < ∞ and

1

p1(x)
+

1

p3(x)
=

1

p2(x)
, w1(x)

1/p1(x)w3(x)
1/p3(x) = w2(x)

1/p2(x) for x ∈ Ω. (4.4)

Then

PWM(Lp1(·)
w1

(Ω), Lp2(·)
w2

(Ω)) = Lp3(·)
w3

(Ω).

Moreover, the operator norm of g ∈ PWM(L
p1(·)
w1 (Ω), L

p2(·)
w2 (Ω)) is comparable to

∥g∥
L
p3(·)
w3

.

Example 4.3. Let pi be variable exponents, i = 1, 2, 3, and

Ω∞ = {x ∈ Ω : p3(x) = ∞}.

Assume that infx∈Ω pi(x) > 0, i = 1, 2, 3, supx∈Ω\Ω∞ p3(x) < ∞ and

1

p1(x)
+

1

p3(x)
=

1

p2(x)
for x ∈ Ω. (4.5)

Then

PWM(exp(Lp1(·))(Ω), exp(Lp2(·))(Ω)) = exp(Lp3(·))(Ω).

Moreover, the operator norm of g ∈ PWM(exp(Lp1(·))(Ω), exp(Lp2(·))(Ω)) is compa-

rable to ∥g∥exp(Lp3(·)).

Remark 4.2. In Examples 4.1, 4.2 and 4.3, the condition supx∈Ω\Ω∞ p3(x) < ∞ is

not necessary. We only need the condition (4.2).

5. Proof of main results

In this section we prove Theorem 4.1. From Proposition 3.4 it follows that

PWM(LΦ1(Ω), LΦ2(Ω)) ⊃ LΦ3(Ω),

and that

∥g∥Op ≤ C∥g∥LΦ3 for g ∈ LΦ3(Ω),

where ∥g∥Op is the operator norm of g as a pointwise multiplier.

Conversely, let g ∈ PWM(LΦ1(Ω), LΦ2(Ω)). Then g is a bounded operator by

Lemma 3.3. In the following we prove that g is in LΦ3(Ω) and that

∥g∥LΦ3 ≤ C∥g∥Op. (5.1)
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If Φi ≈ Ψi, i = 1, 2, 3, then Ψi also satisfy (4.1). Hence we may assume that

Φi(·, (·)1/ℓi) ∈ Φv
Y for some ℓi ∈ (0, 1], i = 1, 2, 3. Moreover, by (P5) and the

assumption, we may assume that Φ2(x, (·)1/ℓ2) ∈ Y(1) ∪ Y (2) for all x ∈ Ω and that

ΦA
3 ((·)1/ℓ3) ∈ Y (1) ∪ Y (2) for any A ⊂ Ω with 0 < µ(A) < ∞, where ΦA

3 (t) =∫
A
Φ3(x, t) dµ(x).

To show (5.1) we consider two cases.

Case 1: g is a simple function. In this case g ∈ LΦ3(Ω). Let

g =
N∑
k=1

ckχAk
, 0 < c1 < c2 < · · · < cN ,

0 < µ(Ak) < ∞ (k = 1, 2, · · · , N), and Aj ∩ Ak = ∅ if j ̸= k.

and let

Φg
3(t) =

∫
Ω

Φ3(x, |g(x)|t) dµ(x), ΦAk
3 (t) =

∫
Ak

Φ3(x, t) dµ(x).

Then

Φg
3(t) =

N∑
k=1

ΦAk
3 (ckt).

Then Φg
3((·)1/ℓ3) ∈ Y(1) ∪ Y(2) and

a(Φg
3) = min

k
a(ΦAk

3 (·/ck)), b(Φg
3) = min

k
b(ΦAk

3 (·/ck)).

Therefore, Φg
3((·)1/ℓ3) is continuous and convex on [0, b(Φg

3)) and bijective from

[a(Φg
3), b(Φ

g
3)) to [0,∞). Since

∥g∥LΦ3 = inf{λ > 0 : Φg
3(1/λ) ≤ 1},

we have

Φg
3(1/∥g∥LΦ3 ) = 1.

That is, ∫
Ω

Φ3

(
x,

g(x)

∥g∥LΦ3

)
dµ(x) = 1. (5.2)

Let

h(x) = Φ3

(
x,

|g(x)|
∥g∥LΦ3

)
.

Then h is in L1(Ω) and h(x) < ∞ a.e.x ∈ Ω. Let

f(x) =

{
Φ−1

1 (x, h(x)), 0 < h(x) < ∞,

0, h(x) = 0.
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From the property (P1) it follows that Φ1(x, f(x)) ≤ h(x) a.e.x ∈ Ω and∫
Ω

Φ1(x, f(x)) dµ(x) ≤
∫
Ω

Φ3

(
x,

|g(x)|
∥g∥LΦ3

)
dµ(x) = 1.

That is, ∥f∥LΦ1 ≤ 1. If 0 < h(x) < ∞, then by the property (P2) and the assumption

(4.1),

f(x)g(x)

∥g∥LΦ3

= Φ−1
1 (x, h(x))Φ−1

3

(
x,Φ3

(
x,

g(x)

∥g∥LΦ3

))
= Φ−1

1 (x, h(x))Φ−1
3 (x, h(x))

≥ C−1 Φ−1
2 (x, h(x)),

and hence, by (P3),

Φ2

(
x,

Cf(x)g(x)

∥g∥LΦ3

)
≥ Φ2(Φ

−1
2 (x, h(x))) = h(x).

If h(x) = 0, then f(x) = 0 and Φ2

(
x, Cf(x)g(x)

∥g∥
LΦ3

)
= 0. Thus, by (5.2),∫

Ω

Φ2

(
x,

Cf(x)g(x)

∥g∥LΦ3

)
dµ(x) ≥

∫
Ω

h(x) dµ(x)

=

∫
Ω

Φ3

(
x,

g(x)

∥g∥LΦ3

)
dµ(x) = 1.

Therefore,

∥g∥LΦ3 ≤ C∥fg∥LΦ2 ≤ C∥g∥Op∥f∥LΦ1 ≤ C∥g∥Op.

That is, we have (5.1).

Case 2: For general g, let {gj} be a sequence of simple functions such that

0 ≤ g1 ≤ g2 ≤ · · · → |g| a.e. in Ω.

Then, by the result in Case 1 and the lattice property of LΦ2(Ω) we have

∥gj∥LΦ3 ≤ C∥gj∥Op ≤ C∥g∥Op.

By the Fatou property of LΦ3(Ω) we have (5.1).
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