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FIEDLER-ANDO THEOREM FOR ANDO-LI-MATHIAS
MEAN OF POSITIVE OPERATORS
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ABSTRACT. In this paper, we show several operator inequalities involving the
Hadamard product and the Ando-Li-Mathias mean of n positive operators on a
Hilbert space, which are regarded as n-variable versions of the Fiedler-Ando the-
orem. As an application, we show an n-variable version of Fiedler type inequality
via the Ando-Li-Mathias mean.

1. Introduction

Let {e;} be an orthonormal basis of a separable Hilbert space H and A;®A»®- - -®A,
be the tensor product of operators Aj, As,..., A, on H regarding to {e;}. Let
U, : H— H® H® ---® H be the isometry such that U,e; = ¢; ®e; ® --- @ ¢;.
Following after [8, 5], the Hadamard product A; o Ay o--- 0 A, regarding to {e;} is
expressed as

AjoAyo- oA, =U (A QAR - @A) U, (1)
Fiedler [4] showed that if A is a positive definite matrix, then
Ao Al > 1. (2)

As a generalization of the Fiedler inequality (2), Ando [1, Theorem 13] showed better
estimates for below for the Hadamard product of positive definite matrices A, B by
using the geometric mean of A and B:

Ao B> (At B)o(Atl B), (3)

where the geometric mean A § B for A, B > 0 is defined by

At B= A (A-%BA—%)M%.
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In fact, put B = A7! in (3), then (3) implies the Fiedler inequality (2). Thus, we
call (3) the Fiedler-Ando inequality. Afterwords, Aujla and Vasudeva [3] extended
the Fiedler-Ando inequality (3): If A, B,C' and D are positive definite, then

(AoB) i (CoD)= (At C)o(BYD). (4)

We refer the reader to [7] for operator versions of the inequalities on the Hadamard
product mentioned above.

By virtue of the Ando-Li-Mathias mean, we try to consider an n-variable version
of (3) and (4). We will review the notion of the Ando-Li-Mathias mean of n positive
operators on a Hilbert space. We simply call it the ALM mean. For any positive in-
teger n > 2, the Ando-Li-Mathias mean G(A1, Ay, ..., A,) = Garm(Ar, As, .. Ay)
of any n-tuple of positive invertible operators A, A, ..., A, on a Hilbert space H
is defined by induction as follows:

(i) Garm(Ay, Ag) = Ay 1§ As.
(ii) Assume that the geometric mean of any (n — 1)-tuple of operators is defined.
Let

Garm((Aj)jzi) = Garm(Ar, - Ay, Aig, 0 Ag)
and let sequences {A"}%, be AV = A, and ATV = GALM((AE.T))#i).
Then there exists lim,_,, Agr) uniformly and it does not depend on 7. Hence
the geometric mean of n operators is defined by

GALM(Al,AQ,...,A)_hmA fori=1,2,...,n.

r—00
We list some properties of the ALM mean which we need later:

(P1) Consistency with scalars: Gapm(Aq, ..., An) = (A1As-- -An)% if the A;’s
commute;

(P2) Joint homogeneity : Gapm(ai Ay, . .., anAn) = (aras - - - an)%GALM(Al, e A

(P3) Permutation invariance: Gapm(m(Ay, ..., A4,)) = Gawm(Ag, ..., A,) for any
permutation 7(A;, ..., A,) of (A,..., A,);

(P4) Transformer inequality : T*Gapnm (A1, -, Ap)T < Gapm(T* AT, ..., T*A,T)
for every operator T

(P5) Self-duality : Garm(ATY, ..., A7) ™ = Gam(A1, ..., Ay);

(P6) Information monotonicity : ®(Garm(A1, ..., 4,)) < GALM( (A1),...,P(4,))
for any unital positive linear map ;

(P7) AGH inequality :

—1
1<~ 4 1
— - < LA < — i
<n;’4z> < Gam(Ar, o A) <23 A



We refer the reader to [2, 6] for more information on the ALM mean.

In this paper, we show several operator inequalities involving the Hadamard prod-
uct and the Ando-Li-Mathias mean of n positive operators on the Hilbert space,
which are regarded as n-variable versions of the Fiedler-Ando theorem (3). As an
application, we show an n-variable version of Fielder type inequality via the ALM
mean.

2. Main results

First of all, we start with the following lemma which involves the Hadamard product
and the ALM mean. We denote by G(A;1, As, ..., A,) the ALM mean for simplicity.

Lemma 2.1. For any integer n, k > 2, let A;; be positive operators fori =1,2,...,n
and j =1,2,..., k. Then

G(An®A21®---®An17A12®A22®---®An2,-~,A1k®A2k®---®Ank)
= G(A117A127"'7A1k) ®G<A217A227"'7A2k) Q- ®G(AnlaAn27"'7Ank)'

Proof. We may assume that A;; are invertible for: =1,2,...,nand j =1,2,... k.
By definition, it follows that G(A;; ® Ag, Ajs ® Ag) = G(Aq1, A1) @ G(Agy, Ag).
Firstly we show the case of £k = 3 and n = 2: Ay, Agr, Asp and Agy, Agg, Asg. In
fact, we have (A1 ® Ag))V = A ® Ay and

(A1 ® A21)® = G((A12 ® Ap) Y, (A13 ® Agg)Y) = G(A12 ® Az, A1s ® Ass)
= G(A1z, Arg) © G(Ag, Ags) = A @ AL,
By induction on r, it follows that
(A1 ® An) ") = G((A12 ® )™, (A1s ® Asy)M) = G(AT) ® AY), Al ® AL)
= G(AY, AlY) ® G4y, A5)) = AR @ AR
and as 7 — oo it follows from the definition of the ALM mean that
G(A11 ® A9, Alg ® Agg, A1z ® Agz) = G(A11, Ara, A13) @ G(Aay, Aga, Asg).

Similarly, by induction on r, we show the general case of any k£ > 2 and n > 2. In
fact, we have (41, ® Ay; ® -+ ® Anj)(l) =A;®Ay®---® Ay and

(A ® Agy; @+ @ Ap)) " = G((Au @ A @ -+ @ A) ") 1z9)
=G(AY @AY @ @ AL )y)
= G((AT)1z5) @ G(AY)1) ® -+ @ G((A))15)
= Ag’ji“) ® Agfl) R ® AEZ;-H)



and as r — oo we have

G<A11®A21®"'®An17A12®A22®"'®An27--~7Alk®A2k®"'®Ank>
=G(A1, Arg, .., Arg) @ G(Ar, Ao, o, Agi) @ -+ - @ G(Apa, Apas o, Ank)

and so the proof is complete. O

We shall use, for convenience, the notation

n n

HoAi:AloAzou~oAn and HoA:Avo~~-oA (n times).

i=1 i=1

By Lemma 2.1, we show an n-variable version of the Fiedler-Ando theorem (3)
by using the ALM mean:

Theorem 2.1. Let Ay, Ao, ..., A, be positive operators for n > 2. Then

ﬁo Az Z ﬁo G(Al,Ag,...,An).
i=1 i=1

Proof. 1t follows that

n

HO Ai=G(Ay o---0 Ay, A o0 A,,... AL 0---0 A))
i=1
=G(AjoAyo---0A,,Ay0oA30---0A,0A;,...,A,0Aj0---0A, )
by commutativity of Hadamard multiplication
=GU (A @@ AU, Upy(Ay @ - @ A, @ AU,
UM A, A @@ A)Uy)
>UGAI® - ®A4,ARQ A, @A, A4, - ®A,_1)U,
by transformer inequality (P4) for the ALM mean
=U![G(A1,Ag, ... A,) @G(Ag, .. AL AR - RG(An, Ay, AR )] Uy
by Lemma 2.1
=G(Ay,...,A,)0G(As, ..., Ay, A1) o 0 G(A,, ..., Apn1)

= H o G(Ay,...,A,) by permutation invariance (P3) for the ALM mean.
i=1

l

By Lemma 2.1, we show an n-variable version of Aujla-Vasudeva theorem (4) by
using the ALM mean:



Theorem 2.2. For any integer n, k > 2, let A;; be positive operators fori=1,...,n
and j =1,..., k. Then
G(AllOA21O'~~OAn17A12OA220-"OATLQ,...7A1kOA2kO"~OAnk)
> G(An, A, ... 7A1k) © G(Am, Ag, ... 7A2k) ©--+0 G(Anh Apa, - .. 7Ank)

Proof. It follows from Lemma 2.1 and transformer inequality (P4) that

G(Aj10As 0 0A,, AlpoAyo---0Au, ..., Ajpo Agg o+ 0 Ang)
=GU (A1 ®Ay @@ An)U,, U (A1 @ Ao @ -+ - @ Apa) Uy,
LU (A @ A @ - @ Api)Uy)

>U;G(A1®An @ - @ Ap1, A1a®An @ - @ Apa, ..., Alpg® Ao, @ - -+ @ Ak Uy,
by transformer inequality (P4) for the ALM mean

=U'[G(A11, A, ..., Atg) @ G(Agy, Aga, .o Aogg) @ -+ - @ G(An1, Anay - -+ Ai)| U,
by Lemma 2.1

= G(A11, A1y ..., A1) 0 G(Agy, Agg, .o Agg) 0o 0 G(Anr, Ana, -+ Ank)-

O

By Theorem 2.2, we show an n-variable version of the Fiedler theorem (2) via the
ALM mean:

Corollary 2.1. Let A be a positive invertible operator and aq,...,a, € R such as
Yowqya;=0. Then
A o 0 A > ],

Proof. Tt follows from Theorem 2.2 and consistency with scalars (P1) for the ALM
mean that

n

Ho A% =G(A" 0 A% 0 .. 0 A™ AM 0 A0 .. 0 A% ...  AM 0 A% 0 .. . 0 A™)
i=1
= G(A" 0 A0 0 A" AP 0 A 0 0 AM . A" o A 0. 0 A1)
by commutativity of Hadamard multiplication
> GAM, A2 A o G(A™ AL AT o0 G(A, AM L A%
by Theorem 2.2
— AX /M 5. .o A2 i/
by consistency with scalars (P1) for the ALM mean
=Jo---ol=1 by > a; =0.



In [1, Corollary 16.1], Ando showed the estimate from above for the Hadamard
product by diagonal matrices. Recall that A o [ is just the diagonal matrix formed
from a matrix A. As an application of Theorem 2.2, we give a simple proof of its
operator version:

Corollary 2.2. Let Ay, Ag, ..., A, be positive operators for n > 2. Then

n

T4 < ﬁ(A? ol)n.

i=1 i=1
Proof. By consistency with scalars (P1), we have Ay = G(AY, I,...,I),..., A, =
G(I,...,I,A"). Hence it follows that

HoAi:G(A’f,[,...,f)oG(I,Ag,I,...,I)o---oG(I,...,I,AZ)
i=1
<G(Ajolo---I,]JoAYolo---ol,...;]o---0l0A})
by Theorem 2.2

=G(AY oI, AYolI,..., Al o)

(A oI )% by consistency with scalars (P1) of the ALM mean

I
—=

1

-.
Il

and so the proof is complete. O
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