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VARIATIONAL METHOD ON RIEMANN SURFACES USING
CONFORMAL PARAMETERIZATION AND ITS APPLICATIONS
TO IMAGE PROCESSING*

LOK MING LUIt, XIANFENG GU¥, TONY F. CHANS, AND SHING-TUNG YAUT

Abstract. Variational method is a useful mathematical tool in various areas of research, espe-
cially in image processing. Recently, solving image processing problems on general manifolds using
variational techniques has become an important research topic. In this paper, we solve several image
processing problems on general Riemann surfaces using variational models defined on surfaces. We
propose an explicit method to solve variational problems on general Riemann surfaces, using the
conformal parameterization and covariant derivatives defined on the surface. To simplify the com-
putation, the surface is firstly mapped conformally to the two dimensional rectangular domains, by
computing the holomorphic 1-form on the surface. It is well known that the Jacobian of a conformal
map is simply the scalar multiplication of the conformal factor. Therefore with the conformal para-
meterization, the covariant derivatives on the parameter domain are similar to the usual Euclidean
differential operators, except for the scalar multiplication. As a result, any variational problem on
the surface can be formulated to a 2D problem with a simple formula and efficiently solved by well
developed numerical scheme on the 2D domain. With the proposed method, we solve various image
processing problems on surfaces using different variational models, which include image segmen-
tation, surface denoising, surface inpainting, texture extraction and automatic landmark tracking.
Experimental results show that our method can effectively solve variational problems and tackle
image processing tasks on general Riemann surfaces.

Key words. Variational method, conformal parameterization, holomorphic one form, conformal
factor, covariant derivative.
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1. Introduction. Solving variational problem is an important topic in mathe-
matics. A lot of daily life problems can be solved by formulating them as variational
problems that minimize certain kind of energy functionals. This type of problem has
a very long history and has found various applications in different research areas such
as physics, control theory, statistics as well as image processing. For example, a lot of
partial differential equations (PDEs) in physics are derived from the Euler-Lagrange
equations of the variational problems. In computer vision research, many problems,
such as image denoising and image segmentation, can also be solved by variational
approaches [1](2][3][4][5].

Solving variational problems in the usual Euclidean domain has been studied ex-
tensively [6]. Recently, researchers have been more and more interested in solving
variational problems on general surfaces or manifolds. Applications exist in different
areas of research, such as computer vision, computer graphics, image processing on
the surface, geometry modeling, medical imaging as well as mathematical physics. In
medical imaging research, variational methods are often used for surface registration,
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feature extraction, surface parameterization and so on [7][8][9]. Besides, a lot of 2D
image processing techniques can be extended to the surface by variational methods
on the manifolds, such as image denoising, image inpainting on the surface, brain
mapping, etc [10][11][12][13]. Geometry modeling can also be done via variational
methods. Examples include surface smoothing, filling missing holes on the surface,
etc [14]. In fluid dynamic, researchers are interested in simulating the fluid flow and
solidification on the surface, via solving different flow models [15][16].Some other ap-
plications include texture synthesis [17][18], vector field visualization [19], weathering
[20], interpolation process [21][22] and inverse problem [23]. Therefore, it is of great
interest to develop a general and efficient method to solve variational problems on the
surface.

In this paper, we describe an explicit method to solve variational problems on
general Riemann surfaces, using the conformal parameterization of the surface. In
general, variational problem is usually solved by computing its Euler-Lagrange equa-
tion, which is essentially a partial differential equation. Therefore, it is important
to understand how to do calculus on general manifolds. On Riemann surfaces, dif-
ferential operations are done through covariant derivatives [24][25][26]. Essentially,
they are a set of coordinate invariant operators for taking directional derivatives of
the functions or vector fields defined on the surface. Covariant derivatives are de-
fined locally through the local parameterization of the manifold [25]. With arbitrary
parameterization, the formulae for the covariant derivatives are generally very com-
plicated. It results in computational difficulties and numerical inaccuracies. Here,
we propose to parameterize the surface conformally with the minimum number of
coordinates patches. The Riemannian metric of the conformal parameterization is
simple, which is just the scalar multiplication of the conformal factor, A. The co-
variant derivatives on the surface can be computed on the 2D domain with simple
formula. The corresponding formula for the covariant derivatives on R? are similar
to the usual Euclidean differential operators, except for a scaling factor A\. Therefore,
with the conformal parameterization, the variational problems on general surfaces can
be transformed to the 2D problems with much simpler equations. The problem can
then be solved by using some well-known numerical schemes.

The key advantages of this method are as follow:

e Firstly, by mapping the surface to the 2D domain, the problem on the surface
are transformed into the 2D problem. It can then be solved by efficient 2D
numerical methods, instead of solving it on the complicated surface.

e Secondly, the simple Riemannian metric of the conformal parameterization
allows us to have a simple formula for the covariant derivatives on the 2D
domain. It makes computation much easier and reduces numerical inaccuracy.

e Thirdly, in our algorithm, covariant derivatives are computed via conformal
parameterization without the orthogonal projection of the normal. It is dif-
ferent from some other methods, in which orthogonal projection is needed to
ensure the approximated covariant derivatives are tangent to the surface. In
our algorithm, the surface is identified with the 2D parameter domain with a
specific Riemannian metric. Every tangent vector of the surface is represented
by a 2D vector in the parameter domain and thus orthogonal projection is
unnecessary. It simplifies the problem and avoids possible error arising from
the inaccurate approximation of the normal.

e Fourthly, our algorithm allows us to compute the conformal parameterization
of the surface with the minimum number of coordinate patches. For most of
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The list of three

TABLE 1

common methods that solve variational problems/PDEs on general surfaces.

Method

| Principle

| Comments

Discretization
on surface tri-
angulation [10],
[27], [16]

Covariant differential operators on
the surface are approximated by fi-
nite element methods on the trian-
gulation grids.

Orthogonal projection is needed in
some cases to ensure the approx-
imated covariant derivatives to be
tangent to the surface.

Level set ap-
proach [28], [29]

The surface is represented by the
zero set of a level set function and
the PDE on the surface is extended
to a PDE that is defined on a nar-
row band of the surface.

Equations can be solved by Carte-
sian grid methods on the narrow
band.

Surface para-
meterization
(30], [15], [13]

The surface is parameterized to a
simple domain such as the 2D rec-
tangle. Differential operators on
the surface are expressed within the
coordinates system.

The complexity of the differen-
tial operators’ expression depends
mainly on the parameterization,
which may result in more deriva-
tive terms and non-constant coef-

915

ficients.

the classical parameterization methods, the surface is segmented into many
portions and each portion is mapped to the 2D parameter domain. In our
algorithm, we parameterize the surface with the minimum number of coordi-
nate patches and the parameterization results are consistent along the patch
boundaries because of its global parameterization nature. Specifically, the
number of coordinate patches is 2g — 2, where ¢ is the genus of the surface.
The parameterization is intrinsic and depends on the holomorphic 1-form,
which is in a finite dimensional linear space. Since our segmentation is based
on the holomorphic 1-form, the segmentation result is finite and purely de-
termined by holomorphic 1-form selection. Thus we could always select the
segmentation that is the most appropriate to solve the PDEs.

e Finally, the conformal metric on the 2D parameter domain is induced by the
actual metric of the original surface. As a result, by computing the derivatives
on the 2D domain with respect to the conformal factor, we are computing
the actual covariant derivatives on the surface.

2. Related works. Solving variational problems or PDEs on surfaces has been
studied extensively. A popular method to solve the PDEs on surfaces is to discretize
the problem on the surface triangulation [10][27][16]. In this approach, the covariant
differential operators on the surface are approximated by finite element methods on
the triangulation grids.

Another common approach is to solve the PDE on the implicit manifold, which
is based on the level set method [28][29]. In this approach, the surface is the zero set
of level set function defined in R3, in which the surface is embedded in. The PDE on
the surface is extended to be defined on a narrow band of the surface. Recently, Ratz
et al. [31] proposed to solve the PDEs on the surface implicitly by reformulating the
problem on a larger domain in one higher dimension and introduce a diffuse interface
region of a phase-field variable, which is defined in the whole domain. The surface of
interest is now only implicitly given by the %-level set of this phase-field variable.

Variational problems or PDEs on surfaces can also be solved by parameterizing
the surface onto the 2D parameter domain [30][15][13]. Differential operators on the
surface are expressed within the coordinates system. The complexity of the differential
operators’ expression depends mainly on the parameterization, which may result in
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F1a. 1. Illustration of the conformal parameterizations of different surfaces. The parameteri-
zations are computed by integrating the holomorphic differential one form defined on the surfaces.
(A), (B), (C) and (D) show the conformal parameterizations of a 2-torus, a human face, a lateral
ventricular surface and a human brain cortical surface [32] respectively.

more derivative terms and non-constant coefficients. To improve this method, our
group have recently reported briefly about using conformal mapping to parameterize
the surface. The formula of the covariant derivative under conformal parameterization
are comparatively simple [13]. To test the method, we have also reported application
of the algorithm to feature extraction in the brain mapping research [9][32].

We have summarized the three common parameterization methods in Table 1.

3. Theoretical background.

3.1. Conformal parameterization of Riemann surface. All Riemann sur-
faces are locally Euclidean. Given two Riemann surfaces M and N. We can represent
them locally as ¢ps(z1,22) : B2 — M C R® and én(z1,22) : B2 — N C R3 re-
spectively, where (x1,x2) are their coordinates. The inner product of the tangent
vectors at each point of the surface can be represented by its first fundamental form.
The first fundamental form on M can be written as ds3, = D gijdz'dx?, where
Gij = %4;1‘{’ - 684;1‘]4 and 7,7 = 1,2. Similarly, the first fundamental form on N can be
written as ds% = Z” §¢jdﬂcid$j where g;; = %‘i’j . %4;1}’ and i,j = 1,2. Given a map
f M — N between the M and N. With the local parameterization, f can be repre-
sented locally by its coordinates as f : R* — R% f(z1,22) = (f1(x1,22), fo(71,22)).
Every tangent vectors ¥ on M can be mapped (push forward) by f to a tangent
vectors f.(¥) on N. The inner product of the vectors fi(v1) and f.(v3)), where v7
and v are tangent vectors on M, is:

£ (d530) (01, 02) = < fulvn), fulvz) >
= Zﬁijf*(vi) - fu(vy)
D AL LA R

mn
— ox™ Ox™
i, m,n
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Therefore, a new Riemannian metric f*(ds%) on M is induced by f and ds%,
called the pull back metric. We say that the map f is conformal if

FH(ds%) = Mxy, x2)ds%,

A parameterization ¢ : R? — M is a conformal parameterization if ¢ is a
conformal map.

Intuitively, a map is conformal if it preserves the inner product of the tangent
vectors up to a scaling factor, called the conformal factor A\. An immediate conse-
quence is that every conformal map preserves angles. Figure 1 shows several examples
of conformal parameterization examples. Figure 1(A), 1(B), 1(C) and 1(D) show the
conformal parameterizations of a 2-torus, a human face, a lateral ventricular surface
and a brain cortical surface respectively [32].

3.2. Differential operator on general manifolds. The calculus of variation
has found various important applications. Differentiation and integration are the basic
tools for solving this kind of problem. In order to extend the calculus of variation on
the 2D domain to 3D Riemann surface, differential operators on surfaces are needed.
On the Riemann surface, differential operators are defined by covariant derivatives.
Essentially, they are a coordinate invariant set of operators for taking directional
derivatives of the functions or vector fields defined on the surface S.

Generally, the covariant derivative Vx F', where X is a tangent vector on S, F' is
either a function or a vector field defined on S, satisfies the following properties:

(I) Vx F is linear in X over C®(S): Vyix,+9x.F = fVx, F+¢Vx,F.

(IT) Vx F is linear over R in F: Vx(aF) + bFy) = aVxFy + bV x F.

(IIT) V satisfies the product rule: Vx(fF) = fVxF + X(f)F
(Here, we define X (f) = %hzof(a(t)) where o : (—1,1) — S is a curve on S such
that o/(0) = X.)

This basically defines the covariant derivatives. VxF is called the covariant
derivative of F' in the direction X.

Let ¢ : R? — S be a parameterization of S (not necessarily conformal). Define
9 = (9ij)i,j=1,2 where g;; = @z, - @, are the Riemannian metric coefficients. Let
F = Fioz + Fopy, and X = X195, + Xopa, be a vector field and a tangent vector
on S respectively. Let f : S — R be a function defined on S. Then:

2
Vxf= > (990:f)Xkgj
i,5,k=1
; (2)
VxF = Y (XFi+X;FiTE)ps,
i,7,k=1

where Ffj = Elzzlégkl(&-gﬂ + 0j9i — 019i5) and (g%7); j—1 2 is the inverse of g.

Note that the complexity of the covariant derivative depends solely on the com-
plexity of the Riemannian metric g. An arbitrary parameterization might have a very
complicated g. It is thus important for us to look for a parameterization that gives
simple Riemannian metric g. It turns out that the conformal mapping is such a map
that has simple Rimannian metric.

With covariant derivative, we can define other useful differential operators on S,
which are analogous to those on R?. We are going to list several of them below.
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Firstly, the gradient of the function f, Vg f, is characterized by the fact that:
X(f)=<Vsf, X >s5 (3)

By simple checking, we get that V f has the following coordinate expression:

2
Vsf=> 990:fpu (4)
ij=1
Secondly, we can define divergence on S as follow:

2

Vs Fi= ——— 3" o(/det(g) Fy) (5)

det(g) =

With the definition of the gradient and the divergence, we can define the Laplacian
operator on S as follow:

2
Nsfi=Vs-(Vsf) =Vs- (Y 990:f)

ij=1

_ Jﬁz@(ngﬁajﬁ

A more complete development of various differential operators on the surface can
be found at [32].

(6)

4. Global conformal parameterization of Riemann surface. In order to
solve the variational problems on the surface, we firstly parameterize the surface
onto the two dimensional parameter domain (see Figure 1). The problem is then
solved on the parameter domain, instead of being solved on the original surface. It is
desirable to look for a parameterization with simple Riemannian metric to simplify
the computation. It turns out conformal parameterization is the best for this purpose.

Surface conformal parameterization has been widely studied. Several researchers
[33][34] have proposed different methods to compute the conformal parameterization
for topological disk, by introducing the discrete Dirichlet energy, discrete harmonic
map, shape-preserving method and so on. Haker et al. [35][36] computed the global
conformal map by approximating the Laplace-Beltrami through a linear system. Gu
et al. [37] proposed a non-linear variational method to compute the global conformal
parameterization of a genus zero surface by minimizing the harmonic map. As for the
high genus surface, Gu et al. [38] proposed a method to parameterize the surface to
2D rectangles by computing its holomorphic 1-form. It is done by approximating the
De-Rham cohomology. Recently, Wang et al. [39] systematically analyzed a family
of quasi-conformal maps including harmonic maps, conformal maps and least-squares
conformal maps with regards to 3D shape matching. As a result they proposed a
shape matching framework by using the least-squares conformal maps. In this paper,
we will apply the algorithm by Gu et al. [38][37] to get the conformal parameterization
of the surfaces by computing its holomorphic 1-form. We are going to describe briefly
the basic idea of this algorithm in this section.

To parameterize a compact surface onto 2D rectangles, one intuitive technique
is to cut it open along some suitable cutting boundaries. For example, a torus of
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genus one can be cut open and mapped to a rectangle along two cutting boundaries.
Similarly, a torus of genus two can also be mapped to two rectangles by introducing
suitable cut (see Figure 3). If the cut is suitably chosen, the parameterization could
be conformal. In the algorithm that we use to parameterize the surface, we search for
the suitable cutting boundaries on the surface in order to get a conformal map. This
is done by computing the holomorphic one form on the surface. The holomorphic one
form w is a complex analytic differential form.

To compute the holomorphic 1-form, we start by computing a harmonic 1-form
w on the surface. Similar to complex analysis, we can compute a harmonic conjugate
sw of w, such that W := w + 4 % w is a holomorphic (analytic) 1-form. The basis of
harmonic 1-form can be computed from the dual basis of the homology basis. The
homology basis is a set of non-constant closed curves (up to homotopic) on the surface.
For example, Figure 2 shows the homology basis on different surfaces. (A) shows the
homology basis {e1,ea}on a genus one torus. (B) shows the homology basis of a
genus two surface, which consists of 4 cutting boundaries. (C) shows the homology
basis of a genus four surface, which consists of 8 cutting boundaries. As we cut along
the suitable cutting boundaries of the surface, we can map the surface onto the 2D
rectangles.

Given a homology basis {eq, ..., e24} on the surface, we can compute a set (basis)
of the harmonic 1-forms {w1, ...,waq} (cohomology) by solving the following system:

dw = Zle w(uj—1,u;]) = 0,V[uo, ut,us] € M,up = us (closedness);
Aw =37, en w(u,v]) = 0V[u,v] € M (harmonicity);

uz

Joyw =200 w(luf g, uf]) = 0iVes = 30070 [ufy, uf] uh = up,, (conjugacy).

where [ug, w1, us] represents a face on M; [u,v] represents an edge on M; ky, =
1 (cota + cot3) in which a, 3 are the angles against the edge [u, v].

After we get the holomorphic 1-form, we can compute the conformal parameteri-
zation ¢ by integrating the one form: ¢(p) = f,y w= f,y f(20)dza, where 7 is any path
joining p to a fixed point ¢ on the surface and w = f(24)dzq.

Double covering techniques are applied to surfaces with boundaries to convert
them to closed symmetric surfaces.

Further details about the algorithm can be found in [38], [37].

5. Solving variational problems on Riemann surface with the conformal
parameterization. In section III(B), we have described how differential operators
are defined on the surface with the given parameterization. With the concept of
differentiation and integration on the surface, we can use calculus of variation to
solve variational problems on surfaces. In this section, we will describe how covariant
derivatives can be easily compued using the conformal parameterization and how it
can be applied to solve variational problems.

5.1. Computation of convariant derivatives using conformal parame-
terization. Given a parameterization of the surface S, we can express the surface
differential operators within its coordinates. In section IT1I(B), we have discussed how
covariant derivatives can be computed with the various formulae defined on R2. The
formulae consists of the Riemannian metric coefficients g;;, which are functions defined
on S. With an arbitrary parameterization, the Riemannian metric can be complicated.
As a result, the equation of the surface differential operators can become substantially
complex when written in the coordinate system, involving non-constant coeflicients
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(A) (B) (C)

F1G. 2. Homology basis (cutting boundaries) on different surfaces. (A) shows the homology basis
{e1,e2}on a genus one torus. (B) shows the homology basis of a genus two surface, which consists
of 4 cutting boundaries. (C) shows the homology basis of a genus four surface, which consists of 8
cutting boundaries.

Handle Separator

Fic. 3. Illustration of how the conformal parameterization can be computed by introducing
suitable cutting boundaries. The top shows how a genus one surface can be mapped to a 2D rectangles
by cutting along the suitable cutting boundaries. The bottom shows how a genus two surface (2-torus)
can be mapped to two rectangles.

and more derivative terms. Therefore, it is important to look for a parameterization
with simple Riemanninan metric.

As described in section ITI(A), the conformal parameterization has a simple Rie-
A ifi=yg;
0 ifi#j.
efficients are reduced to one coefficient metric A, called the conformal factor. With
this property, surface differential operators can be expressed within the conformal
coordinates with simple formulae. The expressions are similar to the usual Euclidean
differential operators, except for a scalar multiplication of the conformal factor. The
conformal factor at a point p on the surface S can be determined by computing the
scaling factor of a small area around p under the parameterization ¢ : R? — S. Math-

ematically, A(p) = %, where B(p) is an open ball around p of radius

mannian metric, namely, g;; = { In other words, the four metric co-
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Conformal
Factor

Fic. 4. The plot of the conformal factor X\ of a human face verses u and v of the parameter
domain. The conformal factor is a smooth function which describe the stretching effect under the
conformal parameterization. Observe that the approximation of the conformal factor function is
reasonably smooth.

Histogram of g, (g,))
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g (gu)

(A) (B)

Fic. 5. (A) shows the conformal coordinates grid on the dog surface introduced using the
conformal parameterization. (B) shows the histogram of gi2 = g21 of a Riemann surface under the
conformal parameterization. Observe that gia = g21 are very close to zero at most verter. It means
the Riemannian metric is a diagonal matriz, which results in simple expression for the covariant
derivatives.

p. Figure 4 shows the plot of conformal factor \ verses u and v of the parameter
domain. The conformal factor is a smooth function which describe the stretching
effect under the conformal parameterization. Observe that the approximation of the
conformal factor function is reasonably smooth. Figure 5(B) shows the histogram
of g1 of the Riemann surface under the conformal parameterization. Note that by
definition, g12 = go1 = Py - ¢y, Where ¢(u,v) is the conformal parameterization of
the surface. Observe that g12(= g21) are very close to zero at most vertex. It means
the Riemannian metric is a diagonal matrix, which results in simple formulae for the
covariant derivatives.

We will now express some of the most important surface differential operators
under the conformal parameterization ¢ of the surface. From section IT1I(B), we have
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(€N} (B) ©)

) (E)

F1a. 6. This figure demonstrates the importance of including the conformal factor in computing
the differential operators on the manifold. (A) shows a unit sphere (minus a hole near the south
pole) with noise introduced near the south pole. The surface is parameterized conformally to the 2D
parameter domain with large stretching near the south pole. (B) shows the graph of the Eulcidean
TV norm of the noise: TVeyei.(9) = |Vg|. Observe that it does not reflect the noise on the surface
due to the strectching effect. (C) shows the manifold version of the TV norm (with conformal factor
included): TVanifola(g) = %|Vg|. It effectively reflects the noise on the surface. (D) shows the
denoising result which minimize the Eulcidean TV energy. The noise cannot be removed. (D) shows
the denoising result which minimizes the manifold TV norm. The noise is successfully remowved.

discussed the expression of Vg f, Agf, Ffj and VxY under general parameterization
of the surface, where f : S — R, X,Y are vector fields defined on S. Substituting
g11 = g22 = A; g12 = g21 = 0 into the equations (3)(4)(5), we obtained simple formulae
for these important surface differential operators within the conformal parameter
domain:

Vsf=D.fi+Dyfj

= 10 10

divsX = <= (AX1) + T o-(AX
X = X M T g, ) m

1 92 1 92

Ngf=——"— -9

sf \/X6$2(fo¢)+\/x8y2(fo¢)

where Daf = df o @D = KEf o s @) -
jected tangent vectors of e; = (1,0) and e; = (0,1) onto the surface under the

conformal parameterization ¢ respectively; X = (X1, X2) = Xla% —l—Xga%; f:S—R
is a smooth function on S.

As shown above, the expressions for the surface differential operators are very
similar to the usual Euclidean differential operators, except for a scalar multipli-
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cation of the conformal factor A\. It means the conformal parameterization pro-
vides a natural coordinates grid on the surface. Intuitively, the conformal para-
meterization preserves the inner product up to a scaling factor and so the local
geometry is preserved up to a scaling of A\. As a result, the differentials on S are
well-preserved, except for a multiplication of v\, to adjust for the length stretch-
ing and A for area distortion. With this conformal grid on the surface, we can

consider D, f and D,f as the analogous partial derivatives on S. For example,

1 fod(z+Az,y)—fop(zy) _ 1 fod(z+Az,y)—fod(zy) _ 1 dfod
Do =limas—0 ittt an oty — 1MAw—0 VeV =

Several important equations that are useful for the calculus of variation on R? are
also valid on general surfaces. For example, we have the integration by part formula
on surface:

/(UASU —vAgu)dV = / (uVgv - N - vVgu - ]_V))df/ (8)
S as

The analogous Green’s formula on the surface is:
/<vsu,X>st:—/ude§dv+/ u< X,N>dV (9)
s s a8

where N is the unit normal vector.
Furthermore, given a smooth function h : S — R, the length L of the zero level
set h=1(0) of h, which is a curve on the surface, can be computed similarly as in R?:

L= / 5(h)\/< Vsh,Vsh >dA = / V< VsH(h),VsH(h) >dA
S S

(10)
= / 5(h o @)V ||Vh o ¢||dedy = / VA ||[VH (h o ¢)||dzdy
R? R2
where H is the Heaviside function.
The geodesic curvature G of h=1(0) can also be computed as:
) Vsh

G = divg (=) (11)

IVshl]

similar to the case in R2.

5.2. Examples. Since the important equations useful for the calculus of varia-
tion on R? can be extended to general surfaces, we can solve the variational problems
on the surface easily using the differential operators defined in ITI(B). In this section,
we will demonstrate the theoretical concept by considering two examples.

EXAMPLE 1 (HARMONIC ENERGY).

Suppose S is a Riemann surface with boundary 9S. Let ¢ : R?> — S be its
conformal parameterization. We are interested in looking for a smooth function f :
S — R that minimizes: E(f) = [4||Vsf|[ZdS and f =0 on 9S. Consider:

%hzoE(f +1g) Z/ IVs(f +tg)|[zdS :/ < (Vsf+1tVsg),(Vsf+tVsg) >5 dS
s s

= 2‘/5 < st,VSg >gdS = 2‘/S(ASf)gdS' (12)
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So, the Euler-Lagrange equation is:

daft ¢ dffog 2, :
i —2Agf" or pra _ﬁAf o ¢ on the parameter domain. (13)

It is observed that the Euler Lagrange equation of the harmonic energy on the
surface is the same as its 2D version, except that the differential operators in the
equation have to be replaced by the manifold operators. The corresponding equation
on the parameter domain is similar to its 2D version on R?, except for a scaler
multiplication of the conformal factor. When A = 1, the Riemann surface is flat and
so it becomes identical to its 2D version.

EXAMPLE 2 (TOTAL VARIATION).
Suppose now we are interested in looking for a minimizer f : S — R of E(f) =
JsIVsfllsdS where f =0 on 8S. Consider:

GlimoB( 4 t9) = [ IVs(f +tg)lsds = [ V<TVsT + V59, (Val + Vsg) >sd
S S

:2/< Vsf ,ng>sd5=2/divs( Vsf )gdS.
S S

IVsflls IVsflls
(14)
So, the Euler Lagrange equation becomes:
df . Vs f!
— = 2divg (="
i (s fs) )
or dft—o¢ = —zdiv (M) on the parameter domain
dt -~ AT IVsfodlls b |

Again, the Euler Lagrange equation of the Total Variation energy is the same
as its 2D version, except for the replacement of the 2D differential operators by the
manifold differential operators. The corresponding equation on the parameter domain
is also similar to its 2D version on R2, except for the scaling of the conformal factor.

In general, the Euler Lagrange equation can be obtained easily from its 2D version
by replacing the 2D differential operators by the manifold differential operators. The
corresponding equation on the 2D parameter domain is similar to its 2D version,
except for a scaling of the conformal factor.

5.3. The meaning of including the conformal factor. Intuitively, the mean-
ing of scaling the differential operators by the conformal factor A is to adjust the
length and area distortion. With the angle preserving property of the conformal
parameterization ¢, a natural coordinates grid can be introduced on the surface by
mapping a regular grid on R? onto the surface (See Figure 5(A)). However, the grid
sizes are different at different points because of the stretching effect of the para-
meterization. The conformal factor A is defined as the stretching factor of the in-
ner product on the tangent plane of the surface under ¢. We can therefore adjust
the length and area distortion by v/A or A. Specifically, the stretching factors of
the length and area under ¢ are /A and ) respectively. In order to have a more
accurate approximation of the surface differential operators, we need to scale the
usual Euclidean differential operators by A. For example, the partial derivative D, f

on the surface at the point ¢(p) is: D, f(¢(p)) = limaz—o %2‘;; = %agqu( )
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Here, the grid size Az is scaled by v/A to adjust the length distortion. Similarly,
AsF(B(p)) = limas, ayo SERE + 2uGul2d)

Also, the surface area differential dS is equal to Adxdy, so as to adjust for the
area distortion.

To demonstrate the importance of including the conformal factor in the formula
of the covariant derivatives, we consider a simple example on the unit sphere. 6(A)
shows a unit sphere (minus a hole near the south pole) with noise introduced near the
south pole. It is conformally parameterized onto the 2D parameter domain, with large
stretching near the south pole. 6(B) shows the graph of the Eulcidean TV norm of the
noise: TVeyer.(9) = |Vg|. Observe that it does not reflect the noise on the surface due
to the stretching effect near the south pole. 6(C) shows the manifold version of the TV
norm (with conformal factor included): TVinaniforda(g) = %|Vg|. It effectively reflects
the noise on the surface. (D) shows the denoising result which minimize the Eulcidean
TV energy: Eeye.(9) = [ TVeuer.(g9). The noise cannot be removed. (D) shows the
denoising result which minimizes the manifold TV norm: E,enifoia(9) = f TVeuer. (9)-
The noise is successfully removed. This example illustrates the importance of the
conformal factor for adjusting the length and area distortion introduced through the
conformal parameterization.

6. Image processing on general Riemann surfaces.

6.1. Image denoising on the surface. With the advance of the 3D acquisition
systems, images on the surface can be effectively captured and stored as digital data.
Nevertheless, noise is inevitably introduced during the transmission process. There-
fore, it is of interest to look for an efficient algorithm to denoise the digital image
defined on the surface. It has also been widely studied by different research groups
[40][41][42][43]. On R2, total variation (T'V) denoising has been extensively used for
image restoration that well-preserves edges [3]. It is then natural to extend the 2D
TV denoising model to surfaces. With the conformal parameterization, the TV image
denoising model can be easily extended.

On R2, the TV model reads:

Erv(u) = /D (V] + (u — f)?]dady, (16)

where f : D C R? — R is the noisy gray-level image in R2. We will look for a
minimizer v : D — R of Epy to approximate the original clean image. The Euler-
Lagrange equation of it is:

du . Vu
o :dw(m) —2(u— f). (17)

The TV model can also be modified to denoise the color image on R? [4]:

3
D IVl + Jii — f[?dady (18)
=1

ETvcolor(ﬁ)Z/[

D

where f = (f1, f2, f3) : D — R? is the noisy color image; @ = (u1,ug,u3) : D — R?is
the approximation of the original clean color image. The minimizer of Ervy coi0r can



526 L. M. LUI ET AL.

be found via its Euler-Lagrange equation:

du; .
d—i:dw(

Vuz-

Vi V|2

These two models can be extended easily to the surfaces. On the surface, the
gray-level TV image denoising model reads:

) —2(u; — f;) for i =1,2,3. (19)

B, (u) = /S IV sulls + |u— F21dS, (20)

where f : S — R is a gray-level image defined on the surface. Replacing the Eulcidean
differential operators by the modified differential operators in (20), we get the Euler-
Lagrange equation of E3y:

d
N divS(M) —2(u—f)or
dt IVsulls
duogp 1 Vu (21)
— = Xdzv(\/XW) —2(uo ¢ — f) on the parameter domain,
where ¢ is the conformal parameterization of S.
The color TV image denoising model can also be extended to the surface:
3
Bveator = [ S0 19l + 117 = F1as (22)
i=1

where fz (f1, f2, f3) :+ S — R is a color image defined on the surface. By replacing
the Euclidean differential operator by the manifold differential operator, we get the
Euler-Lagrange equation of E3

V color*
du; . i .
Y = divg( Vsu ) —2(u; — f;) fori =1,2,3 or
dt 3 2
>z IVsudl[§ (23)
du; L. i :
ud;(bzxdw(\/x Vuiod )= 2Xu;0¢ — fiog) fori=1,2,3

S Vg 0 92

on the parameter domain.

The two energy functions of the denoising models can be minimized by steepest
descent, algorithm. Notice that the corresponding Euler-Lagrange equation on the
parameter domain is very similar to the 2D version, except for a scaler multiplication
of the conformal factor. These two denoising models can effectively denoise the gray-
level and color image defined on the surface, which well-preserves the edges. Figure
7 illustrates the TV color image denoising on a dog surface. The top shows the noisy
color image on the dog surface. The denoised color image is shown at the bottom.
As shown in the figure, the noise are mostly removed and the reconstructed surface
is significantly improved.

6.2. Denoising/Smoothing of Riemann surface. Riemann surfaces are usu-
ally obtained by laser scanning or other medical image generation methods such as
MRI devices, CT and so on. The surfaces are usually represented as triangular meshes.
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(A)

F1a. 7. Illustration of the TV image denoising on a dog surface. With covariant derivatives,
the 2D TV color image denoising model is extended to the 3D Riemann surface. (A) shows the
noisy image on the dog surface. (B) shows the denoised image on the surface. As shown in the
figure, the noise are mostly removed and the reconstructed surface is significantly improved.

During the construction process, geometric noise is inevitably introduced. Therefore,
surface denoising/smoothing, which adjusts the vertices positions so that a smoother
surface can be obtained, has become a very important research topic.

Here, we applied the TV denoising technique on the Riemann surface to denoise

the noisy surface S. Given a conformal parameterization ¢ : R? — S. Let E)(x, y) =
(X (z,v),Y(z,y), Z(z,y)). The functions X, Y and Z can be regarded as functions
defined on the surface S. If S is a smooth surface, X, Y and Z are also smooth. By
extending the TV denoising technique to the 3D Riemann surface, we can smooth the
surface by minimizing the following energy functionals:

— — - =
E(V) = [ [[VsV[lsdS+p|¥ — ¢
s
Or equivalently, we are minimizing the following three energy functionals:

B(R) = [ 195X l5a8 +u(X - XP
B(W) = [ 11957 lsdS + n(¥ = ¥)*
S

B(Z) = /g Vs Z1sdS + u(Z — 2)°.
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A (B) ©)

F1a. 8. Illustration of the TV surface denoising on a human face. With covariant derivatives,
the 2D TV image denoising model is extended to 3D Riemann surfaces. (A) shows the original
surface of a human face. In (B), the random gaussian noise is added to the face. (C) shows the
denoised/smoothed surface. As shown in (C), the reconstructed surface approzimates the original
surface very well, except for a little bit smoothing.

The Euler Lagrange equations of them are:

0X VsX -

T oV (—32 ) p2u(X - X);
o =V vy T Y
oY VsY -

— =Vs- (—=—)+2ulY -Y);
ot IVsY|ls

YA VsZ ~

ot IVsZl|s

With the conformal parameterization ¢, we can solve these partial differential
equations on the 2D domain with the following three equations:

0Xog 1 VXod -
LV (WA— V42X od— X od):
= (\/_||VXO¢+6||)+ (X og ®)
Woop 1 VY o -
e vV (W ——="T Y4 2u(Yod—Y o)
TR (\/_||VY0¢+6||)+ Yoo ¢)
0Zo¢ 1 VZog¢ -
= V- (WVW—=2"" Y4 ou(Zogp—Zo

5 = (\/_||VZO¢+6||)+ W(Zog ®)

where )\ is the conformal factor of ¢. € is a small regularization constant to handle
with the case when ||[VX o ¢|| =0, [|[VY 0 ¢|| =0 or ||VZ o ¢|| = 0. In practice, we
usually take e = 0.01. We note that the Euler Lagrange equations are very similar
to well-known 2D TV denoising equation, except for the scalar multiplication of the
conformal factor A\. Therefore, we can solve the problem by simple modification of
the existing 2D TV denoising solver.
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Figure 8 illustrates the idea of surface denoising/smoothing on a human face with
our method. Figure 8(A) shows the original human face surface. In Figure 8(B), the
random gaussian noise is added to the surface of the human face. In Figure 8(C), we
applied the method we described to denoise the surface. The parameter chosen are:
=15, e =0.01 and the number of iterations is 50. Note that the denoised surface
approximates the original surface well, except for a little bit smoothing.

The intuitive meaning of including the conformal factor A into the TV model is
that it fixes the distortion caused by the stretching. Basically, the TV model denoises
the data by smoothing out the high frequency (rapid jump) region. Due the the
stretching of the conformal parameterization, the low frequency regions might become
the high frequency region in the parameter domain, whereas the high frequency regions
become the low frequency region in the parameter domain. As a result, the low
frequency regions will be smoothed out and a wrong denoising result will be obtained.

6.3. Texture extraction on the surface. The extraction of features on sur-
faces has been studied widely [44] and has found various applications in different
areas of research. For example, texture extraction is an important process in texture
synthesis to transfer textures from one surface to another. In human brain mapping,
the feature extraction technique is used to detect important anatomical features on
the brain surface to study brain diseases. In this section, we will describe an effective
variational method for feature extraction, using the Chan-Vese segmentation model
on the surface.

The algorithm consists of two steps. Firstly, we compute the feature intensity on
the surface, which encodes the feature information. The feature intensity Iy : S — R
is a function on S defined as:

I;(9(p) = |6(p) = Psmootn (P) [, (24)

where Gomooth : B2 — S represents the smoothed surface of S, using the TV surface
smoothing algorithm introduced in VI(B). Specifically, ¢smootr is obtained iteratively
using the gradient descent algorithm to minimize the energy functional in the TV sur-
face smoothing model (See equation ). The feature intensity Iy effectively represents
the feature information on the surface.

After computing the feature intensity /¢, the second step is to extract the feature
with the Chan-Vese segmentation model on the surface, using I as the intensity. We
proceed to look for ¢ : S — R that minimizes the following energy functional:

Fler, en,0) = /S Iy — e 2H()dS + /S (I — e2)2(1 — H($))dS + v /S Vs H()|dS.

(25)

The Euler Lagrange equation is:

9% _ s (—YSY N eV — (I — )2
8t - )\6(2/])[ I/dZUS(”VSd)HS) (If Cl) (If 02) ] or (26)
oo Vi o
Ll = A o )l zdin(VAEEEE) — (1 06— r)? = (1 00— o)),
on the parameter domain, where:
_ Jply oo, y) (¥ 0 ¢z, y))N(w, y)dady

Jp H( 0 ¢z, y)) Nz, y)dzdy 7)

_ Jplrodt, y)(l — H(@ o ¢(x,9))) Az, y)dady
Jo(=H(W o ¢z, ) Mx,y)dady
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Fic. 9. Illustration of the extraction of texture on the surface. With covariant derivatives,
the 2D Chan Vese (CV) segmentation model is extended to 3D Riemann surfaces. The left shows
the a bird surface with some texture (chinese character) on it. On the right, we applied the CV
segmentation model to extract the texture. The intensity is defined as the distance between the
original surface and the smoothed out surface. As shown in the figure, the initial contour (green)
evolves to the final contour (blue) that encloses the texture in few iterations.

The zero level set of the minimizer v : S — R encloses the boundary of the
feature on the surface effectively. To illustrate the idea, we apply the algorithm to
extract the Chinese character on the cylinder. Figure 9(left) shows the a surface with
some texture (chinese character) on it. In Figure 9(right), we applied our proposed
algorithm to extract the feature. The intensity is defined as the distance between
the original surface and the smoothed out surface. As shown in the figure, the initial
contour (green) evolves to the final contour (blue) that encloses the texture in few
iterations.

6.4. Automatic landmark tracking on brain cortical surfaces. One im-
portant problem in human brain mapping research is to locate the important anatom-
ical features. Anatomical features on the cortical surface are usually represented by
landmark curves, called sulci/gyri curves. These landmark curves are important infor-
mation for neuroscientists to study brain disease and to match different cortical sur-
faces. Manual labelling of these landmark curves is time-consuming, especially when
large sets of data have to be analyzed. Therefore, an automatic or semi-automatic
way to detect these feature curves is necessary. We can automatically detect the sulcal
landmarks by solving variational problems on the brain surface [45].

6.4.1. Extraction of sulcal region by Chan-Vese segmentation. In order
to speed up the landmark tracking algorithm, we begin with extracting the sulcal
regions on the brain surface. This is done by extracting the high mean curvature
regions on the cortical surface using the Chan-Vese (CV) segmentation method as
described in section VI(C). The variational model is the same as Equation 25, except
that the intensity here is chosen to be the mean curvature defined on the surface.
After the sulcal region is extracted, we pick an arbitrary curve lying within the sulcal
region as an initial guess of the sulcal landmark.

Figure 10 shows how we can effectively locate the initial landmark guess areas on
the cortical surface using the Chan-Vese segmentation. We consider the intensity term
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Fic. 10. Swulcal region extraction on the cortical surface by Chan-Vese segmentation. We
consider the intensity term as being defined by the mean curvature. Sulcal locations can then be
circumscribed by first extracting out the high curvature regions. (A) shows the result of extraction
using a circular initial contour. (B) shows the result of extration using a larger initial circular
contour. More sulcal regions can be extracted

as being defined by the mean curvature. Sulcal locations can then be circumscribed
by first extracting out the high curvature regions. (A) shows the result of extraction
using a circular initial contour. Notice that the contour evolved to the deep sulcal
region. (B) shows the result of extration using a larger initial circular contour. More
sulcal regions can be extracted.

6.4.2. Variational method for landmark tracking. After the sulcal region is
extracted, we can get an initial guess of the sulcal landmark by choosing an arbitrary
curve joining the two feature points (umbilic points). This initial guess may not be
the most accurate approximation of the sulcus and may not lie on the deepest region.
We can iteratively improve the curve such that it moves to the deepest valley of the
sulcal region. This is done by a variational approach to get a minimizing curve that
follows the principal curvature as much as possible. We have found that the principal
directions can effectively be used to trace the sulci and gyri.

The principal direction field ‘7(15) with smaller eigenvalues on the cortical surface
C can be computed as described in Section. With V(t), we propose a variational
method to trace the sulcal landmark curve iteratively, after fixing two anchor points
(a & b) on the sulci. Let ¢ : D — C be the conformal parametrization of C, < -,- >
to be its Riemannian metric and A to be its conformal factor. We propose to locate
a curve ¢ :[0,1] — C with endpoints a and b, that minimizes the following energy
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functional:

—>

—
Eprlnczpal C —Voc |]wdlf

(7)2dt

| =, —
/ <C',C/>M

where 7 = ¢ o¢ ! :[0,1] — D is the corresponding iteratively defined curve on
the parameter domain; 5}( = /A V |3, =< - >n and | - | is the
(usual) length defined on D. By mmlmlzmg the energy FE, we minimize the difference
between the tangent vector field along the curve and the principal direction field 17
The resulting minimizing curve is the curve that is closest to the curve traced along
the principal direction (See Figure 11). Let:

—
G = (G15G25G3);K = (K15K27K3) = J

7,2 L00 %Y ¢ (010 %7

-
=T TF I

Based on the Euler-Lagrange equation, we can locate the landmark curve itera-
tively using the steepest descent algorithm:

— = E?Zl[Kifi]/ + K;VG,;. (28)

Our variational method to locate landmark curves is illustrated in Figure 11. With
the initial guess given by the Chan-Vese model (we choose the two extreme points
in the located area as the anchor points), we trace the landmark curves iteratively
based on the principal direction field. In Figure 11 (left), we trace the landmark
curves on the parameter domain along the edges whose directions are closest to the
principal direction field. The corresponding landmark curves on the cortical surface
is shown. Figure 11 (left) shows how the curve evolves to a deeper sulcal region with
our iterative scheme. In Figure 11 (right), ten sulcal landmarks are located using our
algorithm.

6.5. Inpainting surface holes. 3D surface model are usually obtained from
range scanners. Very often, surfaces obtained from range scanner have holes and so
resulting in incomplete surface meshes. This may be due to low reflectance, occlusion,
scanner placement, inadequate coverage of the object and so on. Recently, reseachers
have been interested in inpainting surface holes to reconstruct the incomplete surface
and it has become an important research topic [14][46]. In this section, we present an
algorithm to solve this problem which involves solving PDEs on the surface.

Inpainting can be regarded as a process of interpolating data on the occluded
region from the known data on its neighborhood. Our algorithm is an extension of
2D image inpainting. To inpaint an occlude 2D digital image, we can fill in the missing
region by solving the Perona-Malik diffusion model that reads:

at = div(g(|Vu|)Vu) on D;
ud = on D€,

where D is the occluded region; v : D¢ — R is the original image with occlusion; u is
the approximated (inpainted) image; g : R — R is an increasing function such that
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Fic. 11. Automatic landmark tracking using a variational approach. Top : With the global
conformal parameterization of the entire cortical surface, we trace the landmark curves on the pa-
rameter domain along the edges whose directions are closest to the principal direction field. It gives
a good initial guess of the landmark curve (blue curve). The landmark curve is then evolved to a
deeper region (green curve) using our variational approach. Bottom : Ten sulcal landmarks are
automatically traced using our algorithm.
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(A) (B)

Fic. 12. “I am not ugly! Please remove the bad words on my body.” Illustration of image
inpainting on the dog surface. We extend the 2D image inpainting model to 3D surface to remove
unwanted words on the dog surface. (A) shows a dog surface with some unwanted words on it. We
applied the image inpainting model to inpaint the image. (B) shows the inpainted result. As shown
in the figure, the words are successfully removed.

9(0) = 0 and g(oc0) = co. Note that if we replace g by %, we get the familiar TV
smoothing model. The TV smoothing model is well-known to be preserving edges.
The major drawback of it is that it does not restore well a single object when its
disconnected remaining parts are separated far apart by the inpainting domain. In
order to solve this problem, we add the function g into the diffusion model which
enhances the diffusion across the boundary of the inpainting domain. Sometimes, it
may be more beneficial to let g depend on the curvature x = div(‘g—z‘) and so the
model depends on the geometry of the image. Here in our application to inpaint
surface holes, we have found that letting g depend on the isophote |Vu| is already
good enough to get a reasonably good result.

The 2D inpainting model can be easily extended to surfaces by using our algo-
rithm. Figure 12 shows the image inpainiting result on the dog surface. To inpaint
surface holes, we apply the image inpainting model on the surface S. Again, we can
regard X : S - R, Y : S — Rand Z: S — R as three smooth functions defined on
S. Given the conformal parameterization ¢ : R> — S of S, we can have the following
surface holes inpainting model:

68_22 = divg(g(||VX||s)VsX) on Dg;
& = divs(g(||VY|ls)VsY) on Ds;
92— = divs(¢9(||VZ||s)VsZ)  on Ds;
X=X, on D¢;
YO =Y, on D¢;
A on Dg;
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(A (B)

Fia. 13. llustration of the algorithm for inpainting surface holes. We extend the 2D image
inpainting model to 3D surface to fill in surface holes. (A) shows a human face with several holes
on it. We applied the surface holes inpainting model to inpaint the occlusion region on the surface.
(B) shows the inpainted result. As shown in the figure, the occlusion can be filled reasonably well,
which results in a smooth surface.

where Dg is the occluded region on the surface; X,,Y,, Z, are the X, Y, Z coordinates
of the original surface mesh with occlusion. We can solve this system of partial
differential equations iteratively on the parameter domain:

228 — Ldiv(g(VAIVX 0 6)VX 06) on 67} (Ds);
D2 — Ldiv(g(VAIVY 0 6)VY 09)  on ¢~ (Ds);
2220 = Ldiv(g(VAVZ 0 ¢))VZo @) on ¢~ (Ds);
XY0¢p=X,0¢ on ¢~ H(DS);
Y0op=Y,00¢ on ¢~ 1(Dg);
2°0h=2Z,0¢ on ¢~1(DS);

To illustrate the idea, we test our algorithm to fill in the holes on a human face.
Figure 13(A) shows a human face with several holes on it. We applied the surface holes
inpainting model to inpaint the occlusion region on the surface. Figure 13(B) shows
the inpainted result. As shown in the figure, the occlusion can be filled reasonably
well, which results in a smooth surface.

7. Conclusion. In conclusion, we describe a method in this paper to solve vari-
ational problems on general surfaces with arbitrary topologies using the global con-
formal parameterization. With the conformal parameterization of the surface, the
problems can be greatly simplified and are transformed into 2D problems on the pa-
rameter domain. The conformal parameterization has a simple metric (g;;) = AId.
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Under the conformal parameterization, the surface differential operators can be com-
puted easily on the 2D parameter domain with simple formulae. The formulae are
very similar to the formulae for the 2D Euclidean differential operators, except for
the scalar multiplication of the conformal factor A. Therefore, using the conformal
parameterization to transform the variational problems on general surfaces to the 2D
problems on the parameter domain has much easier equations than using other arbi-
trary parameterizations. The problem can then be solved easily by other well-known
numerical schemes.

We have tested our algorithm on solving different image processing and surface
processing problems on different surfaces, which require solving different variational
problems. The experimental results show that our proposed algorithm can effectively
solve the variational problems on the surface. Numerical analysis on the proposed
algorithm has also been done to determine how the accuracy of the algorithm is
affected by the accuracy in the approximation of the conformal parameterization. In
the future, we will look for more applications of solving variational problems and
partial differential equations on the surface. In particular, we will look for more
applications in medical imaging research area, such as feature detection in human
brain mapping research, to study different diseases. Also, based on the numerical
analysis we have already done, we will try to develop other better numerical schemes,
such as the adpative method, to improve the computational speed and accuracy.
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