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ASYMPTOTICS FOR POLYNOMIALS SATISFYING A CERTAIN

TWIN ASYMPTOTIC PERIODIC RECURRENCE RELATION:

UNBOUNDED CASES∗

E.X.L. DE ANDRADE†, F.A. KUROKAWA‡ , AND A. SRI RANGA†

Abstract. Polynomials satisfying a certain twin asymptotic periodic recurrence relation are
considered. It is assumed that the coefficients of the recurrence formula are unbounded but vary
regularly and have different behaviour for even and odd indices. The asymptotic behaviour of the
ratio of contiguous polynomials is analyzed.
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1. Introduction. We consider the sequence of polynomials {Bn} generated by
the three term recurrence relation

Bn+1(z) = (z − βn+1)Bn(z) − αn+1 z Bn−1(z), n ≥ 1, (1.1)

with B0(z) = 1 and B1(z) = z − β1, where

βn > 0, αn+1 > 0, n ≥ 1. (1.1a)

An important contribution on such polynomials is the paper [13] by Jones, Thron and
Waadeland. They show that the zeros of Bn are all positive, distinct and interlace
with those of Bn−1. Moreover, in order to solve the strong Stieltjes moment problem,
they also prove a Favard type theorem which can be stated as follows:
There exists a distribution function ψ with all its points of increase within (0,∞),
such that

∫ ∞

0

x−n+sBn(x)dψ(x) = ρnδn,s, 0 ≤ s ≤ n, n ≥ 0. (1.2)

Uniqueness of ψ depends on the convergence of the associated T-fraction (M-fraction).
We recall that the original Favard theorem and interlacing properties of the zeros

are with respect to orthogonal polynomials, in which case the three term recurrence
relation is

B̃n+1(z) = (z − β̃n+1)B̃n(z) − α̃n+1B̃n−1(z), n ≥ 1, (1.3)

with B̃0(z) = 1 and B̃1(z) = z − β̃1, where β̃n are all real and α̃n+1 > 0 for n ≥ 1
(see for example [10], [16] and [22]).

A Favard type theorem for the polynomials Bn in a somewhat more general setting
than (1.1a) were also studied by Hendriksen and Van Rossum [8].
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Three term recurrence relation of the type (1.1), with the restriction (1.1a) or with
other restrictions, are of considerable interest in many other contexts, including two
point Padé approximants, Szegő and para-orthogonal polynomials, and polynomials
defined by a two dimensional difference system. See, for example, [2], [4], [12], [14],
[17], [15] and [23].

In this paper we consider the asymptotic properties of the polynomials Bn(z) as-
suming that recurrence coefficients αn and βn, restricted by (1.1a), are also divergent
asymptotically to a regularly varying sequence as defined below.

Definition 1. A non-negative function f : IR+ → IR+ is regularly varying (at

infinity) if for some real σ and all t > 0,

lim
x→∞

f(xt)

f(x)
= tσ.

The constant σ is called the exponent of regular variation.

If f(x) is a regularly varying function with exponent σ, then {λn}, where λn =
f(n), is called a regularly varying sequence with exponent σ.

Specifically, we give information on the limiting behaviour of the sequences of
ratios {Bn/Bn−2}, {B2n−1/B2n}, {B2n/B2n+1} and {B′

n/(nBn)}. We also apply the
results to some known families of polynomials Bn(z). A previous study of this nature,
with recurrence relation (1.3), was done in [21].

Asymptotic behaviour of the ratios {Bn/Bn−2}, {B2n−1/B2n}, {B2n/B2n+1} and
{B′

n/(nBn)}, when the recurrence coefficients αn and βn in (1.1) are bounded and
converge to finite limits, is considered in [1].

2. Preliminary results. Let Kn(z) = B′
n+1(z)Bn(z) − B′

n(z)Bn+1(z), n ≥ 0.
Then from (1.1) one can establish that (see [13])

Kn(z) = B2
n(z) + αn+1βnB

2
n−1(z) + αn+1αnz

2Kn−2(z), n ≥ 2,

with K0(z) = B2
0(z) = 1 and K1(z) = B2

1(z)+α2β1B
2
0(z). Hence from (−1)nBn(0) =

β1β2 . . . βn and from (1.1a) it follows that the zeros of Bn are positive and distinct
and different from those of Bn−1.

Let zn,1 < zn,2 < . . . < zn,n be the n zeros of Bn. Using the properties of chain
sequences (see, for example, [3, 11]), the following result is obtained in [19]. If

β̂k = sup
1≤l≤k

βl, β̌k = inf
1≤l≤k

βl and α̂k = sup
2≤l≤k

αl,

for k ≥ 2, then all the zeros of the polynomials Bl, 1 ≤ l ≤ k, lie inside the interval
[ďk, d̂k], where

d̂k = β̂k + 2α̂k +

√

(β̂k + 2α̂k)2 − β̌2
k < ∞, (2.1)

and

ďk =

{

1

β̌k

+
2α̂k

β̌2
k

+

√

( 1

β̌k

+
2α̂k

β̌2
k

)2

− 1

β̂2
k

}−1

> 0.
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For the partial decomposition

Bn−1(z)

Bn(z)
=

n
∑

r=1

τn,r

z − zn,r

, n ≥ 1, (2.2)

we have

τn,r =
Bn−1(zn,r)

B′
n(zn,r)

> 0, 1 ≤ r ≤ n,
n

∑

r=1

τn,r = 1. (2.3)

From (1.1) we also obtain the following three term recurrences for the polynomials
of even and odd indices

B2n+2(z) = a2n(z)B2n(z) − b2n(z)B2n−2(z), (2.4)

B2n+3(z) = a2n+1(z)B2n+1(z) − b2n+1(z)B2n−1(z),

where

an(z) = (z − βn+1)(z − βn+2) − αn+1
z − βn+2

z − βn

z − αn+2z,

bn(z) = αnαn+1
z − βn+2

z − βn

z2.
(2.5)

Finally, we will be needing the following lemma, for a proof of which we refer to
[21].

Lemma 1. Suppose {δn,j , j ≤ n, n = 1, 2, . . .} is a bounded triangular array of

complex numbers for which δn,j → 0 whenever n→ ∞ and j/n→ t ∈ [0, 1]. Then for

any w with |w| < 1,

wk

k
∑

j=0

δn,jw
−j → 0

whenever n→ ∞ and j/n→ t ∈ [0, 1].

3. Ratio asymptotics. From now on, we assume that there exists a regularly
varying sequence λn with exponent σ > 0 such that the recurrence coefficients of
(1.1), in addition to (1.1a), satisfy

lim
n→∞

β2n/λ2n = β(0), lim
n→∞

α2n/λ2n = α(0),

lim
n→∞

β2n+1/λ2n = β(1), lim
n→∞

α2n+1/λ2n = α(1).
(3.1)

First of all, as n→ ∞ and k/n→ t ∈ [0, 1], we have

α2k

λ2n

=
α2k

λ2k

λ2k

λ2n

→ α(0)tσ,
α2k+1

λ2n

=
α2k+1

λ2k

λ2k

λ2n

→ α(1)tσ,

β2k

λ2n

=
β2k

λ2k

λ2k

λ2n

→ β(0)tσ,
β2k+1

λ2n

=
β2k+1

λ2k

λ2k

λ2n

→ β(1)tσ.

(3.2)
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Hence, from (2.1) and (3.2) we observe that for all n > 1 there exists a constant A > 0
such that

0 <
zk,j

λn

< Atσ, 1 ≤ j ≤ k,
1

n
≤ k

n
≤ t. (3.3)

Theorem 1. Let the recurrence coefficients αn and βn in (1.1) also satisfy (3.1),
where λn is a regularly varying sequence with exponent σ > 0. Let A be a positive

constant such that (3.3) holds. Then as n→ ∞ and k/n→ t ∈ [0, 1],

Rk,n(z) =
1

λ2
n

Bk(λnz)

Bk−2(λnz)
→ R1(z, t) = t2σR1(zt

−σ),

uniformly for z on compact subsets of C \ [0, A], where

R1(z) =
1

2

{

(z − β(0))(z − β(1)) − (α(0) + α(1))z

+
√

[(z − β(0))(z − β(1)) − (α(0) + α(1))z)]2 − 4α(0)α(1)z2
}

.

(3.4)

Proof. The theorem is clearly true if k/n → 0, when we obtain R1(z, 0) = z2.
Thus we assume t > 0. Let d > 0 and z ∈ [A + d,∞). Since z − zk,j/λn > d and
zk,j/(λnz) < A/(A+ d) for j = 1, 2, . . . k, then for 1 ≤ k ≤ n, from (2.2) and (2.3),

0 < λn

Bk−1(λnz)

Bk(λnz)
=

k
∑

j=1

τk,j

z − zk,j/λn

<
1

d
(3.5)

and

0 < λnz
Bk−1(λnz)

Bk(λnz)
=

k
∑

j=1

τk,j

1 − zk,j/λn

z

<
A+ d

d
.

Hence,

0 < [R2k,2n(z)]−1 <
1

d2
and 0 < z[R2k,2n(z)]−1 <

A+ d

d2
. (3.6)

For the moment we use only the first bounding expression given in (3.6). However,
different to the treatment in [21], later we will also be needing the other bounding
expression.

Let {kn} be a sequence of integers such that kn/n → t as n → ∞. Since
|[R2kn,2n(z)]−1| are uniformly bounded for z ∈ [A+ d,∞), there exists a subsequence
{

[R2kn̂,2n̂(z)]−1
}

that converges to a limit function.

We now show that the subsequences
{

[R2kn̂,2n̂(z)]−1
}

and
{

[R2kn̂+2,2n̂(z)]−1
}

have the same limit when d is taken to be sufficiently large. For this, from a formula
of Dombrowski [5] (see also[6] and [7]) applied to the recurrence relation (2.4), we
obtain
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B2
2k(λ2nz) −B2k+2(λ2nz)B2k−2(λ2nz)

b2(λ2nz)b4(λ2nz) · · · b2k(λ2nz)

= B2
0 +

k
∑

j=1

a2j(λ2nz) − a2j−2(λ2nz)

b2(λ2nz)b4(λ2nz) · · · b2j(λ2nz)
B2j(λ2nz)B2j−2(λ2nz)

−
k

∑

j=1

b2j(λ2nz) − b2j−2(λ2nz)

b2(λ2nz)b4(λ2nz) · · · b2j(λ2nz)
B2j(λ2nz)B2j−4(λ2nz).

From this,

∣

∣[R2k+2,2n(z)]−1 − [R2k,2n(z)]−1
∣

∣

≤ λ2
2n

∣

∣

∣

∣

∣

b̃2(λ2nz)b̃4(λ2nz) · · · b̃2k(λ2nz)

λ2k
2n

∣

∣

∣

∣

∣

∣

∣λ2
2nz

∣

∣

2k

|B2k+2(λ2nz)B2k(λ2nz)|

+λ2
2n

k
∑

j=0

∣

∣

∣

∣

∣

b̃2j+2(λ2nz) · · · b̃2k(λ2nz)

λ
2(k−j)
2n

∣

∣

∣

∣

∣

∣

∣λ2
2nz

∣

∣

2(n−j) {Un,j(z) + Vn,j(z)} ,

(3.7)

where b̃2j(λ2nz) = b2j(λ2nz)/(λ
2
2nz

2), Un,j(z) = un,j(z)

∣

∣

∣

∣

B2j(λ2nz)B2j−2(λ2nz)

B2k+2(λ2nz)B2k(λ2nz)

∣

∣

∣

∣

and

Vn,j(z) = vn,j(z)

∣

∣

∣

∣

B2j(λ2nz)B2j−4(λ2nz)

B2k+2(λ2nz)B2k(λ2nz)

∣

∣

∣

∣

, with un,j(z) = |a2j(λ2nz) − a2j−2(λ2nz)|

and vn,j(z) = |b2j(λ2nz) − b2j−2(λ2nz)|.

From (3.2), for our sequence {kn} the array
{

b̃2j(λ2nz)/λ
2
2n; j ≤ kn, n =

1, 2, . . .
}

is bounded by a constant C. Also, for j ≤ k, by means of the two bounding
expressions in (3.6),

∣

∣

∣

∣

B2j(λ2nz)

B2k(λ2nz)

∣

∣

∣

∣

=

k
∏

i=j+1

∣

∣

∣

∣

B2i−2(λ2nz)

B2i(λ2nz)

∣

∣

∣

∣

<

(

1

λ2nd

)2k−2j

and

∣

∣

∣

∣

zk−j B2j(λ2nz)

B2k(λ2nz)

∣

∣

∣

∣

=

k
∏

i=j+1

∣

∣

∣

∣

z
B2i−2(λ2nz)

B2i(λ2nz)

∣

∣

∣

∣

<

(

A+ d

λ2
2nd

2

)k−j

.

Hence, (3.7) leads to

∣

∣[R2k+2,2n(z)]−1 − [R2k,2n(z)]−1
∣

∣ ≤
1

d2
wk + wk

k
∑

j=1

δn,j(z)w
−j .

where w =
C(A+ d)2

d4
and δn,j(z) =

|un,j(z)|
λ2

2nd
4

+
|vn,j(z)|
λ4

2nd
6

.

Now we choose d = D large enough so that w < 1. Thus, by Lemma 1 it follows
that for n→ ∞ and k/n→ t ∈ [0, 1], if z ∈ [A+D,∞), then

∣

∣[R2k+2,2n(z)]−1 − [R2k,2n(z)]−1
∣

∣ → 0. (3.8)
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Hence for z ∈ [A + D,∞), if
{

[R2kn̂,2n̂(z)]−1
}

is a subsequence that converges,

then also
{

[R2kn̂+2,2n̂(z)]−1
}

and they both have the same limit. Let this limit be
1/r(z, t).

From the recurrence formula in (2.4) we have

R2kn̂+2,2n̂(z) =
a2kn̂

(λ2n̂z)

λ2
2n̂

− b2kn̂
(λ2n̂z)

λ4
2n̂

[R2kn̂,2n̂(z)]−1. (3.9)

Hence, in the limit,

r(z, t) = a(z, t) − b(z, t)

r(z, t)
, (3.10)

where a(z, t) = (z−β(0)tσ)(z−β(1)tσ)− (α(0) +α(1))tσz and b(z, t) = α(0)α(1)t2σz2.
From this, also with the observation limz→∞R2kn̂,2n̂(z) = ∞, it follows that

r(z, t) = R1(z, t) =
1

2

{

a(z, t) +
√

a2(z, t) − 4b(z, t)
}

.

Note that, from (3.8) and (3.9), every convergent subsequence
{

[R2kn̂,2n̂(z)]−1
}

has the same limit R1(z, t). Thus we conclude that, for any z ∈ [A+D,∞),

R2kn,2n(z) → R1(z, t),

as n→ ∞ and kn/n→ t ∈ [0, 1].
However,

{

[R2kn,2n(z)]−1
}

is a sequence of analytic functions on C \ [0, A]. Let
K be a compact subset in C \ [0, A]. Let δ be the distance from K to the interval
[0, A]. Since δ is strictly positive, we also have from (3.5) that

∣

∣[R2kn,2n(z)]−1
∣

∣ ≤ 1

δ2
for z ∈ K.

Hence, by the Stieltjes-Vitali theorem (see [9]),
{

[R2kn,2n(z)]−1
}

converges to
1/R1(z, t) uniformly on compact subsets of C \ [0, A].

Now if we repeat the same reasoning with the sequence
{

[R2kn+1,2n(z)]−1
}

, we
find that this sequence also converges to 1/R1(z, t) and this completes the proof.

From the recurrence relation (1.1) we obtain

1

λ2
2n

B2k+1(λ2nz)

B2k−1(λ2nz)
=

(

z − β2k+1

λ2n

)

1

λ2n

B2k(λ2nz)

B2k−1(λ2nz)
− α2k+1

λ2n

z

and

1

λ2
2n

B2k+2(λ2nz)

B2k(λ2nz)
=

(

z − β2k+2

λ2n

)

1

λ2n

B2k+1(λ2nz)

B2k(λ2nz)
− α2k+2

λ2n

z.

Letting n→ ∞ and k/n→ t, then from Theorem 1 we have the following result.

Theorem 2. With the conditions of Theorem 1, as n→ ∞ and k/n→ t ∈ [0, 1],

λ2n

B2k(λ2nz)

B2k+1(λ2nz)
→ R

(0)
2 (z, t) =

z − β(0)tσ

R1(z, t) + α(0)tσz
, (3.11)

λ2n

B2k−1(λ2nz)

B2k(λ2nz)
→ R

(1)
2 (z, t) =

z − β(1)tσ

R1(z, t) + α(1)tσz
, (3.12)
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uniformly on compact sets of C \ [0, A].

Now the initial part of the proof of the next theorem is exactly as in Theorem 3
of [21]. To complete the proof, from

2R1(z, t) = z2 − u1t
σz + u2t

2σ +

√

[z2 − u1tσz + u2t2σ]
2 − 4u3t2σz2 ,

where u1 = β(0) + β(1) + α(0) + α(1), u2 = β(0)β(1) and u3 = α(0)α(1), we observe
that

∂

∂z
R1(z, t) =

R1(z, t)

{

2z − u1t
σ − 2u3t

2σz

R1(z, t)

}

√

[z2 − u1tσz + u2t2σ]2 − 4u3t2σz2

.

With the use of (3.10), this leads to

(∂/∂z)R1(z, t)

2R1(z, t)
= R3(z, t) =

1

2z
+

1

2z

z2 − u2t
2σ

√

[z2 − u1tσz + u2t2σ]2 − 4u3t2σz2
.

Theorem 3. Suppose that the conditions of Theorem 1 hold. Then, as n → ∞,

we have

dBn(λnz)/dz

nBn(λnz)
→ R4(z) =

∫ 1

0

R3(z, t)dt

=

∫ 1

0

[ 1

2z
+

1

2z

z2 − β(0)β(1)t2σ

√

(z − atσ)(z − ãtσ)(z − b̃tσ)(z − btσ)

]

dt

(3.13)

uniformly on compact subsets of C \ [0, A], where 0 ≤ a ≤ ã ≤ b̃ ≤ b are such that

a+ b = β(0) + β(1) + α(0) + α(1) + 2
√
α(0)α(1),

ã+ b̃ = β(0) + β(1) + α(0) + α(1) − 2
√
α(0)α(1)

and ab = ãb̃ = β(0)β(1).

4. Integral representations and Quadrature rules. First of all, to be able to
obtain the results given in Theorems 4 and 5 of this section and the results associated
with case 2 of section 5, we require the two lemmas given below.

Lemma 2. Let δ, d1 and d2 be such that 0 ≤ δ ≤ d1 < d2. Let g be the probability

distribution function defined on [d2
1, d

2
2] by

g(x; d1, d2, δ) = χ

∫ x

d2
1

√

d2
2 − u

√

u− d2
1

u− δ2
du,

where χ = 2
π

[(d2
2−δ2)1/2+(d2

1−δ2)1/2]2

(d2
2−d2

1)
2 . Then

∫ d2
2

d2
1

dg(x; d1, d2, δ)

z − x
=

2

z − δ2 − [(d2
2 − δ2)(d2

1 − δ2)]1/2 +
√

z − d2
1

√

z − d2
2

=
2

[

z − δ2 − [(d2
2 − δ2)(d2

1 − δ2)]1/2 −
√

z − d2
1

√

z − d2
2

]

[

(d2
2 − δ2)1/2 − (d2

1 − δ2)1/2
]2

(z − δ2)
.
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A proof of this easily follows from a lemma given in [20].
From Lemma 2, one also obtains

∫ d2
2

d2
1

dg(x; d1, d2, 0)

z − x
=

2
[

− d1d2 + δ2 + [(d2
2 − δ2)(d2

1 − δ2)]1/2
]

[d2 − d1]2
1

z

+

[

(d2
2 − δ2)1/2 − (d2

1 − δ2)1/2
]2

[d2 − d1]2
z − δ2

z

∫ d2
2

d2
1

dg(x; d1, d2, δ)

z − x
.

(4.1)
Now let β, b1 and b2 be such that 0 < β ≤ b1 < b2. Then there exist unique real

numbers d1 and d2 such that

0 ≤ d1 < d2 and di =
√

bi − β/
√

bi, i = 1, 2.

Here the (one to one) relation between bi and di is such that (z − bi)(z − β2/bi) =
(z − β)2 − d2

i z.
Let IE(β,b1,b2) be the indicator function of the set E(β, b1, b2) = [β2/b2, β

2/b1] ∪
[b1, b2]. That is, IE(β,b1,b2)(x) = U(x−β2/b2)−U(x−β2/b1)+U(x− b1)−U(x− b2),
where U(x) is the Heaviside function

U(x) =

{

1, x ≥ 0,
0, x < 0.

(4.2)

Then we can state the following lemma regarding the Stieltjes transforms of the
distribution functions F and G supported on E(β, b1, b2).

Lemma 3. For the probability distribution function F defined by

F (x;β, d1, d2) =
1

2π

∫ x

0

|u− β|(u + β)/u
√

d2
2u− (u− β)2

√

(u − β)2 − d2
1u
IE(u)du (4.3)

holds

S(F ; z) =

∫

E(β,b1,b2)

dF (x;β, d1, d2)

z − x
=

1

2z
+

1

2z

z2 − β2

√

(z − β)2 − d2
1z

√

(z − β)2 − d2
2z
.

Moreover, if χ = 2
π

[(d2
2−δ2)1/2+(d2

1−δ2)1/2]2

(d2
2−d2

1)
2 and if δ and τ are such that 0 ≤ δ ≤ d1

and β2/b1 ≤ τ ≤ b1, then for the probability distribution function G defined by

G(x;β, d1, d2; δ, τ)

= χ

∫ x

0

√

d2
2u− (u− β)2

√

(u− β)2 − d2
1u

[(u− β)2 − δ2u]

(u− β)(u − τ)

|u− β|u
IE(u)du,

(4.4)

holds

S(G; z) =

∫

E(β,b1,b2)

dG(x;β, d1, d2; δ, τ)

z − x
= L(z;β, d1, d2; δ, τ)

=
2(z − τ)

[(z − β)2 − δ2z]− [(d2
2 − δ2)(d2

1 − δ2)]1/2z +
√

(z − β)2 − d2
1z

√

(z − β)2 − d2
2z
.

The proof of this lemma follows from Lemma 2 as shown in [1].
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Theorem 4. Suppose that (3.1) holds with β(0)β(1) > 0 and α(0)α(1) > 0. Then

for the functions R
(0)
2 (z, t), R

(1)
2 (z, t) and R3(z, t) obtained in Theorem 2 and Theo-

rem 3,

R
(0)
2 (z, t) = t−σR

(0)
2 (zt−σ), R

(1)
2 (z, t) = t−σR

(1)
2 (zt−σ) and R3(z, t) = t−σR3(zt

−σ),

where, for i = 0, 1,

R
(i)
2 (z) =

1 − αmin/α
(i)

z − β(1−i)
+
αmin

α(i)

∫

E(β,b1,b2)

dG(x;β, d1, d2; δ, β
(i))

z − x
,

and

R3(z) =

∫

E(β,b1,b2)

dF (x;β, d1, d2)

z − x
,

with αmin = min{α(0), α(1)}, β2 = β(0)β(1), δ2 = (
√

β(0) −
√

β(1))2,

(
√

b1 − β/
√

b1)
2 = d2

1 = δ2 + (
√

α(0) −
√

α(1))2

and

(
√

b2 − β/
√

b2)
2 = d2

2 = δ2 + (
√

α(0) +
√

α(1))2.

Proof. From (3.11) and Theorem 1 we obtain that R
(i)
2 (z, t) = t−σR

(i)
2 (zt−σ),

where

R
(i)
2 (z) =

z − β(i)

R1(z) + α(i)z

=
2(z − β(i))

[(z − β)2 − δ2z] + [α(i) − α(1−i)]z +
√

(z − β)2 − d2
1z

√

(z − β)2 − d2
2z
.

From this we find that

R
(i)
2 (z) =

|α(1−i) − α(i)| − (α(1−i) − α(i))

2α(i)(z − β(1−i))

+
(α(1−i) + α(i)) − |α(1−i) − α(i)|

2α(i)
L(z;β, d1, d2; δ, β

(i)).

Hence the first result of the theorem follows from Equation (4.4) in Lemma 3.
Finally, since R3(z) can be written as

R3(z) =
1

2z
+

1

2z

z2 − β2

√

(z − β)2 − d2
1z

√

(z − β)2 − d2
2z
.

the last result of the theorem is obtained from (4.3) in Lemma 3.

Note that one can also write

R
(i)
2 (z, t) =

1 − αmin/α
(i)

z − β(1−i)tσ
+
αmin

α(i)

∫

E(β,b1,b2)

dG(x;β, d1, d2; δ, β
(i))

z − xtσ

=
1 − αmin/α

(i)

z − β(1−i)tσ

+
αmin

α(i)

∫

E(βtσ,b1tσ,b2tσ)

dG(x;βtσ , d1t
σ/2, d2t

σ/2; δtσ/2, β(i)tσ)

z − x
,

(4.5)
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for i = 0, 1, and

R3(z, t) =

∫

E(β,b1,b2)

dF (x;β, d1, d2)

z − xtσ
=

∫

E(βtσ,b1tσ ,b2tσ)

dF (x;βtσ, d1t
σ/2, d2t

σ/2)

z − x
.

(4.6)

Theorem 5. Suppose that (3.1) holds with β(0)β(1) > 0 and α(0)α(1) > 0. As

n→ ∞ and k/n→ t ∈ [0, 1], for every continuous function f on (0,∞), we have

2k+i
∑

j=1

τ2k+i,jf
(z2k+i,j

λ2n

)

→
α(1−i) − αmin

α(1−i)
f(β(i)tσ)

+
αmin

α(1−i)

∫

E(β,b1,b2)

f(xtσ)dG(x;β, d1, d2; δ, β
(1−i)),

for i = 0, 1, and

1

n

n
∑

j=1

f
(zn,j

λn

)

→
∫ 1

0

∫

E(β,b1,b2)

f(xtσ)dF (x;β, d1, d2) dt,

where β, b1, b2, d1, d2 and δ are as in Theorem 4.

Proof. Consider the discrete distribution functions

Gn,k(x) =

k
∑

j=1

τk,jU(x− zk,j/λn) (4.7)

and

Fn(x) =
1

n

n
∑

j=1

U(x− zn,j/λn), (4.8)

where U(x) is the Heaviside function (4.2). Since

λn

Bk−1(λnz)

Bk(λnz)
=

k
∑

j=1

τk,j

z − zk,j/λn

and
1

n

(d/dz)Bn(λnz)

Bn(λnz)
=

1

n

n
∑

j=1

1

z − zn,j/λn

,

the Stieltjes transforms of these distribution functions are

S(Gn,k; z) =

∫ ∞

−∞

dGn,k(x)

z − x
= λn

Bk−1(λnz)

Bk(λnz)
(4.9)

and

S(Fn; z) =

∫ ∞

−∞

dFn(x)

z − x
=

1

n

(d/dz)Bn(λnz)

Bn(λnz)
. (4.10)

The asymptotic behaviour of these Stieltjes transforms is given by Theorems 2
and 3. Now, by Grommer-Hamburger theorem, the limits have to be the Stieltjes
transforms of the weak limits of the distribution functions Gn,k(x) and Fn(x). The
identification of the limits of (4.9) and (4.10) can be done by using (4.5) and (4.6).
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5. Special cases. We now consider some especial cases. Note that, even though
the coefficients βn, αn+1 are positive, any of β(0), α(0), β(1) and α(1) can assume the
value zero.

Case 1. First we consider the case α(0) = α(1) = α > 0 and β(0) = β(1) = β > 0.
Then in Theorem 4, δ = d1 = 0, d2 = 2

√
α, β = b1 and b2 = β + 2α +

√

(β + 2α)2 − β2. Thus, for example, the results of Theorem 5 can be stated as

k
∑

j=1

τk,jf
(zk,j

λn

)

→
∫

E(β,β,b2)

f(xtσ)dG(x;β, 0, 2
√
α; 0, β)

=
1

2πα

∫ b2

β2/b2

f(xtσ)

√

4αx− (x− β)2

x
dx,

1

n

n
∑

j=1

f
(zn,j

λn

)

→
∫ 1

0

∫

E(β,β,b2)

f(xtσ)dF (x;β, 0, 2
√
α)

=
1

2π

∫ 1

0

∫ b2

β2/b2

f(xtσ)
1 + β/x

√

4αx− (x− β)2
dx dt.

Case 2. Another important case, not covered by the previous theorems, is when
one of β(0) or β(1) is equal to zero. That is, for r equal to 0 or 1,

α(r) > 0, α(1−r) > 0, β(r) = 0 and β(1−r) = β̃ ≥ 0.

All the explicitly given examples which are known to us so far belong to this case.
It follows that β = 0, δ2 = β̃, b1 = d2

1 = β̃ + (
√
α(0) −

√
α(1))2 and

b2 = d2
2 = β̃ + (

√
α(0) +

√
α(1))2. Hence, with d̃ = [(d2

2 − δ2)(d2
1 − δ2)]1/2,

R
(1−i)
2 (z) =

1 − αmin/α
(1−i)

z
+

αmin

α(1−i)

2(z − β̃)/z

z − β̃ − d̃+
√

z − d2
1

√

z − d2
2

=

√
b1b2 − β̃ + α(1−i) − α(i)

2α(1−i)z
+

1

2πα(1−i)

∫ b2

b1

1

z − x

√
b2 − x

√
x− b1

x
dx

if i = r, and

R
(1−i)
2 (z) =

1 − αmin/α
(1−i)

z − β̃
+

αmin

α(1−i)

2

z − β̃ − d̃+
√

z − d2
1

√

z − d2
2

=
1 − αmin/α

(1−i)

z − β̃
+

1

2πα(1−i)

∫ b2

b1

1

z − x

√
b2 − x

√
x− b1

x− β̃
dx

if i = 1 − r, for i = 0, 1. Moreover,

R3(z) =
1

2z
+

1/2
√

z − d2
1

√

z − d2
2

=
1

2z
+

1

2π

∫ b2

b1

1

z − x

1√
x− b1

√
b2 − x

dx.

The integral representations are derived from the results given in Lemma 2 and (4.1).
Hence, the results of Theorem 5 can be given as
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2k+i
∑

j=1

τ2k+i,jf
(z2k+i,j

λ2n

)

→
√
b1b2 − β̃ + α(1−i) − α(i)

2α(1−i)
f(0)

+
1

2πα(1−i)

∫ b2

b1

f(xtσ)

√
b2 − x

√
x− b1

x
dx, if i = r,

2k+i
∑

j=1

τ2k+i,jf
(z2k+i,j

λ2n

)

→ α(1−i) − αmin

α(1−i)
f(β̃tσ)

+
1

2πα(1−i)

∫ b2

b1

f(xtσ)

√
b2 − x

√
x− b1

x− β̃
dx, if i = 1 − r,

for i = 0, 1, and

k
∑

j=1

τk,jf
(zk,j

λn

)

→ 1

2
f(0) +

1

2π

∫ 1

0

∫ b2

b1

f(xtσ)
1√

b2 − x
√
x− b1

dx dt.

If α(0) = α(1) and β̃ = 0 then b1 is also zero.

Case 3. We assume that one of α(0) or α(1) is equal to zero, that is, for r equal
to 0 or 1,

α(r) = 0, α(1−r) ≥ 0, β(r) > 0 and β(1−r) > 0.

In this case, again not covered by the previous theorems, αmin = 0, d1 = d2 and
0 < β ≤ b1 = b2. Hence the results of Theorem 5 should be given as

2k+iX
j=1

τ2k+i,jf
�z2k+i,j

λ2n

�
→

8><>: f(β(i)tσ), if i = r,

b2β(1−i)−β2

b22−β2 f((β2/b2)t
σ) +

b22−b2β(1−i)

b22−β2 f(b2t
σ), if i = 1 − r,

for i = 0, 1, and

1

n

n
∑

j=1

f
(zn,j

λn

)

→ 1

2

∫ 1

0

{

f((β2/b2)t
σ) + f(b2t

σ)
}

dt.

6. Examples. We now consider some examples of polynomials that satisfy the
recurrence relation (1.1) for which the coefficients satisfy the properties (3.1).

Example 1. Consider the monic polynomials BH
n , defined by

∫ ∞

0

x−n+sBH
n (x)x−1/2e−

x+c2/x
2 dx = 0, 0 ≤ s ≤ n− 1, n ≥ 1,

where c > 0. These polynomials are related to the Hermite polynomials through a
transformation given in [18]. The associated recurrence relation is given by

BH
n+1(z) = (z − c)BH

n (z) − nzBH
n−1(z), n ≥ 1,

where BH
0 (z) = 1 and BH

1 (z) = z − c.
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Condition (3.1) is valid with λn = n (σ = 1). Since β(0) = β(1) = 0 and
α(0) = α(1) = 1, we are then in case 2 of the previous section with b1 = 0.

In (3.3) we can also choose, for example, A = 4
√

1 + c.
Thus, Theorem 1 should read. As n→ ∞ and k/n→ t ∈ [0, 1],

1

λ2
n

Bk(λnz)

Bk−2(λnz)
→ R1(z, t) = t2R1(z/t),

uniformly for z on compact subsets of C \ [0, 4
√

1 + c], where

R1(z) =
1

2

{

z2 − 2z + z
√

z2 − 4z
}

.

From case 2 we have

R
(1−i)
2 (z) =

2

z +
√

z(z − 4)
=

1

2π

∫ 4

0

1

z − x

√
4 − x√
x

dx

for i = 0, 1, and

R3(z) =
1

2z
+

1/2
√
z
√
z − 4

=
1

2z
+

1

2π

∫ 4

0

1

z − x

1
√
x
√

4 − x
dx.

Hence, as n→ ∞ and k/n→ t ∈ [0, 1],

2k+i
∑

j=1

τ2k+i,jf
(z2k+i,j

λ2n

)

→
1

2π

∫ 4

0

f(xt)

√
4 − x√
x

dx,

for i = 0, 1, and

k
∑

j=1

τk,jf
(zk,j

λn

)

→
1

2
f(0) +

1

2π

∫ 1

0

∫ 4

0

f(xt)
1√

4 − x
√
x
dx dt.

Example 2. We will now have a look at an example of polynomials with different
limits for odd and even indices.

Van Assche [21] considered the two systems of orthogonal polynomials {Cn(x)}∞n=0

and {Dn(x)}∞n=0 , with recurrence formulas given by

Cn+1(w) = xCn(w) − α̃C
n+1Cn−1(w),

Dn+1(w) = xDn(w) − α̃D
n+1Dn−1(w),

with

α̃C
2m = (2m− 1)2, α̃C

2m+1 = (2m)2κ2,

α̃D
2m = (2m− 1)2κ2, α̃D

2m+1 = (2m)2,

where κ is any positive real number. These are the famous Stieltjes-Carlitz polyno-
mials connected with the Jacobi elliptic functions (see for example Chihara [3, Ch.
V, Sec. 9]).
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As in [18], applying the transformation w =
√
z − 1/

√
z on the systems {Cn(w)}

and {Dn(w)} one can obtain two systems of polynomials {BC
n (z)} and {BD

n (z)},
respectively, which satisfy three term recurrences relations of the type (1.1). Here, we
will only consider the system {BD

n (z)}, for which we have

BD
n+1(z) = (z − 1)BD

n (z) − αD
n+1zB

D
n−1(z), (6.11)

where αD
n = α̃D

n . Clearly these polynomials can be given by (1.2) with respect to
some distribution function ψ defined on (0,∞). From results provided in [21] one can
show that if 0 < κ < 1 then

ψ(x) =
∞
∑

j=−∞

qj

1 + q2j

xj

1 + xj

U(x− xj),

where xj = [
√

(j/K(κ2))2 + 4 + j/K(κ2)]2/4, x−j = 1/xj for j ≥ 0, q =

e−πK(1−κ2)/K(κ2) and K(κ2) =
∫ π/2

0
(1 − κ2 sin2 θ)−1/2dθ. Again, U is the Heavi-

side function.
For the coefficients of the recurrence relation (6.11) condition (3.1) holds with

λn = n2(σ = 2), α(0) = κ2, α(1) = 1 and β(0) = β(1) = 0. Hence, again we are in case
2 of the previous section, with b1 = (1 − κ)2 and b2 = (1 + κ)2

In (3.3) we can also choose A = A(κ) to be equal to 4 if 0 < κ < 1 or equal to
4κ2 if κ ≥ 1.

Thus, in Theorem 1, we have as n→ ∞ and k/n→ t ∈ [0, 1],

1

n4

BD
k (n2z)

BD
k−2(n

2z)
→ 1

2

{

z2 − (1 + κ2)t2z +
√

z2 − (κ+ 1)2t2z
√

z2 − (κ− 1)2t2z
}

uniformly for z on compact sets of C \ [0, A(κ)].
From case 2 we have, if 0 < κ < 1,

R
(0)
2 (z) =

1

2πκ2

∫ (1+κ)2

(1−κ)2

1

z − x

√

(1 + κ)2 − x
√

x− (1 − κ)2

x
dx

and

R
(1)
2 (z) =

1 − κ2

z
+

1

2π

∫ (1+κ)2

(1−κ)2

1

z − x

√

(1 + κ)2 − x
√

x− (1 − κ)2

x
dx,

and if κ ≥ 1,

R
(0)
2 (z) =

κ2 − 1

κ2z
+

1

2πκ2

∫ (1+κ)2

(1−κ)2

1

z − x

√

(1 + κ)2 − x
√

x− (1 − κ)2

x
dx

and

R
(1)
2 (z) =

1

2π

∫ (1+κ)2

(1−κ)2

1

z − x

√

(1 + κ)2 − x
√

x− (1 − κ)2

x
dx.

Moreover,

R3(z) =
1/2

z
+

1

2π

∫ 1

0

∫ (κ+1)2t2

(1−κ)2t2

1

z − x

1
√

x− (1 − κ)2 t2
√

(1 + κ)2 t2 − x
dxdt.
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functions, J. Comput. Appl. Math., 9 (1983), pp. 105–123.
[13] W.B. Jones, W.J. Thron and H. Waadeland, A strong Stieltjes moment problem, Trans.

Amer. Math. Soc., 261 (1980), pp. 503–528.
[14] J.H. McCabe and J.A. Murphy, Continued fractions which correspond to power series ex-

pansions at two points, J. Inst. Math. Appl., 17 (1976), pp. 233–247.
[15] E.B. Saff and R.S. Varga, Zero-free parabolic regions for sequences of polynomials, SIAM J.

Math. Anal., 7 (1976), pp. 344–357.
[16] J. Shohat and J.D. Tamarkin, The Problem of Moments, revised edition, Amer. Math. Soc.,

Providence, 1950.
[17] A.P. da Silva and A. Sri Ranga, Polynomials generated by a three term recurrence relation:

bounds for complex zeros, Linear Algebra Appl., 397 (2005), pp. 299–324.
[18] A. Sri Ranga, Symmetric orthogonal polynomials and the associated orthogonal L-polynomials,

Proc. Amer. Math. Soc., 123 (1995), pp. 3135–3141.
[19] A. Sri Ranga and L.C. Matioli, Bounds for the extreme zeros of polynomials generated by

a certain recurrence relation, Rev. Mat. Estat., 14 (1996), pp. 113–120.
[20] W. Van Assche, Asymptotic properties of orthogonal polynomials from their recurrence for-

mula I, J. Approx. Theory, 44 (1985), pp. 258–276.
[21] W. Van Assche, Asymptotic properties of orthogonal polynomials from their recurrence for-

mula II, J. Approx. Theory, 52 (1988), pp. 322–338.
[22] H.S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, Princeton, NJ, 1948.
[23] A. Zhedanov, On the polynomials orthogonal on regular polygons, J. Approx. Theory, 97

(1999), pp. 1–14.



44 E.X.L. DE ANDRADE ET AL.


