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PARALLEL POWER COMPUTATION FOR PHOTONIC

CRYSTAL DEVICES
∗

ULF ANDERSSON† , MIN QIU‡ , AND ZIYANG ZHANG‡

Abstract. Three-dimensional finite-different time-domain (3D FDTD) simulation of photonic

crystal devices often demands large amount of computational resources. In many cases it is unlikely

to carry out the task on a serial computer. We have therefore parallelized a 3D FDTD code using

MPI. Initially we used a one-dimensional topology so that the computational domain was divided

into slices perpendicular to the direction of the power flow. Even though the speed-up of this

implementation left considerable room for improvement, we were nevertheless able to solve large-

scale and long-running problems.

Two such cases were studied: the power transmission in a two-dimensional photonic crystal

waveguide in a multilayered structure, and the power coupling from a wire waveguide to a photonic

crystal slab. In the first case, a power dip due to TE/TM modes conversion is observed and in the

second case, the structure is optimized to improve the coupling.

We have also recently completed a full three-dimensional topology parallelization of the FDTD

code.
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1. Introduction. Photonic crystals with photonic bandgaps are expected to be

key platforms for future large-scale photonic integrated circuits. They are artificial

structures with the electromagnetic properties periodically modulated on a length

scale comparable to a light wavelength [1, 2]. A 3D photonic crystal offers a full

photonic band gap, which prohibits light propagation in all directions. A 2D photonic

crystal, which only provides an in-plane band gap for one polarization, is much easier

to fabricate using present techniques. Photonic crystal waveguides are essentially

line defects introduced to an otherwise perfectly periodic crystal structure. In a 2D

photonic crystal waveguide, light is confined in the lattice plane by the photonic band

gap effect and guided in the third dimension by total internal reflection. Fig. 1 gives

two examples of 2D photonic crystal and 2D photonic crystal waveguides. The feature

size, i.e., the hole diameter and slab thickness, is comparable to the light wavelength

(typically around 1550nm).

Three dimensional finite-difference time-domain (FDTD) [4, 3] simulations, which

offer a full-wave, dynamic and powerful solution tool for solving the Maxwell equa-

tions, are widely used to design and analyze various devices in photonic crystals [4].

The fundamental ingredient of the algorithm involves direct discretizations of the

time dependent Maxwell equations by writing the spatial and temporal derivatives in

a central finite-difference form on a staggered Cartesian grid [4, 3].

Since most photonic crystals involve air holes and cylinder structure, the spatial dis-

cretization has to be small enough to reduce the numerical error caused by the circu-

lar material boundaries. If a is the lattice constant of the photonic crystal pattern,

usually around 450nm, the spatial discretization should be smaller than a/10. Con-
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Fig. 1. 2D photonic crystal waveguides.
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Fig. 2. Schematics of a multilayered photonic crystal waveguide. Light is injected from the left
access waveguide and travels along the y-direction.

sider the following problem shown in Fig. 2, we have a multilayered two-dimensional

photonic crystal pattern. The computational domain is 5.6×18×8µm3
. The lattice

constant (distance between any adjacent air holes) is 430nm. The air hole diameter

is 279nm. The spatial discretization is 21.5 nm in all three dimensions. There are in

total 81 244 800 FDTD cells and the memory required for the input material file alone

can approach one Gigabyte. The total number of time steps needed for complete

power transfer is around 150000. This problem is too cumbersome to solve by serial

simulations.

2. Parallelization. The General ElectroMagnetic Solver (GEMS) codes devel-

oped by the Parallel and Scientific Computing Institute (PSCI) in Sweden are written

in Fortran 90, parallelized using the Message Passing Interface (MPI) and run on a

variety of parallel computers [5]. The GEMS time-domain code MBfrida is a multi-

block solver based on a hybrid between the FDTD method on structured grids and the

finite-element time-domain (FETD) method on unstructured grids. The large number

of air holes in photonic crystals and the fact that adjacent holes are so close, makes it

impossible to use a hybrid grid method. The GEMS time-domain code pscyee spe-

cializes at parallel power computation for photonic crystal devices using the FDTD

method only. The initial parallelization was one-dimensional and we choose to divide

the computational domain only in the y-direction. This approach is justified since

the waveguide itself is along the y-direction and we only need to compute the power

flows through a few XZ planes (usually two, input and output). We also assume the

power planes are separate enough so that each node contains no more than one power

plane.
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Fig. 3. One dimensional division of the computational domain.

For the power computation, a discrete Fourier transform (DFT) is computed for

each of the four tangential field components and each frequency at the center of each

twinkle (a side of a computational cell). In order to get tangential field component

values at the center of a twinkle, interpolation is needed since it is only the normal

magnetic component that is represented there due to the use of a staggered grid. At

the end of the time stepping, the total power flow, i.e., Poynting’s vector, is computed.

For more details see [6].

To test the performance of the parallel code, we use a simple slab photonic crystal

waveguide (W3PC). The computational domain is 120×470×120 cells along the x-,

y- and z-directions. The discretization ∆ is 50nm. Since the light power concentrates

in the waveguide region, the power plane needs not include the whole XZ plane and

is reduced to 24×114 twinkles along the x- and z-directions. Two power planes are

implemented. One works as the reference (input) and the other is the transmission

power plane (output). The number of frequencies used in the power computation is

201.

The parallel code is tested on the Lucidor cluster, KTH. The cluster consists

of 74 HP rx2600 servers and 16 HP zx6000 workstations, each with two 900MHz

Itanium 2 (McKinley) processors and 6 Gigabyte main memory. Since FDTD is a

memory bandwidth limited algorithm [7], there is no point in using more than one

processor per node. The network bandwidth BW (bi-directional) is 489Mbyte/s and

the latency Tlat is 6.3ms. The total running time of the parallel code on P nodes can

be estimated, for P > 1, by

Tp = Tpower + Tcom + (TFDTD/P ) (1)

Tpower is the time for computing one power plane by a single node, as we have assumed

one node contains no more than one power plane. Tcom is the communication time.

In each time step, two messages are sent and two received containing the values of two

tangential field components, and therefore the communication time can be estimated

by

Tcom = 4Nts(Tlat + Smessage/BW ) (2)

Nts is the number of time steps, i.e., 25 000 in this case. Since we use 64-bit precision

the message size Smessage for sending two field components is

Smessage = 2 · 8 · nxnz (3)

where nx and nz are the number of FDTD cells in the x- and z-directions, respectively.

TFDTD is the FDTD updating time for 25 000 time steps when the code is run entirely

on one node. Since FDTD is scalable with the number of nodes P , we divide them
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to get the FDTD contribution to the total running time. The (relative) speed-up of

a P -node computation with execution time Tp is given by:

Sp = T1/Tp (4)

T1 is the total running time on a single processor. For two power planes we have

T1 = TFDTD + 2Tpower (5)

Combining the previous equations, we get:

Sp =
TFDTD + 2Tpower

Tpower + Tcom + TFDTD/P
(6)

The computation time for the source plane is very fast and is thus excluded from the

performance model. The bottleneck of the one dimensional parallelization scheme is

that one node has to complete all the computation for one power plane plus a portion

of FDTD loops on its own. Thus the total running time for the parallel code is always

larger than Tpower and the speed-up never exceeds 2 + TFDTD/Tpower.

The speed-up for a full 3D parallelization is estimated with

Sp3 =
TFDTD + 2Tpower

Tpower/(PxPz) + T ′
com + (TFDTD/P )

(7)

where P = PxPyPz and Px, Py and Pz are the number of nodes along x-, y- and

z-directions, respectively. We assume Py ≥ 2 so that no node takes part in the

computations of more than one of the two power planes. We also have,

T ′
com = Nts

∑

i=x,y,z

2 min(2, Pi − 1)lat +
16

BW

2njnk

PjPk

(8)

If we let T ′
com = 0 and assume Py = 2 we get Sp3 = P . Hence, ideal speed-up is

achieved if we assume infinitely fast communication between the nodes.

The performance models and the measured performace for the W3PC waveguide

are shown in Fig. 4. We see that the speed-up of the full three-dimensional paralleliza-

tion is much better than that of the one-dimensional parallelization. Furthermore, we

see that the performance models agree well with the measured values.

We have also run the code with different discretization values, i.e., ∆=50nm,

25 nm and 12.5nm. The number of time steps has also increased accordingly (25 000,

50 000, and 100000) to simulate the same physical process. The results, shown in

Fig. 5, indicate the same power dip phenomenon (explained in the following section)

with a small frequency shift.

3. Power transmissions for W1PC waveguide in 2D photonic crystals.

The waveguide shown in Fig. 2 is called the W1PC waveguide, where the number

“1” indicates that there is one row of missing air holes. W1PC waveguide is more

widely used than W3PC waveguide as it provides a larger frequency range for lossless

transmission. To inject light into this waveguide as well as to couple it out, we connect

an access waveguide to both ends. The size of the access waveguide is 2500nm along

the y-direction and 750nm along the x-direction. The power planes are placed at

y=1720nm and y=17100nm. The size of the power plane is 1720nm × 6020nm

along x- and z-direction respectively. We use the commercial software Fimmwave [9]
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Fig. 4. The performance model of the parallel code. For the full parallelization we have assumed
Pz = P and Px = Py = 1.
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Fig. 5. Verification of the simulation on different cell sizes.

to find the eigen mode of the access waveguide and use it as the initial source. MUR

first-order boundary conditions [10] are applied at the outer boundary. The total

number of time steps is 150 000. The code is run on ten Lucidor nodes for 26.7 hours

using the one-dimensional parallelization.

Similar to the W3PC waveguide, we have observed the “mini-stop” band around

1630nm for W1PC waveguide, as shown in Fig. 6. The power dip at this wavelength is

due to the coupling between the first-order TE waveguide mode and TM mode. Since

the photonic crystal only provides a bandgap for TE polarized modes, TM modes will

eventually leak away in the XY plane and being absorbed by the boundaries. Towards

short wavelength, around 1500nm, the power transmission is as high as 90%.

4. Light coupling from a wire waveguide to a photonic crystal slab by

generating surface modes. In this case, we study the coupling between a wire

waveguide and photonic crystal slab surface modes. The structure is shown in Fig. 7.
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Fig. 6. Power transmission of W1PC waveguide in 2D photonic crystal.
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Fig. 7. Schematics of the wire waveguide and photonic crystal slab coupling system.

The computational domain is 6.75×19.8×3.375µm
3
. The lattice constant (dis-

tance between any adjacent air holes) is 450nm. The regular air hole diameter is

270nm. The first five and the last five air holes on the row closest to the wire

waveguide are tuned larger with diameter 288nm in order to confine the surface

modes. The air hole depth extends to the interface between silicon and silica sub-

strate. The width of the wire waveguide is 450nm and the thickness is the same as the

photonic crystal slab (292 nm). The spacing S between the wire waveguide and the

edge of the photonic crystal slab is varied for the best coupling to occur. The spatial

discretization is ∆ = 22.5 nm in all three dimensions. The total number of FDTD

cells is 39 600 000, which is smaller than the previous case. However, depending on

the quality factor of the coupling between the waveguide mode and surface mode, the

number of time step needed for this simulation can be exceedingly high. For the power

computation we put two power planes 1.25µm before and after the photonic crystal

slab. The power planes center at the wire waveguide core and the area (1800nm ×

2025nm) is smaller than the previous case because light is strongly confined in the

waveguide core region for the high dielectric contrast wire waveguide.

To begin with, we set the number of time steps to 200 000 and vary the spacing S.
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Fig. 8. Power transmissions of the wire waveguide placed at different distances (S) from the
photonic crystal slab edge.

The results are shown in Fig. 8. The red curve with triangular markers shows the

power transmission of a stand-alone wire waveguide without photonic crystal slab

beside. The green, blue and black curves correspond to the case when the spacing

S = 500nm, 365 nm, and 275nm, respectively. In all cases, the waveguide mode

couples to the slab when the wavelength goes beyond 2020nm. For wavelengths

between 1800 and 2000nm some surface modes are generated, which are shown as the

power dips. When the spacing between the wire waveguide and the photonic crystal

slab decreases, strong coupling takes place.

In the next step, we fix S = 275nm and increase the number of time steps

to 800 000. The wavelength region is decreased in order to give a detailed power

transmission plot. More surface modes appeared for increased time steps and the

power drop for the principle surface mode at 1868nm is close to 10% The total

computation resource used using the one-dimensional parallelization is twenty Lucidor

nodes for 40 hours. The results are shown in Fig. 9.

5. Summary. To conclude, we have parallelized a GEMS time-domain code

for power computations in photonic crystal devices. The parallel performance was

not optimal when using the one-dimensional topology. Nevertheless, it allowed us

to compute long-running large-scale structures which could not be handled by the

serial code. Using the parallel code, we have studied the transmission property of

a photonic crystal waveguide in a multilayered structure. We have also investigated

the coupling between a silicon wire waveguide and a photonic crystal slab. Different

coupling strength is observed for different waveguide/slab spacing and detailed power

transmission spectrum is obtained for the wavelength region of interest.

We have also recently completed a full three-dimensional topology parallelization of

the FDTD code.
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Fig. 9. Detailed power transmission for spacing of S = 275 nm. The number of time steps is
increased to 800 000.
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