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1. Introduction. We establish the global existence and uniqueness of weak
solutions to the Navier-Stokes equations for a one-dimensional isentropic viscous gas
with a jump to the vacuum initially when the viscosity depends on the density:

(1.1)

{

ρτ + (ρu)ξ = 0,

(ρu)τ +
(

ρu2 + P (ρ)
)

ξ
= (µ(ρ)uξ)ξ ,

in τ > 0, a(τ) < ξ < b(τ), where ρ, u and P (ρ) are the density, the velocity and the
pressure, respectively, µ(ρ) ≥ 0 is the viscosity coefficient, a(τ) and b(τ) are the free
boundaries, i.e. the interface of the gas and the vacuum:

(1.2)







d

dτ
a(τ) = u(a(τ), τ),

d

dτ
b(τ) = u(b(τ), τ),

(−P (ρ) + µ(ρ)uξ) (a(τ), τ) = 0, (−P (ρ) + µ(ρ)uξ) (b(τ), τ) = 0.

Due to the strong degeneracy at vacuum, both Euler and Navier-Stokes systems
for compressible fluids (in which the viscosity is independent of density) behave singu-
larly [7, 10, 16]. In particular, the classical one-dimensional isentropic Navier-Stokes
system picks up unphysical solutions for two gases initially separated by vacuum states
[7, 10]. To overcome this difficulty, Liu, Xin and Yang in [10] introduced the modified
Navier-Stokes system (1.1) in which the viscosity coefficient depends on the density.
It is shown in [10] that at least locally in time, the system (1.1) yields the physi-
cally relevant solution. As remarked by Liu, Xin and Yang in [10], the model is also
motivated by the physical consideration that in the derivation of the compressible
Navier-Stokes equations from the Boltzmann equations, the viscosity is not constant
and depends on the temperature. For isentrpoic flow, this dependence is translated
into the dependence of the viscosity on the density.

For simplicity we consider in this paper

(1.3)

{

P (ρ) = Aργ ,

µ(ρ) = Bρα,

where γ > 1, A > 0, B > 0, α > 0 are constants.
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To study the free boundary (1.1), (1.2), it is convenient to convert the free bound-
aries to the fixed boundaries by using Lagrangian coordinates. We introduce the
coordinate transformation:

x =

∫ ξ

a(τ)

ρ(y, τ)dy, t = τ,

then the free boundaries a(τ) and b(τ) become

x = 0 and x =

∫ b(τ)

a(τ)

ρ(y, τ)dy =

∫ b

a

ρ(y, 0)dy

with a := a(0) and b := b(0), where
∫ b

a
ρ(y, 0)dy is the total mass initially. Without

loss of generality we assume
∫ b

a ρ(y, 0)dy = 1. Hence, in Lagrangian coordinates, the
free boundary problem (1.1), (1.2) becomes

(1.4) ρt + ρ2ux = 0,

(1.5) ut +A [ργ ]x = B
[

ρ1+αux

]

x
, 0 < x < 1, t > 0,

with the boundary conditions

(1.6) Aργ = Bρ1+αux, at x = 0 and x = 1, t ≥ 0.

We impose the following initial conditions

(1.7) (ρ(x, 0), u(x, 0)) = (ρ0(x), u0(x)), x ∈ [0, 1].

As pointed out in [14], physicists claim that the viscosity of a gas is proportional
to the square root of the temperature (e.g. see [4], also see [5, 9]). The temperature
is of order ργ−1, provided that the pressure P is proportional to the product of the
density and the temperature, i.e. the perfect fluid. In this case we have α = (γ−1)/2.

From the boundary conditions (1.6) we easily obtain that for γ > α, ρ(0, t), ρ(1, t)
= O(t−1/(γ−α)) for t large. Hence, the density grows with t, thus causing the viscosity
(the stabilization mechanism) to decrease to zero, a solution may not exist globally in
time. We shall show that if µ(ρ) does not decrease to zero too rapidly, i.e. if α is not
large, then a weak solution of (1.4)–(1.7) still exists globally in time.

When the viscosity is constant, the free boundary problems for one-dimensional
compressible Navier-Stokes equations were investigated in [3, 1, 2, 11] (also see [15,
6, 16] for the Cauchy problem) and among others, where the global existence of weak
solutions was proved. When the viscosity does depend on the density, a local existence
theorem was obtained by Makino, Liu, Xin and Yang [12, 10], where the initial density
was assumed to be connected to vacuum with discontinuities. Jiang in [8] studied the
Navier-Stokes equations for a one-dimensional heat-conducting gas and proved the
global existence of smooth solutions provided that 0 < α < 1/4 in (1.3). Using
techniques similar to those in [8] to derive a priori estimates and the finite difference
method, Okada, Matus̆u̇-Nec̆asová and Makino [14] obtained the existence of global
weak solutions in the case of isentropic flow for 0 < α < 1/3. Their result was
improved recently to the case 0 < α < 1/2 by Yang, Yao and Zhu [17]. In [14, 17] the
initial data are required to satisfy ρ0, ∂xu0 ∈ Lip[0, 1].

In this paper we prove the global existence of solutions to (1.4)–(1.7) under the
conditions ρ0 ∈ W 1,p(0, 1), u0 ∈ Lp(0, 1) for some p and 0 < α < 1. Furthermore,
we establish the uniqueness provided u0 ∈ H1(0, 1). Our result improves those in [14,
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16]. The improvement is twofold: More general pressure laws can be dealt with here,
for example for the perfect fluid (α = (γ−1)/2) 1 < γ < 2 is assumed in [14, 16] while
1 < γ < 3, which is for most gases, is allowed in the present paper; less regularity of
the initial data is required.

Now before stating the main result, we introduce the notation used throughout
this paper: Let m ≥ 0 be an non-negative integer and let 1 ≤ p ≤ ∞. By Wm,p we
denote the usual Sobolev space defined over (0, 1) with norm ‖ · ‖W m,p ; Hm ≡ Wm,2

with norm ‖·‖Hm , Lp ≡W 0,p with norm ‖·‖Lp . Lp(I, B) resp. ‖·‖Lp(I,B) denotes the
space of all strongly measurable, pth-power integrable (essentially bounded if p = ∞)
functions from I to B resp. its norm, I ⊂ R an interval, B a Banach space. Let
β ∈ (0, 1), Cβ [0, 1] denotes the Banach space of functions on [0, 1] which are uniformly
Hölder continuous with exponent β and Cβ,β/2(QT ) for the Banach space of functions
on QT := [0, 1]× [0, T ] which are uniformly Hölder continuous with exponents β in x
and β/2 in t.

The main result of this paper reads:

Theorem 1.1. Assume γ > 1 and 0 < α < 1 in (***, inf [0,1] ρ0 > 0, ρ0 ∈ W 1,2n,

u0 ∈ L2n for some n ∈ N satisfying n(2n− 1)/(2n2 + 2n− 1) > α. Then the initial-
boundary problem (1.4)–(1.7) possesses a global weak solution (ρ, u) in the sense that
for any T > 0,
(1.8)

ρ ∈ L∞([0, T ],W 1,2n), ρt ∈ L2([0, T ], L2), u ∈ L∞([0, T ], L2n) ∩ L2([0, T ], H1),

ρ(x, t) ≥ C on [0, 1]× [0, T ]

for some positive constant C = C(‖ρ0‖W 1,2n , ‖u0‖L2n , inf [0,1] ρ0, T ), and the following
equations hold:

(1.9)

ρt + ρ2ux = 0, ρ(x, 0) = ρ0(x) for a.e. x ∈ (0, 1) and any t ≥ 0,
∫

∞

0

∫ 1

0

{

uφt + (Aργ −Bρα+1ux)φx

}

dxdt +

∫ 1

0

u0(x)φ(x, 0)dx = 0

for any test function φ(x, t) ∈ C∞

0 (Q) with Q := {(x, t) | 0 ≤ x ≤ 1, t ≥ 0}.

Moreover, if, in addition, u0 ∈ H1, then u satisfies the additional estimates:

(1.10) u ∈ L∞([0, T ], H1) ∩ L2([0, T ], H2), ut ∈ L2([0, T ], L2),

and furthermore, this weak solution is unique in the class:

(1.11)
ρ ∈ L∞([0, T ], H1), ρt ∈ L2([0, T ], L2), u ∈ L∞([0, T ], L2) ∩ L2([0, T ], H1),

ρ(x, t) > 0 on [0, 1]× [0, T ].

The proof of Theorem 1.1 is based on a priori estimates for the approximate
solutions of (1.4)–(1.7) and a limit procedure. To derive the a priori estimates, the
crucial step is to obtain lower and upper bounds of the density, that is, if the initial
density has no vacuum and concentration of mass on [0, 1], then the same should be
true for the density for all t > 0. By exploiting the high integrability of u, (ρα)x (i.e.
u, (ρα)x ∈ L∞([0, T ], L2n), un−1ux ∈ L2([0, T ], L2) for any n ∈ N) and the energy
conservation, we obtain thus the boundedness of the density from below and above.

The paper is organized as follows: In Section 2 we derive the a priori estimates
and prove the existence by constructing an approximate solution and taking to the
limit. The uniqueness is given in Section 3.
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2. Proof of the existence. In this section we first derive the a priori estimates
for (ρ, u), then we construct the approximate solutions by mollifying the initial data
and obtain the global existence by taking to the limit. Throughout this section the
same letter C (sometimes used as C(X,Y, · · · ) to emphasize the dependence of C
on X,Y, · · · ) will denote various positive constants which may depend on ‖ρ0‖W 1,2n ,
‖u0‖L2n , inf [0,1] ρ0 and T with n being the same as in Theorem 1.1.

Let (ρ(x, t), u(x, t)) be a solution of (1.4)–(1.7) on [0, T ] satisfying

(2.1)
ρ, ρx, ρt, ρtx, u, ux, ut, uxx ∈ Cβ,β/2(QT ) for some 0 < β < 1,

ρ(x, t) > 0 on QT .

To show the a priori estimates we begin with the following lemma:

Lemma 2.1. We have

(2.2)

∫ 1

0

(

u2(x, t)

2
+
Aργ−1(x, t)

γ − 1

)

dx +B

∫ t

0

∫ 1

0

ρ1+αu2
x dxds

=

∫ 1

0

(

u2
0

2
+
Aργ−1

0

γ − 1

)

dx ∀ t ∈ [0, T ],

and

(2.3) ρ(x, t) ≤ C ∀ x ∈ [0, 1], t ∈ [0, T ],

and for any n ∈ N,

(2.4)

∫ 1

0

u2n(x, t)dx + n(2n− 1)

∫ t

0

∫ 1

0

u2n−2ρ1+αu2
xdxds ≤ C ∀ t ∈ [0, T ],

where C = C(‖ρ0‖L∞, ‖u0‖L2) in (2.3) and C = C(‖ρ0‖L∞ , ‖u0‖Lp , T, n) in (2.4).

Proof. Multiplying (1.5) by u, integrating the resulting equation over (0, 1)×(0, t),
integrating by parts, using the boundary conditions (1.6) and the equation (1.4), we
obtain (2.2). (2.3) can be shown easily by using the equation (1.4) and (2.2) while
(2.4) follows from the multiplication of (1.5) with 2nu2n−1 in L2 and integration by
parts, their proof can be found in [17]. (see Lemmas 2.4 and 2.6 in [17].)

Lemma 2.2. There is a positive constant C = C(‖ρ0‖W 1,2n , ‖u0‖L2n , T ), such
that

∫ 1

0

(∂xρ
α)2n(x, t) dx ≤ C, t ∈ [0, T ].

Proof. We may write (1.4) in the form:

(2.5)
1

α
∂tρ

α + ρ1+αux = 0.

Thus, substituting (2.5) into (1.5) and integrating over [0, t], we obtain

(2.6) u(x, t) − u0(x) + A

∫ t

0

(ργ)x(x, s)ds =
B

α
(∂xρ

α
0 − ∂xρ

α).
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We multiply (2.6) by (∂xρ
α)2n−1 (n ∈ N) and integrate over (0, 1) with respect to x

to get

(2.7)

∫ 1

0

(∂xρ
α)2ndx =

∫ 1

0

(∂xρ
α)2n−1∂xρ

α
0 dx

+
α

B

∫ 1

0

{

(u− u0) +A

∫ t

0

(ργ)x ds

}

(∂xρ
α)2n−1dx

≤ C

(
∫ 1

0

(∂xρ
α)2ndx

)(2n−1)/2n

·

{

‖∂xρ
α
0 ‖L2n + ‖u− u0‖L2n +

∫ t

0

‖∂xρ
γ‖L2n ds

}

.

Using (2.4), Young’s inequality ab ≤ ap/p + bq/q (1/p + 1/q = 1, p, q > 1, a, b ≥ 0),
we get from (2.7) that there is a positive constant C depending on ‖ρ0‖W 1,2n , ‖u0‖L2n

and T , such that

∫ 1

0

(∂xρ
α)2n(x, t) dx ≤

1

2

∫ 1

0

(∂xρ
α)2n(x, t) dx + C

∫ t

0

∫ 1

0

(∂xρ
γ)2ndxds + C,

whence,

(2.8)

∫ 1

0

(∂xρ
α)2n(x, t)dx ≤ C + C

∫ t

0

max
[0,1]

(ργ−α)2n

∫ 1

0

(∂xρ
α)2ndx ds.

Applying Gronwall’s inequality to (2.8) and making use of (2.3), we obtain the lemma.
This completes the proof.

Lemma 2.3. Let n ∈ N be fixed such that (2n2 − n)/(2n2 + 2n − 1) > α. Then
there is a positive constant C = C(‖u0‖L2n , ‖ρ0‖W 1,2n , inf [0,1] ρ0, T ), such that

ρ(x, t) ≥ C ∀ x ∈ [0, 1], t ∈ [0, T ].

Proof. Set

v(x, t) =
1

ρ(x, t)
, and V (t) = max

[0,1]×[0,t]
v(x, s).

It then follows from Lemma 2.2 that

(2.9)

v(x, t) − v(0, t) =

∫ x

0

∂xv dx ≤

∫ 1

0

|∂xρ|v
2 dx

=
1

α

∫ 1

0

|∂xρ
α|v1+α dx

≤
1

α

(
∫ 1

0

(∂xρ
α)2ndx

)1/2n(∫ 1

0

v(1+α)qdx

)1/q

≤ C

(
∫ 1

0

v(x, t)dx

)1/q (

max
[0,1]

v(·, t)

)[(1+α)q−1]/q

,

where q = 2n/(2n− 1).
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The equation (1.4) can be written as vt = ux. Integrating this over [0, 1] × [0, t]
and using Young’s inequality, we deduce that

(2.10)

∫ 1

0

v(x, t) dx =

∫ t

0

(u(1, s) − u(0, s)) ds+

∫ 1

0

v(x, 0) dx

≤ 2

∫ t

0

max
[0,1]

|u(·, s)| ds+ C

≤ C

(
∫ t

0

max
[0,1]

|u(·, s)|n ds

)1/n

+ C.

The integral term on the right-hand side of (2.10) can be bounded as follows, using
Sobolev’s imbedding theorem and (2.4).
∫ t

0

‖un(s)‖L∞ds ≤ C

∫ t

0

‖un(s)‖W 1,1ds

≤ C

∫ t

0

‖u2n(s)‖
1/2
L1 ds+ C

∫ t

0

∫ 1

0

|u|n−1|ux|dxds

≤ C + C

(
∫ t

0

∫ 1

0

u2n−2u2
xρ

1+αdxds

)1/2(∫ t

0

∫ 1

0

v(1+α)dxds

)1/2

≤ C + C

(
∫ t

0

∫ 1

0

v(1+α)dxds

)1/2

.

Hence, inserting the above estimate into (2.10), we conclude that

(2.11)

∫ 1

0

v(x, t) dx ≤ C + C

(
∫ t

0

∫ 1

0

v(1+α) dx ds

)1/(2n)

.

We may write (1.4) in the form: [ρ−(1−α)/2]t = (1−α)
2 ρ(1+α)/2ux. Integration of this

equation over [0, x] × [0, t] yields

v(1−α)/2(x, t) = ρ
−(1−α)/2
0 (x) +

(1 − α)

2

∫ t

0

ρ(1+α)/2ux ds.

Therefore, integrating the above identity over (0, 1) and using (2.2), we arrive at

(2.12)

∫ 1

0

v(1−α)(x, t) dx ≤ 2

∫ 1

0

ρ
−(1−α)
0 dx+ C

∫ 1

0

(
∫ t

0

ρ(1+α)/2|ux|ds

)2

dx

≤ 2

∫ 1

0

ρ
−(1−α)
0 dx+ C

∫ t

0

∫ 1

0

ρ1+αu2
x dx ds

≤ C(‖ρ0‖L∞ , ‖u0‖L2 , inf
[0,1]

ρ0, T ).

Combining (2.11) with (2.12), we see that

(2.13)

∫ 1

0

v(x, t) dx ≤ C + C

(
∫ t

0

∫ 1

0

v2αv1−α dxds

)1/(2n)

≤ C + CV α/n(t).

Now, substitution of (2.13) into (2.9) gives us

(2.14) v(x, t) ≤ v(0, t) + CV (T )α/(nq)+[(1+α)q−1]/q
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for all x ∈ [0, 1], t ∈ [0, T ]. By the boundary conditions (1.6) we have

−
A

B
ργ−α+1(0, t) = ρt(0, t),

which yields

(2.15) v(0, t) = v(0, 0)

(

(γ − α)A

B
ργ−α
0 t+ 1

)1/(γ−α)

≤ C(T ), t ∈ [0, T ].

Inserting (2.15) into (2.14) and taking into account that

α

nq
+

(1 + α)q − 1

q
< 1 with q =

2n

2n− 1

because of α < n(2n− 1)/(2n2 + 2n− 1), we obtain

V (T ) ≤ C(‖ρ0‖W 1,2n , ‖u0‖L2n , inf
[0,1]

ρ0, T ) ∀ x ∈ [0, 1], t ∈ [0, T ].

This completes the proof of the lemma.
Having established the a priori estimates Lemmas 2.1–2.3, we are now in a position

to prove the existence of weak solutions.

Proof of the existence. We denote by jǫ(x) the Friedrichs mollifier. Let ψ(x) ∈
C∞

0 (R) satisfy ψ(x) = 1 when |x| ≤ 1/2 and ψ(x) = 0 when |x| ≥ 1, and define
ψǫ(x) := ψ(x/ǫ). For simplicity we still denote by (ρ0, u0) the extension of (ρ0, u0) in
R, i.e.

ρ0(x) :=







ρ0(1), x ∈ (1,∞),
ρ0(x), x ∈ [0, 1],

ρ0(0), x ∈ (−∞, 0),
u0(x) :=

{

u0(x), x ∈ [0, 1],

0, otherwise.

We define the approximate initial data to ρ0, u0:

(2.16)

ρǫ
0(x) :=(ρ0 ∗ jǫ)(x),

uǫ
0(x) :=(u0 ∗ jǫ)(x){1 − ψǫ(x) − ψǫ(1 − x)}

+ (u0 ∗ jǫ)(0)ψǫ(x) + (u0 ∗ jǫ)(1)ψǫ(1 − x)

+
A

B
(ρǫ

0)
γ−α−1(0)

∫ x

0

ψǫ(y)dy −
A

B
(ρǫ

0)
γ−α−1(1)

∫ 1

x

ψǫ(1 − y)dy.

Then, ρǫ
0 ∈ C1+β [0, 1], uǫ

0 ∈ C2+β [0, 1] for any 0 < β < 1, and ρǫ
0 and uǫ

0 are compatible
with the boundary conditions (1.6). Recalling the definition of the Friedrichs mollifier,
we have

|(u0 ∗ jǫ)(0)|2n

∫ 1

0

ψ2n
ǫ (x)dx ≤ Cǫ

(
∫ ǫ

0

u0(x)jǫ(x)dx

)2n

≤ Cǫ

∫ ǫ

0

u2n
0 dx

(
∫ ǫ

0

j2n/(2n−1)
ǫ (x)dx

)2n−1

≤ C

∫ ǫ

0

u2n
0 (x)dx→ 0 as ǫ→ 0.

In the same manner, |(u0 ∗ jǫ)(1)|2n
∫ 1

0
ψ2n

ǫ (1 − x)dx → 0. Therefore, recalling the
definition of uǫ

0(x) we easily see that as ǫ→ 0,

(2.17) ρǫ
0 → ρ0 in W 1,2n, uǫ

0 → u0 in L2n.
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Now, consider the initial boundary value problem (1.4)–(1.7) with the initial data
(ρ0, u0) replaced by (ρǫ

0, u
ǫ
0). For this problem we can apply the standard argument

(the energy estimates and the contraction mapping theorem) to obtain the existence
of a unique local solution (ρǫ, uǫ) with ρǫ, ρǫ

x, ρ
ǫ
t, ρ

ǫ
tx, u

ǫ, uǫ
x, u

ǫ
t, u

ǫ
xx ∈ Cβ,β/2([0, 1] ×

[0, T ∗]) for some T ∗ > 0. In view of Lemmas 2.1–2.3 and (2.17) we see that ρǫ is
pointwise bounded from below and above, (uǫ)n and ρǫ

x are bounded in L∞([0, T ], L2),
and uǫ

x is bounded in L2((0, T ), L2) for any T > 0. Furthermore, we can differentiate
the equations (1.4)–(1.5) and apply the energy method to derive bounds of high-order
derivative of (ρǫ, uǫ), then we can apply the Schauder theory for linear parabolic
equations to conclude that the Cβ,β/2(QT )-norm of ρǫ, ρǫ

x, ρ
ǫ
t, ρ

ǫ
tx, u

ǫ, uǫ
x, u

ǫ
t and uǫ

xx is
a priori bounded. Therefore, we can continue the local solution globally in time and
obtain that there exists a unique global solution (ρǫ, uǫ) of (1.4)–(1.7) with (ρ0, u0)
replaced by (ρǫ

0, u
ǫ
0), such that for any T > 0, (2.1) for (ρǫ, uǫ) holds. (see e.g. the book

by Antontsev, Kazhikhov and Monakhov [3] concerning compressible viscous heat-
conducting fluids.) Moreover, by virtue of Lemmas 2.1–2.3, (2.17) and the equation
(1.5) and we have the following uniform in ǫ estimates:

(2.18)

∫ 1

0

(uǫ)2n(x, t) dx +

∫ 1

0

(ρǫ)2n
x (x, t) dx ≤ C, t ∈ [0, T ], n ∈ N,

C−1 ≤ ρǫ(x, t) ≤ C ∀ x ∈ [0, 1], t ∈ [0, T ],
∫ T

0

∫ 1

0

{

(uǫ)2x + (ρǫ
t)

2
}

(x, s)dxds ≤ C,

where C is a positive constant which depends on ‖ρ0‖W 1,2n , ‖u0‖L2n , inf [0,1] ρ0, T
and n, but not on ǫ. Thus, we can extract a subsequence of (ρǫ, uǫ), still denoted by
(ρǫ, uǫ), such that as ǫ→ 0,

(2.19)

uǫ ⇀ u weak-∗ in L∞([0, T ], L2n),

ρǫ ⇀ ρ weak-∗ in L∞([0, T ],W 1,2n),

(ρǫ
t, u

ǫ
x) ⇀ (ρt, ux) weakly in L2([0, T ], L2).

Next we show that (ρ, u) obtained in (2.19) is a weak solution of (1.4)–(1.7). By
Sobolev’s embedding theorem W 1,2n(0, 1) →֒ C1−1/(2n)[0, 1], we have for any x1, x2 ∈
(0, 1), t ∈ [0, T ] that

(2.20) |ρǫ(x1, t) − ρǫ(x2, t)| ≤ C|x1 − x2|
1−1/(2n).

On the other hand, it follows from Lions-Aubin’s lemma and (2.18) that for any δ > 0,
there is some constant Cδ > 0, such that for any t1, t2 ∈ [0, T ],

(2.21)

‖ρǫ(t1) − ρǫ(t2)‖L∞

≤ δ‖ρǫ(t1) − ρǫ(t2)‖W 1,p + Cδ‖ρ
ǫ(t1) − ρǫ(t2)‖L2

≤ 2δ‖ρǫ(t)‖W 1,p + Cδ|t1 − t2|
1/2‖ρǫ

t‖L2([0,T ],L2)

≤ Cδ + Cδ|t1 − t2|
1/2.

Thus, (2.20)–(2.21) together with the triangle inequality show that {ρǫ(x, t)} is equi-
continuous on [0, 1]× [0, T ]. Hence, by Arzéla-Ascoli’s theorem and a diagonal process
for t, we can extract a subsequence of {ρǫ}, still denoted by {ρǫ}, such that

(2.22) ρǫ(x, t) → ρ(x, t) strongly in C0(QT ).
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Moreover, by virtue of (2.21),

(2.23) ρ ∈ C
1

2 ([0, T ], L2).

Now, we multiply (1.5) by φ ∈ C∞

0 (Q), Q = {(t, x) | t ≥ 0, 0 ≤ x ≤ 1} and
integrate over (0, T ) × (0, 1), then we integrate by parts with respect to t and x and
take to the limit as ǫ → 0. If we use (2.17)–(2.19), (2.22) and (2.23), we easily see
that (ρ, u) obtained in (2.19) satisfies (1.8)–(1.9). Hence, (ρ, u) is a weak solution.
The proof of the existence is complete.

3. Uniqueness. We first prove the regularity of the weak solution constructed
in Section 2 for smoother data. Then we show the uniqueness of the weak solutions
under the additional regularity assumption upon u0. Throughout this section, we will
assume that u0 ∈ H1([0, 1]), and the same letter C (sometimes used as C(X,Y, · · · )
to emphasize the dependence of C on X,Y, · · · ) will denote various positive constants
which may depend on ‖ρ0‖W 1,2n , ‖u0‖H1 , inf [0,1] ρ0 and T with n being the same as
in Theorem 1.1.

Lemma 3.1. Let (ρ, u) be the weak solution of (1.4)–(1.7) established in Section
2. Then (ρ, u) satisfies (1.10) and

(3.1)
‖ut‖L2(QT ) + ‖uxx‖L2(QT ) + ‖ux‖L∞([0,T ],L2)

≤ C(‖u0‖H1 , ‖ρ0‖W 1,2n , inf
[0,1]

ρ0, T ),

where n is the same as in Theorem 1.1.

Proof. Let (ρǫ, uǫ) denote the global smooth solution of (1.4)–(1.7) with the initial
data (ρǫ

0, u
ǫ
0) given in Section 2, which satifies (2.1). First we show that ∂xu

ǫ
0 → ∂xu0

in L2. In fact, consider the term {(u0 ∗ jǫ)(x) − {(u0 ∗ jǫ)(0)}∂xψǫ(x) in ∂xu
ǫ
0. We

have

∫ 1

0

{(u0 ∗ jǫ)(x) − (u0 ∗ jǫ)(0)}2(∂xψǫ)
2dx ≤

C

ǫ2

∫ ǫ

0

{(u0 ∗ jǫ)(x) − (u0 ∗ jǫ)(0)}2dx

≤
C

ǫ
max
[0,ǫ]

{(u0 ∗ jǫ)(·) − (u0 ∗ jǫ)(0)}2

=
C

ǫ

(
∫ ǫ

0

|∂x(u0 ∗ jǫ)|dx

)2

≤ C

∫ ǫ

0

|∂x(u0 ∗ jǫ)|
2 dx→ 0.

In the same manner,
∫ 1

0 {(u0 ∗ jǫ)(x) − (u0 ∗ jǫ)(1)}2[∂xψǫ(1 − x)]2dx→ 0. Hence, we
easily deduce that

(3.2) ∂xu
ǫ
0 → ∂xu0 in L2.

For simplicity, from now on until the end of the proof of this lemma we will drop
out the supscript ǫ.

Multiplying the equation (1.5) by ut in L2([0, 1]× [0, T ]) and taking into account
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the boundary conditions (1.6), we integrate by parts to get

(3.3)

∫ t

0

∫ 1

0

u2
t dxds +

B

2

∫ 1

0

ρ1+αu2
x dx =

B

2

∫ 1

0

ρ1+α
0 (u0)

2
x dx

+A

∫ 1

0

(ργux)(x, t) dx −A

∫ 1

0

ργ
0∂xu0 dx

+Aγ

∫ t

0

∫ 1

0

ργ+1u2
x dxds−

B(1 + α)

2

∫ t

0

∫ 1

0

ρ2+αu3
x dxds,

where we have also used the equation (1.4). It is easy to see that by virtue of Lemmas
2.1–2.3, the inequality 2|ab| ≤ δa2 + δ−1b2, (δ > 0), (2.17) and (3.2), the identity (3.3)
implies

(3.4)

∫ 1

0

u2
x dx+

∫ t

0

∫ 1

0

u2
t dx ds ≤ C + C

∫ t

0

∫ 1

0

|ρ1+αu3
x| dxds, t ∈ [0, T ].

The last term on the right-hand side of (3.4) can be estimated as follows, using
(2.3), (2.2), and Lemma 2.3, the boundary conditions (1.6) and the equation (1.4).

C

∫ t

0

∫ 1

0

|ρ1+αu3
x| dxds ≤ C

∫ t

0

max
[0,1]

|(ρ1+αux)(·, s)|

∫ 1

0

u2
x dxds

≤ C

∫ t

0

max
[0,1]

|(Bρ1+αux −Aργ)(·, s)|

∫ 1

0

u2
x dxds+ C

∫ t

0

∫ 1

0

u2
x dxds

≤ C

∫ t

0

∫ 1

0

|(Bρ1+αux −Aργ)x(x, s)| dx

∫ 1

0

u2
xdx ds+ C

= C

∫ t

0

∫ 1

0

|ut|dx

∫ 1

0

u2
xdx ds+ C

≤
1

2

∫ t

0

∫ 1

0

u2
t dxds+ C

∫ t

0

(
∫ 1

0

u2
xdx

)2

ds+ C.

Inserting the above estimate into (3.4), we obtain

(3.5)

∫ 1

0

u2
x(x, t)dx +

∫ t

0

∫ 1

0

u2
t dx ds ≤ C + C

∫ t

0

‖ux(s)‖2
L2

∫ 1

0

u2
xdx ds

for t ∈ [0, T ], If we apply Gronwall’s inequality to (3.5), and use (2.2) and Lemma 2.3,
we infer that

(3.6)

∫ 1

0

u2
x(x, t) dx +

∫ t

0

∫ 1

0

u2
tdxds ≤ C.

From the equation (1.5) we see by Lemmas 2.1–2.3 and (3.6) that ‖uxx‖
2
L2(QT ) is also

bounded from above by a positive constant. Hence, the weak solution obtained in
(2.19) satisfies (1.10). Moreover, by the lower semicontinuity properties of the weak-∗
and weak topology, (3.1) holds. This completes the proof the lemma.

Now, we are able to prove the uniqueness in Theorem 1.1
Proof of the uniqueness. Let (ρ1(x, t), u1(x, t)) be an arbitrary weak solution

to (1.4)–(1.7) which is in the class (1.11). Let (ρ2(x, t), u2(x, t)) be the weak solution
constructed in Section 2, which has the additional regularity (1.10) as proved in Lemma
3.1. We will show that these two solutions have to coincide. For convenience, we set
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vi(x, t) = 1
ρi(x,t) for i = 1, 2. First we note that by virtue of (1.4), (ρ1, u1) and (ρ2, u2)

satisfy

(3.7) ρ1+α
i ∂xui = −

1

α
∂tρ

α
i , ∂xui = ∂tvi, i = 1, 2.

Then, from (1.5) and (3.7), we get

(u1 − u2)t +A(ργ
1 − ργ

2 )x = B(ρ1+α
1 u1x − ρ1+α

2 u2x)x.

Multiplying the above equation by u1 − u2 in L2(0, 1), integrating by parts and using
the boundary conditions (1.6) and (3.7), we find that

(3.8)

1

2

d

dt

∫ 1

0

(u1 − u2)
2dx

= A

∫ 1

0

(v1 − v2)t(v
−γ
1 − v−γ

2 )dx−B

∫ 1

0

(u1x − u2x)2(ρ1+α
1 ) dx

−B

∫ 1

0

(u1 − u2)x(v
−(1+α)
1 − v

−(1+α)
2 )u2x dx

≤ −C0

∫ 1

0

(u1x − u2x)2 dx + C1

∫ 1

0

(u2x)2(v1 − v2)
2 dx

−
d

dt

∫ 1

0

a(x, t)(v1 − v2)
2 dx+

∫ 1

0

at(x, t)(v1 − v2)
2 dx,

where C0 and C1 are positive constants depending only on the upper and lower bounds
of ρ1 and ρ2, and a(x, t) is defined as:

a(x, t) :=
Aγ

2

∫ 1

0

(v2 + τ(v1 − v2))
−(γ+1) dτ,

which has a positive lower bound on [0, 1] × [0, T ]. Since

|at(x, t)| ≤ C(|v2t| + |v1t − v2t|)

with a positive constant C depending only on the lower and upper bounds of ρ1 and
ρ2, as can be checked directly, one has that

∫ 1

0

at(x, t)(v1 − v2)
2 dx

≤
C0

2

∫ 1

0

(v1t − v2t)
2 dx+ C

∫ 1

0

(1 + |v2t|)(v1 − v2)
2 dx.

Then, using this in (3.8) and integrating the resulting estimate over (0, t), we deduce
that

1

2

∫ 1

0

(u1 − u2)
2dx+

∫ 1

0

a(x, t)(v1 − v2)
2dx+

C0

2

∫ t

0

∫ 1

0

(u1x − u2x)2dxds

≤

∫ t

0

∫ 1

0

(1 + |u2x|)
2(v1 − v2)

2dxds,
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which, taking into account a(x, t) ≥ C > 0, gives

(3.9)

∫ 1

0

(u1 − u2)
2dx+

∫ 1

0

(v1(x, t) − v2(x, t))
2dx

≤ C

∫ t

0

∫ 1

0

(1 + |u2x|)
2(v1(x, s) − v2(x, s))

2dxds.

Since u2x ∈ L2([0, T ], H1) we find by Sobolev’s imbedding theorem that
∫ t

0
‖(1 +

|u2x|)
2(s)‖L∞ds < ∞. Hence, an application of Gronwall’s inequality to (3.9) yields

immediately that

(3.10) v1(x, t) = v2(x, t), u1(x, t) = u2(x, t) a.e. (x, t) ∈ [0, 1] × [0, T ].

The proof of the uniqueness is complete.
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