
Japan J. Indust. Appl. Math., 26 (2009), 465–476 Area 〈2〉

Iterative Refinement for Ill-Conditioned Linear Systems

Shin’ichi Oishi1,4, Takeshi Ogita2,1,4 and Siegfried M. Rump3,1

1Department of Applied Mathematics
Faculty of Science and Engineering, Waseda University
3–4–1 Okubo, Shinjuku-ku, Tokyo 169–8555, Japan
E-mail: oishi@waseda.jp

2Department of Mathematics, College of Arts and Sciences
Tokyo Woman’s Christian University
2–6–1 Zempukuji, Suginami-ku, Tokyo 167–8585, Japan
E-mail: ogita@lab.twcu.ac.jp

3Institute for Reliable Computing
Hamburg University of Technology
Schwarzenbergstr. 95, 21071 Hamburg, Germany
E-mail: rump@tu-harburg.de

4CREST, JST, Japan

Received April 24, 2008

Revised December 22, 2008

This paper treats a linear equation
Av = b,

where A ∈ F
n×n and b ∈ F

n. Here, F is a set of floating point numbers. Let u be the unit

round-off of the working precision and κ(A) = ‖A‖∞‖A−1‖∞ be the condition number
of the problem. In this paper, ill-conditioned problems with

1 < uκ(A) < ∞
are considered and an iterative refinement algorithm for the problems is proposed. In
this paper, the forward and backward stability will be shown for this iterative refinement
algorithm.

Key words: iterative refinement, verified numerical computation, ill-conditioned linear
systems

1. Introduction

In this paper, we will consider the convergence of an iterative refinement for a
linear equation

Av = b, (1)

where A ∈ F
n×n and b ∈ F

n. Here, F is a set of floating point numbers. Nowadays,
usually the double precision floating point number system defined by IEEE 754
standard is used for F. For this case, the normalized floating point number has
64 bit length and its mantissa has 53 bit length. In this case, we call the double
precision is the working precision and 2−53 ≈ 10−16 is the unit round-off. Usually,
numerical computations are done in working precision. Sometimes, higher precision
calculations are used auxiliary. For example, a floating point number system with
128 bit length is used in some cases. In this case, we call a calculation by the floating
point number system with 128 bit length is called done by an extended precision.
In this paper, we treat a general case of F. Namely, let u be the unit round-off of

466 S. Oishi, T. Ogita and S.M. Rump

the working precision. Let further κ(A) = ‖A‖∞‖A−1‖∞ be the condition number
of the problem. Here, ‖ · ‖∞ is the maximum norm defined by

‖v‖∞ = max
1�i�n

|vi|, for v = (v1, v2, . . . , vn)T ∈ R
n (2)

and

‖A‖∞ = max
1�i�n

n∑

j=1

|Aij |, for A = (Aij) ∈ R
n×n. (3)

The superscript T denotes the transpose and R is the set of real numbers. For
well posed problems, i.e., in case of uκ(A) < 1, it has been shown [1]–[4] that
the iterative refinement improves the forward and backward errors of computed
solutions provided that the residuals are evaluated by extended precision, in which
the unit round off ū is, for example, the order of u2, before rounding back to the
working precision. Skeel [5] showed that iterative refinement with one iteration in
working precision (not extended precision) is backward stable.

In this paper, we will treat ill-conditioned problems with

1 < uκ(A) < ∞. (4)

We can assume without loss of generality that for a certain positive integer k the
following is satisfied:

ukκ(A) � β < 1. (5)

In [6], Rump has shown that for arbitrary ill-conditioned matrices A, we can
have good approximate inverses R1:k satisfying

‖R1:kA − I‖∞ � α < 1. (6)

Here, R1:k is obtained as

R1:k = R1 + R2 + · · · + Rk (7)

with Ri ∈ F
n×n and I is the n-dimensional unit matrix. In [7], we have partially

clarified the mechanism of the convergence of Rump’s method. Very recently, one of
the authors (S.M. Rump) has further developed the convergence analysis of Rump’s
method [8].

Let A,B,C ∈ F
n×n. In floating point calculation, usually AB − C cannot be

calculated correctly because of the existence of rounding errors. In this paper,
we assume that for any positive integer k satisfying k < K with K being a certain
sufficiently large positive integer, we can calculate D1,D2, . . . , Dk ∈ F

n×n satisfying

∥∥∥∥∥

k∑

i=1

Di − (AB − C)

∥∥∥∥∥
∞

� cuk‖AB − C‖∞. (8)

Iterative Refinement for Ill-Conditioned Systems 467

Such algorithms have been proposed, for instance, by the authors [9]–[10]. We
also denote

D1:k = D1 + D2 + · · · + Dk. (9)

We further use a notation like

D1:k = [AB − C]k, (10)

which means that D1:k = D1 + D2 + · · · + Dk satisfies (8).
Similarly, for A ∈ F

n×n and b, c ∈ F
n we assume that for any positive integer

k satisfying k < K with K being a certain sufficiently large positive integer, we can
calculate d1, d2, . . . , dk ∈ F

n satisfying

∥∥∥∥∥

k∑

i=1

di − (Ab − c)

∥∥∥∥∥
∞

� cuk‖Ab − c‖∞. (11)

Such algorithms have also been proposed, for instance, by the authors [9]–[11]. We
also introduce a notation

d1:k = d1 + d2 + · · · + dk. (12)

We further use a notation like

d1:k = [Ab − c]k, (13)

which means that d1:k = d1 + d2 + · · · + dk satisfies (11). It should be noted that
[AB −C]1 coincides with [AB −C]k with k = 1. Similarly, [Ab− c]1 coincides with
[Ab − c]k with k = 1.

Now we propose the following iterative refinement algorithm:

v′ = [v − R1:k[Av − b]k]1. (14)

Put rk = [Av − b]k and let Φ(v) = [v − R1:krk]1. Then, we can write

v′ = Φ(v). (15)

The following holds:

v′ = v − R1:k[(Av − b) + er] + em, (16)

where er = rk − (Av − b) and em ∈ R
n satisfying

‖er‖∞ � cuk‖Av − b‖∞ (17)

and

‖em‖∞ � cu‖v − R1:krk‖∞. (18)

468 S. Oishi, T. Ogita and S.M. Rump

In this paper, we will show the forward and backward stability of the iterative
algorithm (14). Furthermore, numerical examples are also given for illustrating
the forward and backward stability of the iterative refinement algorithm (14). The
forward stability of the algorithm guarantees that approximate solutions generated
by the algorithm converge, while the backward stability means the stability of the
algorithm against the rounding errors.

2. Convergence theorem: forward stability

Let us consider

Av = b, (19)

where A ∈ F
n×n and b ∈ F

n. Let

1 < uκ(A) < ∞. (20)

We assume that we have a good approximate inverses R1:k satisfying (6). Here,
R1:k is defined as

R1:k = R1 + R2 + · · · + Rk (21)

with Ri ∈ F
n×n. As mentioned in the previous section in [6], Rump has proposed

a method of calculating such approximate inverses and in [7], we have partially
clarified the mechanism of the convergence of Rump’s method. Further, we assume
also that the following is satisfied:

ukκ(A) � β < 1. (22)

We propose the following iterative refinement algorithm:

vn = Φ(vn−1), Φ(v) = [v − R1:krk]1, rk = [Av − b]k (n = 1, 2, . . .) (23)

with any starting vector v0 ∈ F
n. The aim of this section is to show the following

theorem:

Theorem 1. Let vn be generated from (23) with any starting vector v0 ∈ F
n.

We assume that assumptions (6) and (22) hold. Let v∗ = A−1b. If

γ = (α + cβ + cαβ)(1 + cu) < 1, (24)

the relative forward error ‖vn − v∗‖∞/‖v∗‖∞ reduces until

‖vn − v∗‖∞
‖v∗‖∞ ≈ u +

cu
1 − γ

. (25)

Here, for real numbers a and b, a ≈ b means that a is approximately equal to b.
This implies the forward stability of the iterative refinement algorithm (23).

Iterative Refinement for Ill-Conditioned Systems 469

Proof. Let v ∈ F
n and v′ = Φ(v). The assumption (6) implies the existence

of A−1. Thus, from (23), we have for v∗ = A−1b

‖v′ − v∗‖∞ = ‖v − v∗ − R1:krk + em‖∞
� ‖v − v∗ − R1:krk‖∞ + ‖em‖∞. (26)

We first note that

‖v − v∗ − R1:krk‖∞ = ‖v − v∗ − R1:k[(Av − b) + er]‖∞
= ‖(I − R1:kA)(v − v∗) − R1:ker‖∞
� ‖I − R1:kA‖∞‖v − v∗‖∞ + ‖R1:k‖∞‖er‖∞
� α‖v − v∗‖∞ + ‖R1:k‖∞‖er‖∞. (27)

On the other hand, from (17) and (22), we can estimate ‖R1:k‖∞‖er‖∞ as

‖R1:k‖∞‖er‖∞ � cuk‖R1:k‖∞‖Av − b‖∞
� cuk‖R1:k‖∞‖A‖∞‖v − v∗‖∞
� c′ukκ(A)‖v − v∗‖∞
� c′β‖v − v∗‖∞. (28)

Here, c′ = c‖R1:k‖∞‖A‖∞/κ(A). Further, from

‖R1:k‖∞ � ‖A−1‖∞ + ‖A−1 − R1:k‖∞
= ‖A−1‖∞ + ‖(I − R1:kA)A−1‖∞
� ‖A−1‖∞(1 + ‖I − R1:kA‖∞)

� (1 + α)‖A−1‖∞, (29)

it turns out that

c′ � c(1 + α). (30)

Thus, from (27), (28) and (30), it follows that

‖v − v∗ − R1:krk‖∞ � (α + cβ + cαβ)‖v − v∗‖∞. (31)

Moreover, from (31) and (18), we have

‖em‖∞ � cu‖v − R1:krk‖∞
� cu(‖v − v∗ − R1:krk‖∞ + ‖v∗‖∞)
� cu((α + cβ + cαβ)‖v − v∗‖∞ + ‖v∗‖∞). (32)

Therefore, from (26), (31) and (32), we have finally

‖v′ − v∗‖∞ � ‖v − v∗ − R1:krk‖∞ + ‖em‖∞
� (α + cβ + cαβ)(1 + cu)‖v − v∗‖∞ + cu‖v∗‖∞. (33)

470 S. Oishi, T. Ogita and S.M. Rump

Summing up the above mentioned arguments, for

vn = Φ(vn−1) (n = 1, 2, . . .), (34)

with some starting vector v0 ∈ F
n, we have

‖vn − v∗‖∞ � γ‖vn−1 − v∗‖∞ + cu‖v∗‖∞
� γ2‖vn−2 − v∗‖∞ + cu(1 + γ)‖v∗‖∞

· · ·
� γn‖v0 − v∗‖∞ +

cu
1 − γ

‖v∗‖∞ (35)

provided that

γ = (α + cβ + cαβ)(1 + cu) < 1. (36)

This implies that if γ < 1, the relative forward error reduces until

‖vn − v∗‖∞
‖v∗‖∞ ≈ u +

cu
1 − γ

. (37)

�

3. Backward stability

In this section, we will show the backward stability of the iterative refinement
algorithm (23).

A normwise backward error of an approximation v is defined by

η(v) = min{ε : (A + ΔA)v = b + Δb, ‖ΔA‖∞ � ε‖A‖∞, ‖Δb‖∞ � ε‖b‖∞}. (38)

It is known [14] that

η(v) =
‖r‖∞

‖A‖∞‖v‖∞ + ‖b‖∞ . (39)

Here, r = Av − b.
The next theorem shows the backward stability of the iterative refinement

algorithm (23):

Theorem 2. Let vn be generated from (23) with any starting vector v0 ∈ F
n.

We assume the assumptions (6) and (22). If

γ = (α + cβ + cαβ)(1 + cu) < 1, (40)

the backward error η(vn) reduces until

η(vn) � c2u, (41)

Iterative Refinement for Ill-Conditioned Systems 471

where c2 is a certain constant. Here, for real numbers a and b, a � b means that
a is approximately equal to b or a is less than b.

This implies the backward stability of the iterative refinement algorithm (23).

Proof. Let v′ = Φ(v), i.e.,

v′ = [v − R1:k[Av − b]k]1. (42)

Put r = Av − b. We have

v′ = v − R1:k(r + er) + em, (43)

where er = rk − r and em ∈ R
n satisfy

‖er‖∞ � cuk‖Av − b‖∞, ‖em‖∞ � cu‖v − R1:krk‖∞. (44)

Put r′ = Av′ − b. Then, it follows from (43) that

r′ = r + A(v′ − v)

= r + A(−R1:k(r + er) + em)

= r + A[(−A−1 + A−1 − R1:k)(r + er) + em]

= −er + A[(I − R1:kA)A−1(r + er) + em]

= −er + A[(I − R1:kA)(v − v∗ + A−1er) + em]. (45)

Here, v∗ = A−1b. Thus, from (45) together with (17), (6) and (22), we have

‖r′‖∞ � ‖er‖∞ + ‖A‖∞‖I − R1:kA‖∞‖v − v∗‖∞
+ ‖A‖∞‖I − R1:kA‖∞‖A−1‖∞‖er‖∞ + ‖A‖∞‖em‖∞

� cuk‖r‖∞ + α‖A‖∞‖v − v∗‖∞ + cαβ‖r‖∞ + ‖A‖∞‖em‖∞
= c(αβ + uk)‖r‖∞ + α‖A‖∞‖v − v∗‖∞ + ‖A‖∞‖em‖∞. (46)

We now recall (18):

‖em‖∞ � cu‖v − R1:krk‖∞. (47)

It is note here that

v − R1:krk = v − R1:kr − R1:ker

= v − [A−1 − (A−1 − R1:k)]r − R1:ker

= v − A−1r + (A−1 − R1:k)r − R1:ker

= v∗ + (I − R1:kA)A−1r − R1:ker. (48)

Substituting (48) into (47) and noticing (29), it follows

‖em‖∞ � cu‖v∗ + (I − R1:kA)(v − v∗) − R1:ker‖∞
� cu(‖v∗‖∞ + α‖v − v∗‖∞ + (1 + α)‖A−1‖∞‖er‖∞). (49)

472 S. Oishi, T. Ogita and S.M. Rump

Thus, from (46) and (49), we have

‖r′‖∞ � [c(αβ + uk) + c2(1 + α)βu]‖r‖∞
+ α(1 + cu)‖A‖∞‖v − v∗‖∞ + cu‖A‖∞‖v∗‖∞. (50)

From the condition γ < 1, if v is an approximate solution sufficiently refined by
the iterative refinement (23), then Theorem 1 implies that ‖v − v∗‖∞ = c′′u‖v∗‖∞
and v′ ≈ v, i.e., r′ ≈ r. Here, c′′ = 1 + c/(1 − γ). Thus, in this case, we have

‖r‖∞ � ω‖r‖∞ + c1u‖A‖∞‖v∗‖∞, (51)

where c1 = c′′α(1 + cu) + c and ω = c(αβ + uk) + c2(1 + α)βu.
We note here that from (22) it is seen that

γ − ω = α(1 + cu) + uk(cκ(A) − 1) > 0, (52)

which implies

ω < 1. (53)

Thus, we have

‖r‖∞ � c1u‖A‖∞‖v∗‖∞
1 − ω

= c2u(‖A‖∞‖v∗‖∞ + ‖b‖∞) (54)

with c2 being a suitable constant, which gives a small backward error

η(v) � c2u (55)

provided that v is an approximate solution sufficiently refined by the iterative
refinement (23). �

4. Numerical examples illustrating forward and backward stability

In this section, we will present numerical examples illustrating the forward and
the backward stability of the iterative refinement algorithm (23).

We have used the IEEE 754 double precision floating point number system in
these numerical calculations. Thus, in the following calculations, the unit round-off
u is given as

1.11 × 10−16 < u = 2−53 < 1.12 × 10−16. (56)

4.1. Hilbert matrix
Let H be the n × n Hilbert matrix. Let further A = sH. Here, s is the

minimum common multiplier of 1, 2, 3, . . . , n − 1. Furthermore,

b = Az, (57)

Iterative Refinement for Ill-Conditioned Systems 473

where, z = (1, 1, . . . , 1)T ∈ F
n. We have solved Ax = b for n = 20. In this ex-

ample, 1.92 × 1016 < ‖A‖∞ < 1.93 × 1016, 1.92 × 1016 < ‖b‖∞ < 1.93 × 1016 and
2.44 × 1028 < κ(A) < 2.45 × 1028.

In this case, a good approximate inverse can be constructed with k = 2
such that

‖R1:2A − I‖∞ < α = 4.16 × 10−4, (58)

where

R1:2 = R1 + R2 (59)

with suitable R1, R2 ∈ F. The iterative refinement algorithm (23) converges with
3 iterations. We finally have an approximate solution with the relative maximum
error about 1.92 × 10−16. Furthermore, it is seen that

β = u2κ(A) < (1.2 × 10−16)2 × 2.45 × 1028 < 3.08 × 10−4. (60)

Table 1 shows the relative errors

‖v∗ − vi‖∞
‖v∗‖∞ (61)

and the backward errors η(vi) of approximate solutions obtained by the iterative
refinement calculations (23). These calculations are done by MATLAB on Intel
core 2 duo CPU. The initial approximation v0 is given by

v0 = [R1:2b]1 = [(R1 + R2)b]1. (62)

Since R1:2 is a good approximate inverse satisfying (6), the first a few digits of
v0 already coincide with those for v∗. This is consistent with the result shown in
Table 1, which shows that the first a few digits of ‖vi‖∞ are the same. According
to the progress of iterative refinement, the forward errors

‖vn − v∗‖∞
‖v∗‖∞ (63)

decrease up to the unit round-off u.

Table 1. Hilbert matrix (n = 20)

i ‖v∗ − vi‖∞/‖v∗‖∞ ‖vi‖∞ ‖ri‖∞ η(vi)
0 3.50 × 10−4 1.16 1.89 × 1011 4.55 × 10−6

1 4.03 × 10−9 1.16 1.71 × 106 4.12 × 10−11

2 5.10 × 10−14 1.16 2.09 × 10 5.04 × 10−16

3 1.91 × 10−16 1.16 7.37 × 10−2 1.77 × 10−18

4 1.91 × 10−16 1.16 7.37 × 10−2 1.77 × 10−18

On the other hand, the backward errors are proportional to the residuals ‖ri‖∞.
Since, the residuals are decreasing, the backward errors also decrease up to around
the unit round-off u.

474 S. Oishi, T. Ogita and S.M. Rump

4.2. Rump’s matrix (n = 100)
Let A be n× n matrix with an anticipated condition number being 10100 gen-

erated by Rump’s algorithm [13]. We choose n = 100 and b = (1, 1, . . . , 1)T ∈ F
n.

In this example, 1.04 × 1016 < ‖A‖∞ < 1.05 × 1016, ‖b‖∞ = 1 and 1.74 × 10107 <

κ(A) < 1.75 × 10107.
In this case, a good approximate inverse can be constructed with k = 8

such that

‖R1:8A − I‖∞ < α = 1.86 × 10−4, (64)

where

R1:8 = R1 + R2 + · · · + R8 (65)

with suitable R1, R2, . . . , R8 ∈ F. The iterative refinement algorithm (23) converges
with 3 iterations.

Moreover, it is seen that

β = u8κ(A) < (1.12 × 10−16)8 × 1.75 × 10107 < 4.34 × 10−21. (66)

Table 2 shows the relative errors and the backward errors of approximate solutions
obtained by the iterative refinement calculations (23). The calculations are done
by the same computational environment as that for the previous example.

Table 2. Rump’s matrix (n = 100)

i ‖v∗ − vi‖∞/‖v∗‖∞ ‖vi‖∞ ‖ri‖∞ η(vi)
0 7.51 × 10−6 4.44 × 1091 1.85 × 1094 3.98 × 10−14

1 5.98 × 10−11 4.44 × 1091 2.61 × 1089 5.61 × 10−19

2 4.88 × 10−16 4.44 × 1091 1.15 × 1089 2.46 × 10−19

3 3.18 × 10−19 4.44 × 1091 3.06 × 1089 6.58 × 10−19

4 3.18 × 10−19 4.44 × 1091 3.06 × 1089 6.58 × 10−19

The initial approximation v0 is given by

v0 = [R1:8b]1. (67)

Since R1:8 is a good approximate inverse satisfying (6), the first a few digits of
v0 already coincide with those for v∗. This is consistent with the result shown in
Table 2, which shows that the first a few digits of ‖vi‖∞ are the same. According
to the progress of iterative refinement, the forward errors

‖vn − v∗‖∞
‖v∗‖∞ (68)

decrease up to the unit round-off u.
On the other hand, the backward errors are proportional to the residuals ‖ri‖∞.

Since, the residuals are decreasing, the backward errors also decrease up to around
the unit round-off u.

Iterative Refinement for Ill-Conditioned Systems 475

4.3. Rump’s matrix (n = 300)
Let A be n × n matrix with an anticipated condition number being 1050 gen-

erated by Rump’s algorithm [13]. We choose n = 300 and b = (1, 1, . . . , 1)T ∈ F
n.

In this example, 3.10 × 108 < ‖A‖∞ < 3.11 × 108, ‖b‖∞ = 1 and 6.28 × 1059 <

κ(A) < 6.29 × 1059.
In this case, a good approximate inverse can be constructed with k = 5

such that

‖R1:5A − I‖∞ < α = 1.16 × 10−9, (69)

where

R1:5 = R1 + R2 + · · · + R5 (70)

with suitable R1, R2, . . . , R5 ∈ F. The iterative refinement algorithm converges (23)
with 1 iteration.

Moreover, it is seen that

β = u5κ(A) < (1.12 × 10−16)5 × 6.29 × 1059 < 1.11 × 10−20. (71)

Table 3 shows the relative errors and the backward errors of approximate solutions
obtained by the iterative refinement calculations (23). The calculations are done
by the same computational environment as that for the previous example.

Table 3. Rump’s matrix (n = 300)

i ‖v∗ − vi‖∞/‖v∗‖∞ ‖vi‖∞ ‖ri‖∞ η(vi)
0 8.02 × 10−12 4.89 × 1050 2.15 × 1042 1.42 × 10−17

1 8.10 × 10−23 4.89 × 1050 6.17 × 1040 4.07 × 10−19

2 8.10 × 10−23 4.89 × 1050 6.17 × 1040 4.07 × 10−19

The initial approximation v0 is given by

v0 = [R1:5b]1. (72)

Since R1:5 is a good approximate inverse satisfying (6), the first a few digits of
v0 already coincide with those of v∗. This is consistent with the result shown in
Table 3, which shows that the first a few digits of ‖vi‖∞ are the same. According
to the progress of iterative refinement, the forward errors

‖vn − v∗‖∞
‖v∗‖∞ (73)

decrease up to the unit round-off u.
On the other hand, the backward errors are proportional to the residuals ‖ri‖∞.

Since, the residuals are decreasing, the backward errors also decrease up to around
the unit round-off u.

476 S. Oishi, T. Ogita and S.M. Rump

Acknowledgement. The authors are supported by the Grant-in-Aid for
Specially Promoted Research from the MEXT, Japan: “Establishment of Verified
Numerical Computation” (No. 17002012).

References

[1] G.B. Moler, Iterative refinement in floating point. J. Assoc. Comput. Mach., 14 (1967),
316–321.

[2] N.J. Higham, Iterative refinement for linear systems and LAPACK. IMA J. Numer. Anal.,
17 (1997), 495–509.

[3] M. Jankowsky and H. Woznlakowski, Iterative refinement implies numerical stability. BIT,
17 (1997), 303–311.

[4] F. Tisseur, Newton’s method in floating point arithmetic and iterative refinement of gener-
alized eigenvalue problems. SIAM J. Matrix Anal. Appl., 22 (2001), 1038–1057.

[5] R.D. Skeel, Iterative refinement implies numerical stability for Gaussian elimination. Math.
Comp., 35 (1980), 817–832.

[6] S.M. Rump, Approximate inverses of almost singular matrices still contain useful informa-
tion. Technical Report 90.1, Faculty of Information and Communication Sciences, Hamburg
University of Technology, 1990.

[7] S. Oishi, K. Tanabe, T. Ogita and S.M. Rump, Convergence of Rump’s method for inverting
arbitrary ill-conditioned matrices. J. Comp. and Appl. Math., 205 (2007), 533–544.

[8] S.M. Rump, Inversion of extremely ill-conditioned matrices in floating point. Submitted for
publication in JJIAM, March 15, 2008.

[9] T. Ogita, S.M. Rump and S. Oishi, Accurate sum and dot product. SIAM Journal on
Scientific Computing, 26 (2005), 1955–1988.

[10] S.M. Rump, T. Ogita and S. Oishi, Accurate floating-point summation I: Faithful rounding.
Accepted for publication in SIAM Journal on Scientific Computing. Preprint is available
from http://www.ti3.tu-harburg.de/publications/rump.

[11] S.M. Rump, T. Ogita and S. Oishi, Accurate floating-point summation II: Sign, K-fold
faithful and rounding to nearest. Accepted for publication in SIAM Journal on Scientific
Computing. Preprint is available from http://www.ti3.tu-harburg.de/publications/rump.

[12] T. Ohta, T. Ogita, S.M. Rump and S. Oishi, A method of verified numerical computation
for ill-conditioned linear system of equations. Journal of JSIAM, 15 (2005), 269–287, in
Japanese.

[13] S.M. Rump, A class of arbitrarily ill-conditioned floating-point matrices. SIAM J. Matrix
Anal. Appl., 12 (1991), 645–653.

[14] J.D. Rigal and J. Gaches, On the compativility of a given solution with the data of a linear
equation. J. Assoc. Comput. Mach., 14 (1967), 543–548.

