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Abstract
It is proved that Kaygun’s Hopf-Hochschild cochain complex

for a module-algebra is a brace algebra with multiplication. As
a result, an analogue of Deligne’s Conjecture holds for module-
algebras, and the Hopf-Hochschild cohomology of a module-
algebra has a Gerstenhaber algebra structure.

1. Introduction

Let H be a bialgebra, and let A be an associative algebra. The algebra A is said
to be an H-module-algebra if there is an H-module structure on A such that the
multiplication on A becomes an H-module morphism. For example, if S denotes
the Landweber-Novikov algebra [15, 22], then the complex cobordism MU∗(X) of a
topological space X is an S-module-algebra. Likewise, the singular mod p cohomology
H∗(X;Fp) of a topological space X is an Ap-module-algebra, where Ap denotes the
Steenrod algebra associated to the prime p [7, 20]. Other similar examples from
algebraic topology can be found in [4]. Important examples of module-algebras from
Lie and Hopf algebras theory can be found in, e.g., [12, V.6].

In [14] Kaygun defined a Hochschild-like cochain complex CH∗
Hopf(A,A) associated

to an H-module-algebra A, called the Hopf-Hochschild cochain complex, that takes
into account the H-linearity. In particular, if H is the ground field, then Kaygun’s
Hopf-Hochschild cochain complex reduces to the usual Hochschild cochain complex
C∗(A,A) of A [11]. Kaygun [14] showed that the Hopf-Hochschild cohomology of A
shares many properties with the usual Hochschild cohomology. For example, it can
be described in terms of derived functors, and it satisfies Morita invariance.

The usual Hochschild cochain complex C∗(A,A) has a very rich structure. Namely,
it is a brace algebra with multiplication [10]. Combined with a result of McClure
and Smith [19] concerning the singular chain operad associated to the little squares
operad C2, the brace algebra with multiplication structure on C∗(A,A) leads to a
positive solution of Deligne’s Conjecture [6]. Also, passing to cohomology, the brace
algebra with multiplication structure implies that the Hochschild cohomology mod-
ules HH∗(A,A) form a Gerstenhaber algebra, which is a graded version of a Poisson
algebra. This fact was first observed by Gerstenhaber [8].
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The purpose of this note is to observe that Kaygun’s Hopf-Hochschild cochain
complex CH∗

Hopf(A,A) of a module-algebra A also admits the structure of a brace
algebra with multiplication. In fact, the Hopf-Hochschild complex is a sub-complex
of the usual Hochschild complex, and the former inherits the latter’s structure. As in
the classical case, this leads to a version of Deligne’s Conjecture for module-algebras.
Also, the Hopf-Hochschild cohomology modules HH∗

Hopf(A,A) form a Gerstenhaber
algebra. When the bialgebra H is the ground field, these structures reduce to the
ones in Hochschild cohomology.

A couple of remarks are in order. First, there is another cochain complex C∗
MA(A)

that can be associated to an H-module-algebra A [24]. The cochain complex C∗
MA(A)

is different from the Hopf-Hochschild complex CH∗
Hopf(A,A). The former controls

the deformations of A, in the sense of Gerstenhaber [9], with respect to both the
H-module structure and the algebra structure on A. It is not known if there is any
relationship between the two complexes.

Second, the results and arguments here can be adapted to module-coalgebras,
comodule-algebras, and comodule-coalgebras. To do that, one replaces the crossed
product algebra X (section 2.3) associated to an H-module-algebra A by a suitable
crossed product (co)algebra [1, 2, 3] and replaces Kaygun’s Hopf-Hochschild cochain
complex by a suitable variant.

1.1. Organization

The rest of this paper is organized as follows.

In the following section, we recall the construction of the Hopf-Hochschild cochain
complex CH∗

Hopf(A,A) from Kaygun [14].

In Section 3, it is observed that CH∗
Hopf(A,A) has the structure of an operad with

multiplication (Theorem 3.1). This leads in Section 4 to the desired brace algebra
with multiplication structure on CH∗

Hopf(A,A) (Corollary 4.1). Explicit formulas of
these brace operations are given (11).

In Section 5, it is observed that the brace algebra with multiplication structure on
CH∗

Hopf(A,A) leads to a homotopy G-algebra structure (Corollary 5.1). The differ-
ential from this homotopy G-algebra and the Hopf-Hochschild differential are then
identified, up to a sign (Theorem 5.2).

Passing to cohomology, this leads in Section 6 to a Gerstenhaber algebra struc-
ture on the Hopf-Hochschild cohomology modules HH∗

Hopf(A,A) (Corollary 6.1). The
graded associative product and the graded Lie bracket onHH∗

Hopf(A,A) are explicitly
described (16).

In the final section, combining our results with a result of McClure and Smith [19],
a version of Deligne’s Conjecture for module-algebras is obtained (Corollary 7.1). This
section can be read immediately after Section 4 and is independent of Sections 5 and 6.
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2. Hopf-Hochschild cohomology

In this section, we fix some notations and recall from [14, Section 3] the Hopf-
Hochschild cochain complex associated to a module-algebra.

2.1. Notations

Fix a ground field K once and for all. Tensor product and vector space are all
meant over K.

LetH = (H,µH ,∆H) denote aK-bialgebra with associative multiplication µH and
coassociative comultiplication ∆H . It is assumed to be unital and counital, with its
unit and counit denoted by 1H and ε : H → K, respectively.

Let A = (A,µA) denote an associative, unital K-algebra with unit 1A (or simply
1).

In a coalgebra (C,∆), we use Sweedler’s notation [23] for comultiplication:

∆(x) =
∑

x(1) ⊗ x(2),∆
2(x) =

∑
x(1) ⊗ x(2) ⊗ x(3), etc.

These notations will be used throughout the rest of this paper.

2.2. Module-algebra

Recall that the algebra A is said to be an H-module-algebra [5, 12, 21, 23] if and
only if there exists a left H-module structure on A such that µA and the unit map
1A : K → A are both H-module morphisms, i.e.,

b(a1a2) =
∑

(b(1)a1)(b(2)a2) (1)

for b ∈ H and a1, a2 ∈ A, and

b(1A) = ε(b)1A

for b ∈ H.

We will assume that A is an H-module-algebra for the rest of this paper.

2.3. Crossed product algebra

Define the vector space

X
def
= A⊗A⊗H.

Define a multiplication on X [14, Definition 3.1] by setting

(a1 ⊗ a′1 ⊗ b1)(a2 ⊗ a′2 ⊗ b2) =
∑

a1

(
b1(1)a2

)
⊗

(
b1(3)a

′
2

)
a′1 ⊗ b1(2)b

2

for a1 ⊗ a′1 ⊗ b1 and a2 ⊗ a′2 ⊗ b2 in X. It is shown in [14, Lemma 3.2] that X is an
associative, unital K-algebra, called the crossed product algebra.

Note that if H = K (= the trivial group bialgebra K[{e}]), then X is just the
enveloping algebra A⊗Aop, where Aop is the opposite algebra of A.

The algebra A is a left X-module via the action

(a⊗ a′ ⊗ b)a0 = a(ba0)a
′

for a⊗ a′ ⊗ b ∈ X and a0 ∈ A. Likewise, the vector space A⊗(n+2) is a left X-module
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via the action

(a⊗ a′ ⊗ b)(a0 ⊗ · · · ⊗ an+1) =
∑

ab(1)a0 ⊗ b(2)a1 ⊗ · · · ⊗ b(n+1)an ⊗ b(n+2)an+1a
′

for a0 ⊗ · · · ⊗ an+1 ∈ A⊗(n+2).

2.4. Bar complex

Consider the chain complex CB∗(A) of vector spaces with

CBn(A) = A⊗(n+2),

and with differential

dCB
n =

n∑
j=0

(−1)j∂j : CBn(A) → CBn−1(A),

where

∂j(a0 ⊗ · · · ⊗ an+1) = a0 ⊗ · · · ⊗ (ajaj+1)⊗ · · · ⊗ an+1.

It is mentioned above that each vector space CBn(A) = A⊗(n+2) is a leftX-module.
Using the module-algebra condition (1), it is straightforward to see that each ∂j is
X-linear. Therefore, CB∗(A) can be regarded as a chain complex of left X-modules.

Note that in the case H = K, the chain complex CB∗(A) of A⊗Aop-modules is
the usual bar complex of A.

2.5. Hopf-Hochschild cochain complex

The Hopf-Hochschild cochain complex of A with coefficients in A is the cochain
complex of vector spaces:

(CH∗
Hopf(A,A), dCH)

def
= HomX((CB∗(A), d

CB), A). (2)

Its nth cohomology module is denoted by HHn
Hopf(A,A) and is called the nth Hopf-

Hochschild cohomology of A with coefficients in A.

When H = K, the cochain complex (CH∗
Hopf(A,A), dCH) is the usual Hochschild

cochain complex of A with coefficients in itself [11], and HHn
Hopf(A,A) is the usual

Hochschild cohomology module.

In what follows, we will use the notation CH∗
Hopf(A,A) to denote (i) the Hopf-

Hochschild cochain complex (CH∗
Hopf(A,A), dCH), (ii) the sequence {CHn

Hopf(A,A)}
of vector spaces, or (iii) the graded vector space ⊕nCH

n
Hopf(A,A). It should be clear

from the context what CH∗
Hopf(A,A) means.

3. Algebraic operad

The purpose of this section is to show that the vector spaces CH∗
Hopf(A,A) in

the Hopf-Hochschild cochain complex of an H-module-algebra A with self coefficients
form an operad with multiplication (Theorem 3.1).
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3.1. Operads
Recall from [16, 17, 18] that a non-Σ operad O = {O(n), γ, Id} consists of a

sequence of vector spaces O(n) (n > 1) together with structure maps

γ : O(k)⊗ O(n1)⊗ · · · ⊗ O(nk) → O(n1 + · · ·+ nk),

for k, n1, . . . , nk > 1 and an identity element Id ∈ O(1), satisfying the following two
axioms.

1. The structure maps γ are required to be associative, in the sense that

γ(γ(f ; g1,k);h1,N ) = γ(f ; γ(g1;h1,N1), . . . ,

γ(gi;hNi−1+1,Ni
), . . . , γ(gk;hNk−1+1,Nk

)).

Here f ∈ O(k), gi ∈ O(ni), N = n1 + · · ·+ nk, and Ni = n1 + · · ·+ ni. Given
elements xi, xi+1, . . ., the symbol xi,j is the abbreviation for the sequence xi,
xi+1, . . ., xj or xi ⊗ · · · ⊗ xj whenever i 6 j.

2. The maps

γ(−; Id, . . . , Id) : O(k) → O(k) and γ(Id;−) : O(k) → O(k)

are both equal to the identity map on O(k) for each k > 1.

For the rest of this paper, we will refer to non-Σ operads simply as operads.

3.2. Operad morphism
Let O and P be operads. An operad morphism φ : O → P consists of a sequence of

linear maps φn : O(n) → P(n) such that

φ1(IdO) = IdP

and the diagram

O(k)⊗ O(n1)⊗ · · · ⊗ O(nk)

φk⊗φn1⊗···⊗φnk

��

γ
// O(N)

φN

��

P(k)⊗ P(n1)⊗ · · · ⊗ P(nk)
γ

// P(N)

(3)

commutes for all k, n1, . . . , nk > 1, where N = n1 + · · ·+ nk.

3.3. Operad with multiplication
Let O be an operad. A multiplication on O [10, Section 1.2] is an element m ∈ O(2)

that satisfies

γ(m;m, Id) = γ(m; Id,m). (4)

In this case, (O,m) is called an operad with multiplication. A multiplication on O is
equivalent to an operad morphism As→ O, where As is the operad for associative
algebras. The associative operad As is generated by an element µ ∈ As(2), whose
image under an operad morphism As→ O is a multiplication on O.

3.4. Operad with multiplication structure on CH∗
Hopf(A,A)

In what follows, in order to simplify the typography, we will sometimes write C(n)
for the vector space CHn

Hopf(A,A). To show that the vector spaces CH∗
Hopf(A,A)
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form an operad with multiplication, we first define the structure maps, the identity
element, and the multiplication.

Structure maps For k, n1, . . . , nk > 1, define a map

γ : C(k)⊗ C(n1)⊗ · · · ⊗ C(nk) → C(N)

by setting

γ(f ; g1,k)(a0,N+1)

= f
(
a0 ⊗ g1(1⊗ a1,n1 ⊗ 1)⊗ · · · ⊗ gi(1⊗ aNi−1+1,Ni ⊗ 1)⊗ · · · ⊗ aN+1

)
. (5)

Here the notation is as in the definition of an operad above, and each ai ∈ A.

Identity element Let Id ∈ C(1) be the element such that

Id(a0 ⊗ a1 ⊗ a2) = a0a1a2. (6)

This is indeed an element of C(1), since the identity map on A is H-linear.

Multiplication Let π ∈ C(2) be the element such that

π(a0 ⊗ a1 ⊗ a2 ⊗ a3) = a0a1a2a3. (7)

This is indeed an element of C(2), since the multiplication map A⊗2 → A on A
is H-linear.

Theorem 3.1. The data

C = {C(n), γ, Id}

forms an operad. Moreover, π ∈ C(2) is a multiplication on the operad C.

Proof. It is immediate from (5) and (6) that γ(−; Id⊗k) and γ(Id;−) are the identity
map on C(k) for each k > 1.

To prove associativity of γ, we use the notations in the definition of an operad and
compute as follows:

γ (γ(f ; g1,k);h1,N ) (a0 ⊗ · · · ⊗ aM+1)

= γ(f ; g1,k)
(
a0 ⊗ · · · ⊗ hj(1⊗ aMj−1+1,Mj ⊗ 1)⊗ · · · ⊗ aM+1

)
= f (a0 ⊗ · · · ⊗ gi(1⊗ zi ⊗ 1)⊗ · · · ⊗ aM+1)

= γ
(
f ; . . . , γ(gi;hNi−1+1,Ni), . . .

)
(a0 ⊗ · · · ⊗ aM+1).

Here the element zi (1 6 i 6 k) is given by

zi =

Ni⊗
l=Ni−1+1

hl
(
1⊗ aMl−1+1,Ml

⊗ 1
)

= hNi−1+1

(
1⊗ aMNi−1

+1,MNi−1+1
⊗ 1

)
⊗ · · · ⊗ hNi

(
1⊗ aMNi−1+1,MNi

⊗ 1
)
.

This shows that γ is associative and that C = {C(n), γ, Id} is an operad.
To see that π ∈ C(2) is a multiplication on C, one observes that both

γ(π;π, Id)(a0 ⊗ · · · ⊗ a4) and γ(π; Id, π)(a0 ⊗ · · · ⊗ a4)

are equal to the product a0a1a2a3a4.
This finishes the proof of Theorem 3.1.



OPERATIONS ON THE HOPF-HOCHSCHILD COMPLEX FOR MODULE-ALGEBRAS 265

3.5. Relationship with the Hochschild complex
Here we observe that the operad with multiplication (C, π) induces the usual operad

with multiplication structure on the Hochschild complex.
Recall that the Hochschild complex

C∗(A,A) = {Cn(A,A) = HomK(A⊗n, A)}

is an operad with multiplication µA [10]. Indeed, C∗(A,A) is the endomorphism
operad of A. Its structure maps γ are given by

γ(f ; g1,k)(a1,N ) = f(· · · ⊗ gi(aNi−1+1,Ni)⊗ · · · )

for f ∈ Cn(A,A), gi ∈ Cni(A,A), and aj ∈ A. The notations are as in section 3.1
with N0 = 0. The identity element in C1(A,A) is the identity map on A.

Denote by

φHopf : As→ CH∗
Hopf(A,A) and φ : As→ C∗(A,A)

the operad morphisms corresponding to the operads with multiplication CH∗
Hopf(A,A)

and C∗(A,A), respectively. The following observation says that φ is induced by φHopf .

Corollary 3.2. The operad with multiplication C∗(A,A) is induced by CH∗
Hopf(A,A)

in the sense that there is an operad morphism ρ : CH∗
Hopf(A,A) → C∗(A,A) such that

the diagram

As
φHopf

//

φ

��

CH∗
Hopf(A,A)

ρ
wwooooooooooo

C∗(A,A)

(8)

commutes.

Proof. Let us abbreviate Cn(A,A) to Cn and CHn
Hopf(A,A) to C(n). The component

map ρ : C(n) → Cn is defined as

ρ(g)(a1,n) = g(1⊗ a1,n ⊗ 1)

for ai ∈ A. To see that the map ρ is an operad morphism, first observe that it preserves
the identity elements because

ρ(Id)(a) = Id(1⊗ a⊗ 1) = a

by (6). Moreover, the commutativity of the diagram (3) for ρ follows from the fact
that both ρ (γ(f ; g1,k)) (a1,N ) and γ (ρ(f); ρ(g1,k)) (a1,N ) are equal to

f
(
1⊗ · · · ⊗ gi(1⊗ aNi−1+1,Ni ⊗ 1)⊗ · · · ⊗ 1

)
.

Here f ∈ C(k), gi ∈ C(ni), N = n1 + · · ·+ nk, N0 = 0, and aj ∈ A.
Now we show that the diagram (8) commutes. Note that the operad morphism φ

is uniquely determined by the property φ(µ) = µA, where µ ∈ As(2) is the generator
for the associative operad. Likewise, we have φHopf(µ) = π. Since we have

ρ(π)(a1 ⊗ a2) = π(1⊗ a1 ⊗ a2 ⊗ 1) = a1a2

by (7), we conclude that ρ(π) = µA and ρ(φHopf(µ)) = µA. This implies by uniqueness
that φ = ρ ◦ φHopf .
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4. Brace algebra

The purpose of this section is to show that the graded vector space CH∗
Hopf(A,A)

admits the structure of a brace algebra with multiplication. Explicit formulas of the
brace operations are given in (11).

4.1. Brace algebra
For a graded vector space V = ⊕∞

n=1V
n and an element x ∈ V n, set deg x = n and

|x| = n− 1. Elements in V n are said to have degree n.
Recall from [10, Definition 1] that a brace algebra is a graded vector space V =

⊕V n together with a collection of brace operations x{x1, . . . , xn} of degree −n, sat-
isfying the associativity axiom:

x{x1,m}{y1,n} =
∑

06i16···6im6n

(−1)εx{y1,i1 , x1{yi1+1,j1}, yj1+1, . . . , yim ,

xm{yim+1,jm}, yjm+1,n}.

Here the sign is given by ε =
∑m

p=1

(
|xp|

∑ip
q=1 |yq|

)
.

4.2. Brace algebra with multiplication
Let V = ⊕V n be a brace algebra. A multiplication on V [10, Section 1.2] is an

element m ∈ V 2 such that

m{m} = 0. (9)

In this case, we call V = (V,m) a brace algebra with multiplication.

4.3. Brace algebra from operad
Suppose that O = {O(n), γ, Id} is an operad. Define the following operations on

the graded vector space O = ⊕O(n):

x{x1, . . . , xn}
def
=

∑
(−1)εγ(x; Id, . . . , Id, x1, Id, . . . , Id, xn, Id, . . . , Id). (10)

Here the sum runs over all possible substitutions of x1, . . . , xn into γ(x; . . .) in the
given order. The sign is determined by ε =

∑n
p=1 |xp|ip, where ip is the total number

of inputs in front of xp. Note that

deg x{x1, . . . , xn} = deg x− n+
n∑

p=1

deg xp,

so the operation (10) is of degree −n.
Proposition 1 in [10] establishes that the operations (10) make the graded vector

space ⊕O(n) into a brace algebra. Moreover, a multiplication on the operad O in the
sense of § 3.3 is equivalent to a multiplication on the brace algebra ⊕O(n). In fact,
for an element m ∈ O(2), one has that

m{m} = γ(m;m, Id)− γ(m; Id,m).

It follows that the condition (4) is equivalent to (9). In other words, an operad with
multiplication (O,m) gives rise to a brace algebra with multiplication (⊕O(n),m).
Combining this discussion with Theorem 3.1, we obtain the following result.
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Corollary 4.1. The graded vector space CH∗
Hopf(A,A) is a brace algebra with brace

operations as in (10) and multiplication π (7).

The brace operations on CH∗
Hopf(A,A) can be described more explicitly as follows.

For f ∈ C(k) and gi ∈ C(mi) (1 6 i 6 n), we have

f{g1, . . . , gn} =
∑

(−1)εγ(f ; Idr1 , g1, Id
r2 , g2, . . . , Id

rn , gn, Id
rn+1),

where Idr = Id⊗r. Here the rj are given by

rj =


i1 if j = 1,

ij − ij−1 − 1 if 2 6 j 6 n,

k − in − 1 if j = n+ 1,

and

ε =
n∑

p=1

(mp − 1)ip.

WriteM =
∑n

i=1mi andMj =
∑j

i=1mi. For an element a0,k+M−n+1 in A⊗(k+M−n),
we have

f{g1,n}(a0,k+M−n+1) =
∑

(−1)εf(a0,i1 ⊗ g1(1⊗ ai1+1,i1+m1 ⊗ 1)⊗ · · ·

⊗ aij−1+Mj−1−(j−1)+2,ij+Mj−1−j+1

⊗ gj(1⊗ aij+Mj−1−j+2,ij+Mj−j+1 ⊗ 1)⊗ · · ·
⊗ ain+M−n+2,k+M−n+1).

(11)

5. Homotopy Gerstenhaber algebra

The purpose of this section is to observe that the brace algebra with multiplica-
tion structure on CH∗

Hopf(A,A) induces a homotopy Gerstenhaber algebra structure
(Corollary 5.1). The underlying cochain complex of this homotopy Gerstenhaber alge-
bra is canonically isomorphic to the Hopf-Hochschild cochain complex of A (Corol-
lary 5.3).

5.1. Homotopy G-algebra

Recall from [10, Definition 2] that a homotopy G-algebra (V, d,∪) consists of a
brace algebra V = ⊕V n, a degree +1 differential d, and a degree 0 associative ∪-
product that makes V into a differential graded algebra, satisfying the following two
conditions.

1. The ∪-product is required to satisfy the condition

(x1 ∪ x2){y1,n} =

n∑
k=0

(−1)εx1{y1,k} ∪ x2{yk+1,n},

where ε = |x2|
∑k

p=1 |yp|, for xi, yj ∈ V .
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2. The differential is required to satisfy the condition

d(x{x1,n+1})− (dx){x1,n+1}

− (−1)|x|
n+1∑
i=1

(−1)|x1|+···+|xi−1|x{x1, . . . , dxi, . . . , xn+1}

= (−1)|x||x1|+1x1 ∪ x{x2,n+1} − x{x1,n} ∪ xn+1

+ (−1)|x|
n∑

i=1

(−1)|x1|+···+|xi−1|x{x1, . . . , xi ∪ xi+1, . . . , xn+1}.

5.2. Homotopy G-algebra from brace algebra with multiplication
A brace algebra with multiplication V = (V,m) gives rise to a homotopy G-algebra

(V, d,∪) [10, Theorem 3], where the ∪-product and the differential are defined as:

x ∪ y = (−1)deg xm{x, y},
d(x) = m{x} − (−1)|x|x{m}.

(12)

In particular, this applies to the brace algebra CH∗
Hopf(A,A) with multiplication π

(Corollary 4.1).

Corollary 5.1. For an H-module-algebra A, C = (CH∗
Hopf(A,A), d,∪) is a homotopy

G-algebra.

5.3. Comparing differentials
There are two differentials on the graded vector space CH∗

Hopf(A,A), namely, the
differential dn (12) induced by the multiplication π and the Hopf-Hochschild differ-
ential dnCH (2). The following result ensures that the cohomology modules defined by
these two differentials are the same.

Theorem 5.2. The equality

dnCH = (−1)n+1dn

holds for each n.

Proof. Pick f ∈ CHn
Hopf(A,A). Then we have

dnf = π{f}+ (−1)nf{π}

= (−1)n−1γ(π; Id, f) + γ(π; f, Id) + (−1)n
n∑

i=1

(−1)i−1γ(f ; Idi−1, π, Idn−i).

It follows that

(−1)n+1dnf = γ(π; Id, f) + (−1)n+1γ(π; f, Id) +
n∑

i=1

(−1)iγ(f ; Idi−1, π, Idn−i). (13)

Observe that [14]

g(a0,n+1) = a0g(1⊗ a1,n ⊗ 1)an+1 (14)

for g ∈ CHn
Hopf(A,A). Using (14) and applying the various terms in (13) to an element
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a0,n+2 ∈ CBn+1(A) = A⊗(n+3), we obtain

γ(π; Id, f)(a0,n+2) = f(a0a1 ⊗ a2,n+2),

γ(π; f, Id)(a0,n+2) = f(a0,n ⊗ an+1an+2),

γ(f ; Idi−1, π, Idn−i)(a0,n+2) = f(a0,i−1 ⊗ aiai+1 ⊗ ai+2,n+2).

(15)

The Theorem now follows immediately from (13) and (15).

Corollary 5.3. There is an isomorphism of cochain complexes,

(CH∗
Hopf(A,A), dCH) ∼= (CH∗

Hopf(A,A), d)

x 7→ (−1)
n(n+1)

2 x,

for x ∈ CHn
Hopf(A,A). In particular, the cohomology modules on CH∗

Hopf(A,A) defined
by the differentials dCH and d are equal.

6. Gerstenhaber algebra

The purpose of this section is to observe that the homotopy G-algebra structure on
CH∗

Hopf(A,A) gives rise to a G-algebra structure on the Hopf-Hochschild cohomology
modules HH∗

Hopf(A,A). Explicit formulas of these G-algebra operations are given
in (16).

6.1. Gerstenhaber algebra
Recall from [10, Section 2.2] that a G-algebra (V,∪, [−,−]) consists of a graded

vector space V = ⊕V n, a degree 0 associative ∪-product, and a degree −1 graded Lie
bracket

[−,−] : V m ⊗ V n → V m+n−1,

satisfying the following two conditions:

x ∪ y = (−1)deg x deg yy ∪ x,
[x, y ∪ z] = [x, y] ∪ z + (−1)|x| deg yy ∪ [x, z].

In other words, the ∪-product is graded commutative, and the Lie bracket is a graded
derivation for the ∪-product. In particular, aG-algebra is a graded version of a Poisson
algebra. This algebraic structure was first studied by Gerstenhaber [8].

6.2. G-algebra from homotopy G-algebra
If (V, d,∪) is a homotopy G-algebra, one can define a degree −1 operation on V as

[x, y]
def
= x{y} − (−1)|x||y|y{x}.

Passing to cohomology, (H∗(V, d),∪, [−,−]) becomes a G-algebra ([10] Corollary 5
and its proof).

Combining the previous paragraph with Corollary 5.1 and Corollary 5.3, we obtain
the following result.

Corollary 6.1. The Hopf-Hochschild cohomology modules HH∗
Hopf(A,A) of an H-

module-algebra A admits the structure of a G-algebra.
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This G-algebra can be described on the cochain level more explicitly as follows.
Pick ϕ ∈ CHn

Hopf(A,A) and ψ ∈ CHm
Hopf(A,A). Then

(ψ ∪ ϕ)(a0,m+n+1) = (−1)m+n−1ψ(a0,m ⊗ 1)ϕ(1⊗ am+1,m+n+1),

[ψ,ϕ] = ψ{ϕ} − (−1)(m−1)(n−1)ϕ{ψ}.
(16)

Writing a = a0,m+n, we have

ψ{ϕ}(a) =
m∑
i=1

(−1)(i−1)(n−1)ψ(a0,i−1 ⊗ ϕ(1⊗ ai,i+n−1 ⊗ 1)⊗ ai+n,m+n),

ϕ{ψ}(a) =
n∑

j=1

(−1)(j−1)(m−1)ϕ(a0,j−1 ⊗ ψ(1⊗ aj,j+m−1 ⊗ 1)⊗ aj+m,m+n).

In particular, if m = n = 1, then the bracket operation

[ψ,ϕ](a0,2) = ψ(a0 ⊗ ϕ(1⊗ a1 ⊗ 1)⊗ a2)− ϕ(a0 ⊗ ψ(1⊗ a1 ⊗ 1)⊗ a2)

gives HH1
Hopf(A,A) a Lie algebra structure. There is another description of this Lie

algebra in terms of (inner) derivations in [14, Proposition 3.9].

7. Deligne’s Conjecture for module-algebras

The purpose of this section is to observe that a version of Deligne’s Conjecture
holds for the Hopf-Hochschild cochain complex of a module-algebra. The original
Deligne’s Conjecture for Hochschild cohomology is as follows.

Deligne’s Conjecture ([6]). The Hochschild cochain complex C∗(R,R) of an associa-
tive algebra R is an algebra over a suitable chain model of May’s little squares operad
C2 [17].

A positive answer to Deligne’s conjecture was given by, among others, McClure
and Smith [19, Theorem 1.1] and Kaufmann [13, Theorem 4.2.2]. There is an operad
H whose algebras are the brace algebras with multiplication (section 4.2). For an
associative algebra R, the Hochschild cochain complex C∗(R,R) is a brace algebra
with multiplication and hence an H-algebra. McClure and Smith showed that H is
quasi-isomorphic to the chain operad S obtained from the little squares operad C2 by
applying the singular chain functor, thereby proving Deligne’s Conjecture.

It has been observed that the Hopf-Hochschild cochain complex CH∗
Hopf(A,A) is

a brace algebra with multiplication (Corollary 4.1). Therefore, we can use the result
of McClure and Smith [19, Theorem 1.1] to obtain the following version of Deligne’s
Conjecture for module-algebras.

Corollary 7.1 (Deligne’s Conjecture for module-algebras). The Hopf-Hochschild
complex CH∗

Hopf(A,A) of an H-module-algebra A is an algebra over the McClure-
Smith operad H that is a chain model for the little squares operad C2.
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