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Abstract
We prove that the folk model structure on strict∞-categories

transfers to the category of strict ∞-groupoids (and more gen-
erally to the category of strict (∞, n)-categories), and that the
resulting model structure on strict ∞-groupoids coincides with
the one defined by Brown and Golasiński via crossed complexes.

Introduction

In [4], Brown and Golasiński build a model structure on the category of crossed
complexes. In an earlier work [5], Brown and Higgins established an equivalence
of categories between crossed complexes and strict ∞-groupoids, whence a model
structure on the latter category.

On the other hand, there is a “folk” model structure on strict∞-categories recently
discovered by Lafont, Worytkiewicz and the second author [10], which extends pre-
viously known model structures on categories [8] and 2-categories [9]. Note that this
model structure is also known as the “natural” or the “categorical” model structure
by various authors.

This immediately raised the questions whether the folk model structure on ∞-cat-
egories may be transferred to ∞-groupoids by inclusion, and in that case whether the
Brown-Golasiński model structure may be recovered this way.

The purpose of the present work is to show that both questions have affirmative
answers.

Our paper is organized as follows: In Section 1, we recall the basic definitions
of strict ∞-categories and strict ∞-groupoids. Then, in Section 2, we describe the
Brown-Golasiński model structure on crossed complexes and ∞-groupoids. In Sec-
tion 3, we prove the transfer theorem leading to the definition of the folk model
structure on strict ∞-groupoids. Our proof uses neither crossed complexes nor the
existence of the Brown-Golasiński model structure. Moreover, it also applies to the
category of strict (∞, n)-categories for a fixed n (that is ∞-categories such that every
m-arrow is invertible for m > n). Finally, in Section 4, we show that the two model
structures previously defined on ∞-groupoids are in fact the same.
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1. Strict ∞-groupoids

The purpose of this section is to introduce the definitions and notations about
strict ∞-groupoids and their weak equivalences that we will use in the sequel of this
paper. Our presentation is essentially the same as the one given in [2].

1.1. Globular sets
Let us denote by O the globular category, that is, the category generated by the

graph

0
σ0 //
τ0

// 1
σ1 //
τ1

// · · ·
σi−1 //
τi−1

// i
σi //
τi

// i+ 1
σi+1 //
τi+1

// . . .

under the coglobular relations

σi+1σi = τi+1σi and σi+1τi = τi+1τi, i > 0.

A globular set or ∞-graph is a presheaf on O. A globular set X amounts to a
diagram of sets

· · ·
sn+1 //
tn+1

// Xn+1

sn //
tn

// Xn

sn−1 //
tn−1

// · · ·
s1 //
t1

// X1

s0 //
t0

// X0

satisfying the globular relations

sisi+1 = siti+1 and tisi+1 = titi+1, i > 0.

For i > j > 0, we will denote by sij and tij the maps from Xi to Xj defined by

sij = sj · · · si−2si−1 and tij = tj · · · ti−2ti−1.

If X is a globular set, we will call X0 the set of objects of X and Xn for n > 0 the
set of n-arrows or n-cells. The notation u : x → y will mean that u is an n-arrow
for n > 1 whose source is an (n− 1)-arrow x (that is sn−1(u) = x) and whose target
is an (n− 1)-arrow y (that is tn−1(u) = y). We will say that two n-arrows u and v
are parallel if either n = 0, or n > 1 and u, v have same source and same target. For
i > j > 0, if u is an i-arrow, we will often write sj(u) for s

i
j(u) and similarly tj(u) for

tij(u).
If u and v are n-arrows, X(u, v) will denote the globular set whose k-arrows are the

(n+ k + 1)-arrows a of G such that sn(a) = u and tn(a) = v. In particular, X(u, v)0
is the set of (n+ 1)-arrows a : u → v in X.

1.2. Strict ∞-categories
An ∞-precategory is a globular set C endowed with maps

∗ij : (Xi, s
i
j)×Xj (t

i
j , Xi) → Xi, i > j > 0,

ki : Xi−1 → Xi, i > 1,
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such that

1. For every (u, v) in (Xi, s
i
j)×Xj (t

i
j , Xi) with i > j > 0, we have

si−1(u ∗ij v) =

{
si−1(v), j = i− 1

si−1(u) ∗i−1
j si−1(v), j < i− 1

;

2. For every (u, v) in (Xi, s
i
j)×Xj (t

i
j , Xi) with i > j > 0, we have

ti−1(u ∗ij v) =

{
ti−1(u), j = i− 1

ti−1(u) ∗i−1
j ti−1(v), j < i− 1

;

3. For every u in Xi with i > 0, we have

siki+1(u) = u = tiki+1(u).

For i > j > 0, we will denote by kji the map from Xj → Xi defined by

kji = ki · · · kj+2kj+1.

If u and v are n-arrows for n > 1 of an ∞-precategory, we will often write u ∗k v for
u ∗nk v. If u is an n-arrow, we will often write 1u for the iterated identity knm(u) in a
dimension m > n clear by the context.

Definition 1.1. A strict ∞-category is an ∞-precategory X such that the following
axioms are satisfied:

1. Associativity. For every (u, v, w) in (Xi, s
i
j)×Xj (t

i
j , Xi, s

i
j)×Xj (t

i
j , Xi) with

i > j > 0, we have

(u ∗j v) ∗j w = u ∗j (v ∗j w);

2. Exchange law. For every (u, u′, v, v′) in

(Xi, s
i
j)×Xj (t

i
j , Xi, s

i
k)×Xk

(tik, Xi, s
i
j)×Xj (t

i
j , Xi),

with i > j > k > 0, we have

(u ∗j u′) ∗k (v ∗j v′) = (u ∗k v) ∗j (u′ ∗k v′);

3. Units. For every u in Xi with i > 1 and every j such that i > j > 0, we have

u ∗j 1sj(u) = u = 1tj(u) ∗j u;

4. Functoriality of units. For every (u, v) in (Xi, s
i
j)×Xj (t

i
j , Xi) with i > j > 0,

we have the following equality between (i+ 1)-arrows:

1u∗jv = 1u ∗j 1v.

A morphism of strict ∞-categories or ∞-functor is a morphism of globular sets
compatible with the maps ∗ij and ki.

We will denote by ∞-Cat the category of ∞-categories. This category is a full
reflexive subcategory of the presheaf category of globular sets. Moreover, it is stable
under filtered colimits. Hence, by Theorem 1.46 of [1], ∞-Cat is locally presentable.

Note that if u and v are two n-arrows of a strict ∞-category C, the globular set
C(u, v) inherits a structure of strict ∞-category.
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1.3. Strict ∞-groupoids
Let C be a strict ∞-category and u an i-arrow for i > 1. For j such that 0 6 j < i,

a ∗ij-inverse v of u is an i-arrow such that sj(v) = tj(u) and tj(v) = sj(u), satisfying

u ∗j v = 1tj(u) and v ∗j u = 1sj(u).

It is easy to see that if it exists, such an inverse is unique. For i > j > 0, we will say
that C admits ∗ij-inverses if every i-arrow of C admits a ∗ij-inverse.

Definition 1.2. A strict ∞-groupoid is a strict ∞-category which admits ∗ij-inverses
for every i > j > 0. We will denote by ∞-Grp the full subcategory of ∞-Cat whose
objects are strict ∞-groupoids.

Let n > 0. A strict (∞, n)-category is a strict ∞-category which admits ∗ij-inverses
for every i > j > n. We will denote by (∞, n)-Cat the full subcategory of ∞-Cat
whose objects are strict (∞, n)-categories. Note that for n = 0 we recover the category
of strict ∞-groupoids.

The same argument as for ∞-Cat shows that ∞-Grp is a locally presentable
category.

If G is a strict ∞-groupoid and u is an i-arrow of G for i > 1, we will denote by
wi

j(u) or simply by wj(u) the ∗ij-inverse of u and by u−1 the ∗ii−1-inverse. Note that
if u and v are two n-arrows of a strict ∞-groupoid G, the strict ∞-category G(u, v)
is a strict ∞-groupoid.

Proposition 1.3. Let C be a strict ∞-category. Then the following assertions are
equivalent:

1. C is a strict ∞-groupoid;

2. C admits ∗ii−1-inverses for every i > 1;

3. C admits ∗i0-inverses for every i > 1;

4. For all i > 1, there exists j satisfying 0 6 j < i such that C admits ∗ij-inverses.

Proof. By induction, it suffices to show that for every i > j > k > 0, if C admits
∗jk-inverses, then C admits ∗ik-inverses if and only if it admits ∗ij-inverses. By using
the fact that the 2-graph

Ci

sij //

tij

// Cj

sjk //

tjk

// Ck

has a natural structure of 2-category, one can assume that k = 0, j = 1 and i = 2.
The result is thus a consequence of the following lemma.

Lemma 1.4. Let C be a 2-category whose 1-arrows are invertible. Then a 2-arrow is
invertible for horizontal composition (i.e., ∗20) if and only if it is invertible for vertical
composition (i.e., ∗21).

Proof. Let a : u → v be a 2-arrow. Suppose a admits a horizontal inverse a∗. Then
v ∗0 a∗ ∗0 u is a vertical inverse. Conversely, suppose a admits a vertical inverse a−1.
Then v−1 ∗0 a−1 ∗0 u−1 is a horizontal inverse.
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1.4. Weak equivalences of strict ∞-groupoids

Let G be a strict ∞-groupoid. An n-arrow u of G is homotopic to another n-arrow
v if there exists an (n+ 1)-arrow from u to v. This implies that the arrows u and v are
parallel. If u is homotopic to v, we will write u ∼ v. The relation ∼ is an equivalence
relation on Gn: the properties with respect to source and target of the maps kn+1,
wn

n−1 and ∗nn−1 imply respectively that ∼ is reflexive, symmetric and transitive.

Let us denote by Gn the quotient of Gn by ∼. The composition

∗nn−1 : Gn ×Gn−1 Gn → Gn

induces a map

∗nn−1 : Gn ×Gn−1 Gn → Gn,

thanks to the properties with respect to source and target of the composition ∗n+1
n−1.

For n > 1, we can thus define a groupoid $n(G) whose objects are (n− 1)-arrows
of G and whose morphisms are elements of Gn. It is clear that $n defines a functor
from the category of strict ∞-groupoids to the category of groupoids.

Definition 1.5. The set of connected components of G is

π0(G) = π0($1(G)) = G0.

For n > 1 and x an object of G, the n-th homotopy group of G at x is

πn(G, x) = π1($n(G), 1x) = Aut$n(G)(1x).

By functoriality of the $n’s, π0 induces a functor from the category of strict
∞-groupoids to the category of sets, and πn, for n > 1, induces a functor from the
category of pointed strict ∞-groupoids to the category of groups. By the Eckmann-
Hilton argument, the groups πn(G, x) are abelian for n > 2. More generally, if u and
v are two (n− 1)-arrows for n > 1 we set

πn(G, u, v) = Hom$n(G)(u, v) and πn(G, u) = πn(G, u, u).

Definition 1.6. A morphism f : G → H of strict ∞-groupoids is a weak equivalence
of strict ∞-groupoids if the map π0(f) : π0(G) → π0(H) is a bijection and if, for all
n > 1 and all object x of G, the morphism πn(f, x) : πn(G, x) → πn(H, f(x)) is a
group isomorphism. We will denote by Wgr the class of such weak equivalences.

Proposition 1.7. Let f : G → H be a morphism of strict ∞-groupoids. The following
conditions are equivalent:

1. f is a weak equivalence of strict ∞-groupoids;

2. π0(f) : π0(G) → π0(H) is a bijection, and for all n > 1 and every (n− 1)-arrow
u of G, f induces a bijection

πn(G, u) → πn(H, f(u));

3. $1(f) : $1(G) → $1(H) is an equivalence of categories, and for all n > 2 and
every pair (u, v) of parallel (n− 1)-arrows of G, f induces a bijection

πn(G, u, v) → πn(H, f(u), f(v));
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4. $1(f) : $1(G) → $1(H) is full and essentially surjective, and for all n > 2 and
every pair (u, v) of parallel (n− 1)-arrows of G, f induces a surjection

πn(G, u, v) → πn(H, f(u), f(v)).

Proof of 1 ⇒ 2. The case n = 1 is obvious. Let n > 2 and let u be an (n− 1)-arrow
of G. Set x = s0(u). The map

πn(G, x) → πn(G, u),

which sends an n-arrow a : 1x → 1x to the n-arrow 1u ∗0 a : u → u, is an isomorphism.
Moreover, f commutes with this isomorphism, that is, the square

πn(G, x)

��

// πn(G, u)

��
πn(H, f(x)) // πn(H, f(u))

is commutative. The map πn(G, u) → πn(H, f(u)) is thus a bijection for n > 2.

Proof of 2 ⇒ 3. Let n > 1 and let u, v be two parallel (n− 1)-arrows of G. Suppose
there exists an n-arrow a : u → v in G. The map

πn(G, u) → πn(G, u, v),

which sends an n-arrow b : u → u to the n-arrow a ∗n−1 b : u → v, is a bijection. More-
over, f commutes with this bijection, that is, the square

πn(G, u)

��

// πn(G, u, v)

��
πn(H, f(u)) // πn(H, f(u), f(v))

is commutative.
Thus to conclude it suffices to show that if there exists an n-arrow b : f(u) → f(v)

in H, then there exists an n-arrow a : u → v in G. It is clear when n = 1 by injectivity
of π0(f). Let n > 2 and let b : f(u) → f(v) be an n-arrow of H. Set x = sn−2(u). The

arrow 1f(u)−1 ∗n−2 b is an n-arrow of H from 1f(x) : f(x) → f(x) to f(u)
−1 ∗n−2

f(v) : f(x) → f(x). Since the map

πn−1(G, x) → πn−1(H, f(x))

is injective, there exists an n-arrow a′ of G from 1x to u−1 ∗n−2 v. Then a = 1u ∗n−2 a
′

is an n-arrow of G from u to v.

Proof of 3 ⇒ 1. Obvious.

Proof of 4 ⇒ 3. Let n > 1, let u, v be two parallel (n− 1)-arrows of G and let a, b
be two n-arrows from u to v. Suppose we have f(a) = f(b) in πn(H, f(u), f(v)). Then
there exists an (n+ 1)-arrow of H from f(a) to f(b). By surjectivity of the map

πn+1(G, a, b) → πn+1(H, f(a), f(b)),

there exists an (n+ 1)-arrow in G from a to b. Thus a = b in πn(G, u, v).

Proof of 3 ⇒ 4. Obvious.
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2. The Brown-Golasiński model structure

In [4], Brown and Golasiński introduce a model category structure on the category
of crossed complexes. By the equivalence of categories between crossed complexes and
strict ∞-groupoids constructed in [5], this model structure induces a model structure
on strict ∞-groupoids. The purpose of this section is to describe this model structure.

2.1. Crossed complexes
Let us denote by Grp the category of groups and by CGrp>2 the category of

homological complexes of (not necessarily commutative) groups in dimension greater
or equal to 2, that is of sequences of morphisms of groups

· · · → Cn
dn−→ Cn−1 → · · · → C3

d3−→ C2

such that for every n > 4, we have dn−1dn = 1, where 1 denotes the unit element of
Cn−2. We have an inclusion functor i2 : Grp → CGrp>2 which sends a group G to
the complex concentrated in degree 2 on G.

Let C61 be a groupoid. We will denote by C0 its set of objects and by C1(x, y)
the set of morphisms from an object x to an object y in C61. Let C1 : C61 → Grp
be the functor defined in the following way: an object x of C61 is sent to the group
C1(x) = C1(x, x); a morphism u : x → y of C61 is sent to the morphism of conjugation
by u, i.e.,

C1(x) → C1(y)

v 7→ uvu−1.

Definition 2.1. A precrossed complex consists of

• A groupoid C61;

• A functor C>2 : C61 → CGrp>2;

• An augmentation of C>2 over C1, that is a natural transformation d2 : C>2 →
i2C1.

Explicitly, a precrossed complex is given by

• For every x in C0, a complex

C>2(x) = · · · → Cn(x)
dn−→ Cn−1(x) → · · · → C3(x)

d3−→ C2(x);

• For every x in C0, a morphism d2 : C2(x) → C1(x);

• For every n > 2 and every morphism u : x → y of C61, a morphism Cn(x) →
Cn(y) of groups functorial in u,

such that for every morphism u : x → y of C61, the diagram

// Cn(x)

��

dn // Cn−1(x)

��

// · · · // C2(x)
d2 //

��

C1(x)

��
// Cn(y)

dn // Cn−1(y) // · · · // C2(y)
d2 // C1(y),

where C1(x) → C1(y) is the conjugation by u, is commutative.
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If C is a precrossed complex we will denote by C(x) the augmented complex

· · · → Cn(x)
dn−→ Cn−1(x) → · · · → C3(x)

d3−→ C2(x)
d2−→ C1(x).

If u : x → y is a morphism of C61 and n > 1, we will call the map Cn(x) → Cn(y) the
action of u on Cn(x). In particular, an element of C1(x) acts on Cn(x) for all n > 1.

Definition 2.2. A precrossed complex C is a crossed complex if for all x in C0 the
following conditions are satisfied:

• For every n > 3, the group Cn(x) is abelian;

• For every u in C2(x), the element d2(u) of C1(x) acts

– By conjugation by u on C2(x);
– Trivially on Cn(x) for n > 3.

Definition 2.3. Let C and D be two crossed complexes. A morphism of crossed
complexes f : C → D consists of

• A functor f61 : C61 → D61;

• A natural transformation f>2 : C>2 → D>2f61,

such that f>2 is compatible with the augmentation, i.e., the square

C>2

d2

��

// D>2f61

d2f61

��
i2C1

// i2D1f61

is commutative.

Explicitly, a morphism f : C → D is given by

• A functor f61 : C61 → D61;

• For every n > 2 and every x in C0, a group morphism fn : Cn(x) → Dn(f0(x)),
where f0 denotes the restriction of f61 to objects,

such that for every x in C0, the diagram

// Cn(x)

fn

��

dn // Cn−1(x)

fn−1

��

// · · · // C1(x)

f1

��
// Dn(f0(x))

dn // Dn−1(f0(x)) // · · · // D1(f0(x)),

where f1 denotes the restriction of f61 to C1(x), is commutative. We will often simply
write f for fn.

We will denote the category of crossed complexes by CrC.

2.2. The equivalence with strict ∞-groupoids
Let G be a strict ∞-groupoid. One can associate to G a precrossed complex C in

the following way:

• The groupoid C61 is the 1-truncation of G obtained from G by throwing out
the n-arrows for n > 2;
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• Cn(x) is the set of n-arrows u of G whose source is an iterated unit of an object,
that is such that there exists an object x of G such that sn−1(u) = 1x;

• The group law on Cn(x) is induced by the composition ∗n0 : Gn ×G0 Gn → Gn;

• dn : Cn(x) → Cn−1(x) is induced by the target map tn−1 : Gn → Gn−1;

• For u : x → y a morphism in C61 and v a morphism in Cn(x) for n > 2, the
action of u on v is

u ∗0 v ∗0 w0(u).

This precrossed complex is a crossed complex (see paragraph 3 of [5]). Moreover, this
construction defines a functor A: ∞-Grp → CrC.

Theorem 2.4 (Brown-Higgins). The functor A: ∞-Grp → CrC is an equivalence
of categories.

Proof. See Theorem 4.1 of [5].

2.3. The model structure on crossed complexes

Definition 2.5. Let C be a crossed complex. The set of connected components of C
is

π0(C) = π0(C61).

For x in C0, the fundamental group of C at x is

π1(C, x) = Coker(d2 : C2(x) → C1(x)),

and for n > 2, the n-th homotopy group of C at x is

πn(C, x) = Hn(C(x)).

It is clear that π0 defines a functor from the category of crossed complexes to the
category of sets and that for n > 1, πn defines a functor from the category of pointed
crossed complexes to the category of groups.

Definition 2.6. A morphism f : C → D of crossed complexes is a weak equivalence
of crossed complexes (see [4]) if the map π0(f) : π0(C) → π0(D) is a bijection and if
for every x in C0 and every n > 1, the morphism πn(f, x) : πn(C, x) → πn(D, f(x)) is
an isomorphism.

Definition 2.7. Let f : C → D be a morphism of crossed complexes. The morphism
f is a trivial fibration of crossed complexes (see Proposition 2.2 (ii) of [4]) if the
following conditions are satisfied:

• For every y in D0, there exists x in C0 such that f(x) = y;

• For every x, y in C0 and every morphism v : f(x) → f(y) in D61, there exists
a morphism u : x → y in C61 such that f(u) = v;

• For every n > 2, x in C0, t in Cn−1(x) and every v in Dn(f(x)) such that
dn(v) = f(t), there exists u in Cn(x) such that dn(u) = t and f(u) = v.

Theorem 2.8 (Brown-Golasiński). The weak equivalences and trivial fibrations of
crossed complexes define a model category structure on the category of crossed com-
plexes.

Proof. See Theorem 2.12 of [4].
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2.4. The model structure on strict ∞-groupoids
One obtains a model category structure on strict ∞-groupoids by transferring

the model structure on crossed complexes defined in the previous section via the
equivalence of categories A: ∞-Grp → CrC. We will call this model structure the
Brown-Golasiński model structure. A morphism f of strict ∞-groupoids is a weak
equivalence (respectively a trivial fibration) for the Brown-Golasiński model structure
if and only if A(f) is a weak equivalence (respectively a trivial fibration) of crossed
complexes. We will denote these classes by Wcc and TFcc respectively.

We now describe these two classes more explicitly.

Proposition 2.9. We have Wcc = Wgr. In other words, a morphism f : G → H of
strict ∞-groupoids is a weak equivalence of strict ∞-groupoids if and only if the
morphism A(f) : A(G) → A(H) is a weak equivalence of crossed complexes.

Proof. Since the two notions of weak equivalences are defined in terms of homotopy
groups, it suffices to show that the two notions of homotopy groups coincide.

Let G be a groupoid. By definition, π0(G) = π0(A(G)).
Let x be an object of G. By definition, π1(A(G), x) is the cokernel of the morphism

A(G)2(x) → A(G)1(x). The set A(G)1(x) is the set of 1-arrows u : x → x in G, and
two such arrows u, u′ are identified in the cokernel if and only if there exists a 2-arrow
from 1x to u ∗0 u′−1

in G. This condition is equivalent to the existence of a 2-arrow
from u to u′. Hence π1(G, x) = π1(A(G), x).

Let n > 2. The kernel of the map dn : A(G)n(x) → A(G)n−1(x) is the set Gn(x, x).
Thus the same argument as in dimension 1 shows that πn(G, x) = πn(A(G), x).

Proposition 2.10. A morphism f : G → H of strict ∞-groupoids is in TFcc if and
only if it satisfies the following conditions:

• For every object y of H, there exists an object x of G such that f(x) = y;

• For every pair (x, y) of objects of G, the map

G(x, y)0 → G(f(x), f(y))0

induced by f is a surjection;

• For all n > 2, every object x of G and every (n− 1)-arrow u : 1x → 1x, the map

G(1x, u)0 → H(1f(x), f(u))0

is surjective.

Proof. By definition, f is in TFcc if and only if A(f) is a trivial fibration of crossed
complexes. This proposition is then just a matter of translation using the definition
of the functor A.

3. The folk model structure on ∞-Grp

This section shows that the folk model structure on∞-Cat defined in [10] transfers
to ∞-Grp via the inclusion functor

U : ∞-Grp → ∞-Cat.

We first give a brief review of the main results of [10] and introduce the material
needed to prove the transfer theorem.
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3.1. The folk model structure on ∞-Cat

Given an∞-category C, we define reversible cells in C and the relation of ω-equival-
ence between cells of C by mutual coinduction on n > 0.

Definition 3.1. Let n ∈ N:

• An n-cell x is ω-equivalent to an n-cell y if there is a reversible (n+ 1)-cell
u : x → y;

• An (n+ 1)-cell u : x → y is reversible if there is an (n+ 1)-cell ū : y → x such
that ū ∗n u is ω-equivalent to 1x and u ∗n ū is ω-equivalent to 1y.

Note that, for each r > 0, if two cells are r-equivalent in the sense of [12], then
they are ω-equivalent, with the converse being false. We also refer to [7] for a gentle
introduction to coinductive methods. Remark also that if G is an ∞-groupoid, any
(n+ 1)-cell u ofG is reversible and the cell ū whose existence is stated in Definition 3.1
is of course just u−1.

Let W denote the class of those morphisms f : C → D satisfying the following two
conditions:

1. For each 0-cell y in D, there is a 0-cell x in C such that fx is ω-equivalent to y;

2. For each pair (x, x′) of parallel n-cells in C, where n > 0 and each (n+ 1)-cell
v : fx → fx′, there is an (n+ 1)-cell u : x → x′ such that fu is ω-equivalent
to v.

Now for each n > 0, we define the n-globe On as the free ∞-category generated by
the representable globular set Y (n) = O(n,−). Thus Y (n) has exactly one n-cell,
two k-cells for each k < n and no k-cell for k > n. Let also ∂Y (n) be the globular set
having the same cells as Y (n) except in dimension n where (∂Y (n))n = ∅. We denote
by ∂On the free ∞-category on ∂Y (n). We finally have, for each n > 0, an inclusion
morphism

in : ∂O
n → On.

The set {in | n ∈ N} is denoted by I.

A map is a trivial fibration if it has the right-lifting property with respect to I and
a cofibration if it has the left-lifting property with respect to all trivial fibrations.

Proposition 3.2. Any ∞-functor f factors as f = p ◦ k where p is a trivial fibration
and k is a cofibration.

Proof. By a standard application of the small object argument, using the fact that
∞-Cat is locally presentable.

On the other hand the maps σn, τn : n → n+ 1 in the globular category O (see
Section 1) induce corresponding maps from On to On+1, of the form in+1 ◦ σ̂n and
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in+1 ◦ τ̂n respectively, where σ̂n, τ̂n : O
n → ∂On+1. Moreover, we get a pushout dia-

gram

∂On
in //

in

��

On

σ̂n

��
On

τ̂n

// ∂On+1.

Now the above pushout determines a canonical map

on : ∂O
n+1 → On

such that on ◦ σ̂n = on ◦ τ̂n = idOn . Proposition 3.2 applies to on, yielding an object
Pn together with a trivial fibration pn : P

n → On and a cofibration kn : ∂O
n+1 → Pn

satisfying on = pn ◦ kn. We finally define jn : O
n → Pn as kn ◦ σ̂n and

J = {jn | n ∈ N}.

Theorem 3.3. There is a cofibrantly generated model structure on ∞-Cat where W
is the class of weak equivalences, I a set of generating cofibrations and J a set of
generating trivial cofibrations.

This statement is in fact [10, Theorem 4.39] and the main result of that article.

3.2. Path object
Let C be an object in a model category and ∆C : C → C × C be the diagonal map.

A path object for C consists in an object PC together with a factorization of ∆C of
the form

C
j //

∆C

44PC
p // C × C,

where p is a fibration and j is a weak equivalence. Such a PC is not unique: in the
case of ∞-Cat, one particular choice is given by the functor Γ we now describe. We
first define, by induction on n, the notion of n-cylinder between n-cells x, y of an
∞-category C. Some notation will be useful: for each n-cell x, we denote by x[ its
0-source s0x and by x] its 0-target t0x. Now let C be an ∞-category and x, y two
0-cells in it. There is an ∞-category C(x, y) whose n-cells are the (n+ 1)-cells u
of C such that u[ = x and u] = y. Whenever u is such an (n+ 1)-cell of C, we
denote by [u] the corresponding n-cell of C(x, y). Finally, let x, y, z be 0-cells of C.
Each 1-cell u : x → y determines an ∞-functor − · u : C(y, z) → C(x, z) given by [v] ·
u = [v ∗0 u]. Likewise, u : y → z determines an ∞-functor u · − : C(x, y) → C(x, z) by
u · [v] = [u ∗0 v].

Definition 3.4.

1. A 0-cylinder U : x y y in C is given by a reversible 1-cell U \ : x → y;

2. If n > 0, an n-cylinder U : x y y in C is given by two reversible 1-cells U [ : x[ →
y[ and U ] : x] → y], together with some (n− 1)-cylinder [U ] : U ] · [x] y [y] · U [

in the ∞-category [x[, y]] = C(x[, y]).
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Figure 1: n-cylinders for n = 0, 1
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Figure 2: Source and target of a 2-cylinder

If U : x y y is an n-cylinder in C, we write π1
C U and π2

C U for the n-cells x and
y, or simply π1 U and π2 U . Figure 1 represents n-cylinders for n = 0 and n = 1. For
each n ∈ N, any (n+ 1)-cylinder W : z y z′ in an ∞-category C determines a pair of
n-cylinders in C:

Definition 3.5. The source n-cylinder U : x y x′ and the target n-cylinder V : y y
y′ of the (n+ 1)-cylinder W : z y z′ between (n+1)-cells z : x → y and z′ : x′ → y′

are defined inductively by:

• If n = 0, then U \ = W [ and V \ = W ];

• If n > 0, then U [ = V [ = W [ and U ] = V ] = W ], whereas the two (n− 1)-cylin-
ders [U ] and [V ] are respectively defined as the source and the target of the
n-cylinder [W ] in the ∞-category [z[, z′]].

If W has source U and target V we write W : U → V or W : U → V | z y z′ (see
Figure 2). It turns out that the source and target maps so defined satisfy the globular
relations, so that the correspondence

n 7→ {U | U is an n-cylinder in C}

determines a globular set Γ(C). We now turn to trivial n-cylinders:

Definition 3.6. The trivial n-cylinder τ x : x y x on the n-cell x is defined induc-
tively by:

• If n = 0, then (τ x)\ = 1x;

• If n > 0, then (τ x)[ = 1x[ and (τ x)] = 1x] , whereas [τ x] is the trivial cylinder
τ [x] in [x[, x]].
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We write τC x in case we need to mention the ambient ∞-category C.
Let us finally recall from [10, Appendix A] that Γ(C) becomes a strict ∞-category

when defining units and compositions as follows:

Definition 3.7. Let U : x y y be an n-cylinder. We define the (n+ 1)-cylinder 1U :
U → U | 1x y 1y by induction on n:

• If n = 0, then (1U )
[ = (1U )

] = U \, whereas [1U ] = τ [1U\ ];

• If n > 0, then (1U )
[ = U [ and (1U )

] = U ], whereas [1U ] = 1[U ].

In order to define composition, we first introduce the operation of concatenation:

Definition 3.8. Let U | x y y and V | y y z be two n-cylinders. The concatenation
V ∗ U | x y z of U and V is defined by induction on n:

• If n = 0, then (V ∗ U)\ = V \ ∗0 U \;

• If n > 0, then (V ∗ U)[ = V [ ∗0 U [, (V ∗ U)] = V ] ∗0 U ] and [V ∗ U ] = [V ] · U [∗
V ] · [U ].

Definition 3.9. Let m > 1, 0 6 n < m and U | x y x′, V | y y y′ two m-cylinders
such that tn(U) = sn(V ). The composition V ∗n U | y ∗n x y y′ ∗n x′ is defined by
induction on n as follows:

• (V ∗0 U)[ = U [, (V ∗0 U)] = V ] and [V ∗0 U ] = y′ · [U ] ∗ [V ] · x;
• If n > 0, then (V ∗n U)[ = U [ = V [, (U ∗n V )] = U ] = V ] and [V ∗n U ] =

[V ] ∗n−1 [U ].

Note that explicit formulas may be found in [11].
For example, Figure 3 below shows the composition V ∗0 U of two 1-cylinders

U : x y x′ and V : y y y′ such that U ] = V [. Precisely, the composite V ∗0 U is the
1-cylinder W : z y z′ where z = y ∗0 x, z′ = y′ ∗0 x′, W [ = U [, W ] = V ], and the
0-cylinder [W ] of C(z[, z′]) is the reversible 1-cell of C(z[, z′]) given by the following
corresponding reversible 2-cell of C:

W \ = (y′ ∗0 U \) ∗1 (V \ ∗0 x).

y] y[ = x] x[
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Figure 3: Composition of 1-cylinders

The following result summarizes the main properties of Γ:

Theorem 3.10. The correspondence C 7→ Γ(C) induces an endofunctor on ∞-Cat,
and π1, π2 : Γ → id, τ : id → Γ are natural transformations.
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An additional property, of particular importance here, is that the functor Γ pre-
serves ∞-groupoids:

Lemma 3.11. If G is an ∞-groupoid, so is Γ(G).

Proof. We show, by induction on n > 1, that if G is an ∞-groupoid and W : U →
V | x y y is an n-cylinder of G, there is an n-cylinder W ′ : V → U | x−1 y y−1 such
that W ′ ∗n−1 W = 1U and W ∗n−1 W

′ = 1V .
Let G be an ∞-groupoid and W : U → V | x y y a 1-cylinder of G. By definition,

we get two 1-cells U \ : x[ → y[, V \ : x] → y] and a 2-cell W \ : V \ ∗0 x → y ∗0 U \ in

G. Consider W \−1
: y ∗0 U \ → V \ ∗0 x the ∗1-inverse of W \ and build

y−1 ∗0 W \−1 ∗0 x−1 : U \ ∗0 x−1 → y−1 ∗0 V \.

If W ′ : V → U | x−1 y y−1 is the 1-cylinder of G defined by

W ′\ = y−1 ∗0 W \−1 ∗0 x−1,

we get

W ′ ∗0 W = 1U and W ∗0 W ′ = 1V ,

which proves the case n = 1.
Let n > 1 and suppose that the property holds for n− 1. Let G be an ∞-groupoid

and W : U → V | x y y an n-cylinder of G. We get 1-cells W [ : x[ → y[, W ] : x] → y]

and an (n− 1)-cylinder [W ] : [U ] → [V ] | W ] · [x] y [y] ·W [ in H = [x[, y]]. Now H
is an ∞-groupoid, so that the induction hypothesis applies and there is an (n− 1)-
cylinder in H

[W ]
′
: [V ] → [U ] | W ] ·

[
x−1

]
y

[
y−1

]
·W [

such that [W ]
′ ∗n−2 [W ] = 1[U ] and [W ] ∗n−2 [W ]

′
= 1[V ]. Hence we may define an

n-cylinder W ′ of G by W ′[ = W [, W ′] = W ] and [W ′] = [W ]
′
. By construction

W ′ ∗n−1 W = 1U and W ∗n−1 W
′ = 1V .

Remark 3.12. Let n > 0. The proof of the previous lemma actually shows that if G
is a strict (∞, n)-category, then so is Γ(G).

3.3. Immersions
We now introduce a class of morphisms which plays an important part in the proof

of the transfer theorem.

Definition 3.13. An ∞-functor f : C → D belongs to the class Z of immersions
if and only if there exist ∞-functors g : D → C and h : D → Γ(D) satisfying the
following properties:

1. g is a retraction of f , that is g ◦ f = idC ;

2. π1
D ◦ h = f ◦ g and π2

D ◦ h = idD;

3. h ◦ f = τD ◦ f . In other words, h is trivial on f(C).

The following proposition summarizes the properties of immersions we need here.
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Figure 4: Immersions

Proposition 3.14. The class Z of immersions satisfies the following properties:

(i) Z is closed by pushout;

(ii) All trivial cofibrations are immersions;

(iii) All immersions are weak equivalences.

We refer to [10, Section 4.6] for the proofs of these statements.

3.4. Transfer
Let C, D be two categories and L : C → D, R : D → C be a pair of functors with

L left adjoint to R and suppose that C is equipped with a model structure. We may
define three classes of maps of D as follows:

• For each morphism f of D, f ∈ WD if and only if R(f) is a weak equivalence
in C;

• For each morphism f of D, f ∈ FD if and only if R(f) is a weak equivalence in
C;

• CD is the class of maps having the left-lifting property with respect toWD ∩ FD.

We say that R creates a model structure on D if WD, FD and CD are respec-
tively the weak equivalences, fibrations and cofibrations of a model structure on D.
Sufficient conditions for this transfer to hold are given by [3, Proposition 2.3] or
[6, Theorem 3.3]. The latter result immediately specializes to the following state-
ment:

Proposition 3.15. Let C a cofibrantly generated model structure, with I a set of
generating cofibrations and J a set of generating trivial cofibrations. If D is locally
presentable, then the following conditions are sufficient for R to create a model struc-
ture on D:

(C1) The weak equivalences of C are closed under filtered colimits;

(C2) R preserves filtered colimits;

(C3) For each generating trivial cofibration j of C, if g is a pushout of L(j) in D,
then R(g) is a weak equivalence of C.

Moreover, if these conditions hold, the model structure so defined is cofibrantly gener-
ated and has L(I) as a set of generating cofibrations and L(J) as a set of generating
trivial cofibrations.

We now turn to the particular case where C = ∞-Cat, D = ∞-Grp and R is the
inclusion functor U : ∞-Grp → ∞-Cat. Note that U has a left-adjoint F : ∞-Cat →
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∞-Grp building the free ∞-groupoid on an ∞-category, as well as a right-adjoint M ,
building to the maximal ∞-groupoid in an ∞-category. Let us first establish a few
properties about the adjunction F a U .

Let T be the monad UF on ∞-Cat. Remark that, for any ∞-groupoid G, the free
∞-groupoid on the underlying ∞-category U(G) is naturally isomorphic to G itself.
In other words, the counit ε : FU → 1 is a natural isomorphism. It follows that, for
any ∞-groupoid G, we get an isomorphism

ηU(G) : U(G) → UFU(G), (1)

where η denotes the unit of the adjunction. Now, for each ∞-category C, T (C) is of
the form U(G) where G is an ∞-groupoid and so is ΓT (C) by Lemma 3.11, so that

ηΓT (C) : ΓT (C) → TΓT (C)

is an isomorphism, as a special case of (1). Thus, we may define a natural transfor-
mation

λ : TΓ → ΓT

by

λC = η−1
ΓT (C) ◦ TΓ(ηC).

Note also that the monad multiplication µ : T 2 → T is also a natural isomorphism,
and we get

T (ηC) = ηT (C) = µ−1
C .

We may now state the following result:

Lemma 3.16. The monad T preserves immersions.

Proof. Let f : C → D be an immersion, and f ′ = T (f). By Definition 3.13, there are
g : D → C and h : D → Γ(D) such that

g ◦ f = idC ,

π1
D ◦ h = f ◦ g,

π2
D ◦ h = idD, (2)

h ◦ f = τD ◦ f.

Let g′ = T (g) and h′ = λD ◦ T (h). We need to establish the following equations:

g′ ◦ f ′ = idT (C), (3)

π1
T (D) ◦ h

′ = f ′ ◦ g′, (4)

π2
T (D) ◦ h

′ = idT (D), (5)

h′ ◦ f ′ = τT (D) ◦ f ′. (6)

Equation (3) is just functoriality. Let us prove (4). First remark that π1 is a natural
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transformation, so that the following diagram commutes:

Γ(D)

Γ(ηD)

��

π1
D // D

ηD

��
ΓT (D)

π1
T (D)

// T (D).

(7)

We may now build the following commutative diagram:

TΓ(D)
T (π1

D) //

TΓ(ηD)

��
λD

��

T (D)

T (ηD)

��
idT (D)

��

TΓT (D)
T (π1

T (D))//

η−1
ΓT (D)

��

T 2(D)

η−1
T (D)

��
ΓT (D)

π1
T (D)

// T (D).

(8)

In fact the upper square is the image of (7) by T and the lower square commutes by
naturality of η. Hence

π1
T (D) ◦ h

′ = π1
T (D) ◦ λD ◦ T (h)

= T (π1
D) ◦ T (h)

= T (π1
D ◦ h)

= T (f ◦ g)
= f ′ ◦ g′,

which gives (4). Likewise, we get the following commutative diagram:

T (D)
T (h) //

idT (D) $$HH
HHH

HHH
H

h′

$$
TΓ(D)

λD //

T (π2
D)

��

ΓT (D),

π2
T (D)yyttttttttt

T (D)

where the left-hand triangle commutes by applying T to (2), and the right-hand
triangle commutes by replacing π1 with π2 in (8). Hence π2

T (D) ◦ h
′ = idT (D) and (5)

is proved. Finally, by using the naturality of τ instead of π1, we get a commutative
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diagram analogue to (8):

T (D)
T (τD) //

T (ηD)

��
idT (D)

��

TΓ(D)

TΓ(ηD)

��
λD

��

T 2(D)
T (τT (D))//

η−1
T (D)

��

TΓT (D)

η−1
ΓT (D)

��
T (D)

τT (D)

// ΓT (D).

Hence

h′ ◦ f ′ = λD ◦ T (h) ◦ T (f)
= λD ◦ T (h ◦ f)
= λD ◦ T (τD ◦ f)
= λD ◦ T (τD) ◦ f ′

= τT (D) ◦ f ′

which gives (6) and ends the proof.

Lemma 3.17. Let f : C → D be an immersion and suppose that the following square
is a pushout in ∞-Grp:

FC
u //

F (f)

��

G

g

��
FD v

// H.

Then U(g) is an immersion.

Proof. As U is left adjoint to M , it preserves pushouts, so that the following square
is a pushout in ∞-Cat:

TC
U(u) //

T (f)

��

UG

U(g)

��
TD

U(v)
// UH.

By Lemma 3.16, T (f) is an immersion and so is its pushout U(g), by Proposi-
tion 3.14(i).

Lemma 3.18. If j is a generating trivial cofibration of ∞-Cat, and g is a pushout
of F (j) in ∞-Grp, then U(g) is a weak equivalence of ∞-Cat.

Proof. Let j be a generating trivial cofibration of ∞-Cat, and g be a pushout of F (j)
in ∞-Grp. By Proposition 3.14(ii), j is an immersion and so is U(g), by Lemma 3.17.
By Proposition 3.14(iii), U(g) is a weak equivalence.

We may finally state the main result of this section:
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Theorem 3.19. The forgetful functor U : ∞-Grp → ∞-Cat creates a model struc-
ture on ∞-Grp in which the weak equivalences are the morphisms f such that U(f)
belongs to W. Moreover, the model structure so defined has (F (ik))k∈N as a family of
generating cofibrations and (F (jk))k∈N as a family of generating trivial cofibrations.

Proof. As the model structure on ∞-Cat is cofibrantly generated and ∞-Grp is
locally presentable, Proposition 3.15 applies, and it suffices to check conditions (C1),
(C2) and (C3). Condition (C1) is proved in [10], and condition (C2) follows from the
fact that U has a right-adjoint M , hence preserves colimits, and in particular filtered
ones. Condition (C3) is Lemma 3.18. The statement about generating families follows
from Proposition 3.15.

Remark 3.20. Using Remark 3.12, one can easily adapt the proof of the previous the-
orem to show that a similar theorem holds for strict (∞, n)-categories. In particular,
the inclusion functor (∞, n)-Cat → ∞-Cat creates a model structure on (∞, n)-Cat.

We call the model structure just defined the folk model structure on ∞-groupoids.
We denote its weak equivalences by Wfolk and its trivial fibrations by TF folk. Note
that a morphism f is in TF folk if and only if U(f) is a trivial fibration of ∞-Cat.

Proposition 3.21. A morphism f : G → H of ∞-groupoids belongs to TF folk if and
only if the following conditions are satisfied:

1. For every object y of H, there exists an object x of G such that f(x) = y;

2. For all n > 1 and every pair (u, v) of parallel (n− 1)-arrows of G, the map

G(u, v)0 → H(f(u), f(v))0

is surjective.

Proof. By definition, f belongs to TF folk if and only if U(f) has the right lifting
property with respect to I. This proposition is then just a matter of translation.

4. Comparison

In this section, we show that the folk model structure on strict∞-groupoids defined
in the previous section coincides with the Brown-Golasiński model structure. To see
this, it suffices to prove that they have the same weak equivalences and the same
trivial fibrations.

Proposition 4.1. We have Wgr = Wfolk = Wcc.

Proof. We first show that Wfolk = Wgr. In a strict ∞-groupoid, two n-arrows f and
g are ω-equivalent if and only if there exists an (n+ 1)-arrow a : f → g, that is if
and only if f and g are homotopic. Therefore a morphism of strict ∞-groupoids is in
Wfolk if and only if it satisfies condition 4 of Proposition 1.7. The statement is thus
exactly the equivalence between conditions 1 and 4 of this very proposition.

By Proposition 2.9, we have Wcc = Wgr, hence the result.

Proposition 4.2. We have TF folk = TFcc.
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Proof. To prove the equivalence between the two notions of trivial fibrations, we will
use the descriptions of these notions provided by Propositions 2.10 and 3.21. The
conditions for being in TF folk are a priori stronger. Let f : G → H be a in TFcc.
Let us prove it is actually in TF folk. There is nothing to prove for the conditions in
dimension 0 and 1. Let n > 2 and let u, v be two parallel (n− 1)-arrows. We want to
show that the map

G(u, v)0 → H(f(u), f(v))0

is surjective. Let b be an n-arrow from f(u) to f(v) in H. Set x = s0(u). Then
b′ = 1w0(f(u))

∗0 b is an n-arrow of H from 1f(x) to w0(f(u)) ∗0 f(v). Since the map

G(1x, w0(u) ∗0 v)0 → H(f(1x), f(w0(u) ∗0 v))0
is surjective, there exists an n-arrow a′ of G from 1x to w0(u) ∗0 v such that f(a′) = b′.
Then, the n-arrow a = 1u ∗0 a′ is from u to v, and we have

f(a) = f(1u ∗0 a′)
= 1f(u) ∗0 b′

= 1f(u) ∗0 1w0(f(u))
∗0 b

= b.

Theorem 4.3. The Brown-Golasiński model structure and the folk model structure
on strict ∞-groupoids coincide.

Proof. By the two previous propositions, these model structures have the same weak
equivalences and the same trivial fibrations.
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