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This paper presents empirical evidence supporting Goldfeld’s
conjecture on the average analytic rank of a family of quadratic
twists of a fixed elliptic curve in the function field setting. In par-
ticular, we consider representatives of the four classes of non-
isogenous elliptic curves over F q(t) with (q, 6) = 1 possessing
two places of multiplicative reduction and one place of addi-
tive reduction. The case of q = 5 provides the largest data set as
well as the most convincing evidence that the average analytic
rank converges to 1/2, which we also show is a lower bound
following an argument of Kowalski. The data were generated via
explicit computation of the L -function of these elliptic curves,
and we present the key results necessary to implement an al-
gorithm to efficiently compute the L -function of nonisotrivial
elliptic curves over F q(t) by realizing such a curve as a quadratic
twist of a pullback of a “versal” elliptic curve. We also provide
a reference for our open-source library ELLFF, which provides
all the necessary functionality to compute such L -functions, and
additional data on analytic rank distributions as they pertain to
the density conjecture.

1. INTRODUCTION

Goldfeld’s conjecture, in its original form, makes an as-
sertion about a family of elliptic curves over a num-
ber field and some form of rank. For example, if we
fix an elliptic curve E/Q and consider the set of its
quadratic twists ordered by (increasing) discriminant of
the twisting fields, then the conjecture asserts that the
average rank of the first n curves tends to the limit
1/2 as n tends to infinity. Recently, it was proved in
[Bhargava and Shankar, forthcoming] that the average
rank, if it exists, is less than 1.17, and in particular, a
positive proportion of elliptic curves over Q have rank
zero. This is essentially the best result we have thus far
toward Golfdeld’s conjecture over number fields.

In this paper, we will fix the rational function field
K = F q (t) as our base field and consider families of ellip-
tic curves over K for which we can calculate each family
member’s analytic rank. Little theoretical progress has
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been made when we consider the average rank of an “in-
creasing” sequence of curves, and the genesis of this paper
lies in a computational project to generate a rich data set
of L-functions for studying the (empirical) averages.

In the bulk of this paper we focus on some algorithms
of increasing complexity for explicitly calculating the L-
function L(E/K, s) for an elliptic curve E/K; the in-
creasing complexity allows for increased speed but at the
cost of increasing the disk and memory space require-
ments. In contrast to L-functions over number fields,
these L-functions have the remarkable property that if
we define a new variable T by T = q−s , then we can
represent the L-function as a polynomial L(E/K, T ) ∈
1 + T · Z[T ]. The analytic rank of E/K is simply the
order of vanishing at s = 1 (T = 1/q), and hence the
analytic Goldfeld’s conjecture requires only a minuscule
amount of the information present in each L-function.1

However, there are many other questions one can ask
about how L(E/K, T ) varies with E/K, so we hope that
our database and algorithms will prove useful for others.

For the calculation of a single L-function, one can
use the theory outlined in the first two subsections of
Section 2. We follow the usual approach for calculating
the L-function by expressing it as an Euler product; the
terms of the product are indexed by valuations in K,
i.e., by monic irreducibles in the polynomial ring F q [t]
and a point at infinity. The Euler product is infinite, but
there is a finite collection of Euler factors that completely
determine L(E/K, T ). To compute the L-function as ef-
ficiently as possible (in this approach), we want to mini-
mize the size of this collection (e.g., by using a functional
equation) and the cost of computing a single Euler factor.

Those who have experience computing quadratic
twists know that the cost of computing an Euler factor
for a twist is much cheaper if one knows the Euler factor
for the original curve, the work being reduced to com-
puting a Legendre symbol. A similar efficiency emerges
when we consider pullbacks, i.e., when we replace K with
a finite extension L/K: almost all of the Euler factors
for L(E/L, T ) can be cheaply calculated from the Euler
factors of L(E/K, T ). In fact, for each q, there is an ellip-
tic curve E0 over F = F q (j) such that every E/K may
be written as the combination of a pullback of E0 to K

(via the embedding F → K induced by j �→ j(E)) and a

1 The Birch–Swinnerton-Dyer conjecture asserts that the algebraic
(Mordell–Weil) and analytic ranks are the same, so someone who
likes looking for points may want to comb our database for curves
of rank preferably at least two and try their hand at producing
points.

twist (by quadratic L/K). In particular, the Euler factors
for L(E/K, T ) may be cheaply computed from the Euler
factors of L(E0/F, T ), and the second half of Section 2
explains this in detail.

The upshot is that whenever we construct a new curve
E/K as a pullback or twist of another curve E0/F ,
then the additional cost of computing L(E/K, T ) using
a precomputed table of sufficiently many Euler factors
for L(E0/F, T ) is much cheaper than if we computed
L(E/K, T ) from scratch. We have written a library for
calculating L-functions whose core routines use the meth-
ods we outline in Section 2, and recently, we provided the
wrapper routines for it to be used within Sage.2 The li-
brary is called ELLFF (for elliptic L-functions over func-
tion fields), and we describe its basic structure in Section
3. We used our code to gather data to empirically study
Goldfeld’s conjecture in the function field setting, and
we report a summary of these data and observations in
Section 4.

2. THEORETICAL FRAMEWORK

2.1. Elliptic Curves

Fix a prime power q relatively prime to 6. Let K = F q (t)
be the function field of the curve P 1/F q , OK = F q [t]
the affine coordinate ring of P 1 − {∞}, O∞ = F q [u] the
affine coordinate ring of P 1 − {0}, and u = 1/t ∈ K. We
identify the set of closed points |P 1 | = {π} with the set
formed by the closed point π = ∞ together with the
monic irreducibles π ∈ F q [t] of positive degree, and we
write F π for the residue field. For π = ∞ we identify F π

with the quotient field F q [u]/u, and otherwise we identify
F π with the quotient field F q [t]/π.

Let E/K be an elliptic curve. Up to a change of co-
ordinates, we may represent our elliptic curve as the
projective plane curve given by the affine curve y2 =
x3 + ax + b, where a, b ∈ K, together with the point at
infinity. The discriminant Δ = 4a3 + 27b2 and j-invariant
j = 6912a3/Δ are rational functions in t, i.e., elements of
K, and Δ �= 0.

Up to a change of coordinates (x, y) �→ (x/g2 , y/g3)
with g ∈ K×, we may assume that a, b ∈ OK and that
degt(Δ) is minimal, because OK is a principal ideal
domain, and we write Δπ = Δ for π �= ∞. There is a
unique integer e such that the substitution (t, x, y) �→
(1/u, x/u2e , y/u3e) yields a model of E over F q [u] sat-
isfying similar conditions, and we write Δ∞ for the

2 Available at http://www.sagemath.org.
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discriminant of this model. We glue the two models to-
gether over the annulus P 1 − {0,∞} to form the so-called
minimal Weierstrass model E → P 1 ; it is the identity
component of the so-called Néron model of E.

For each π, we write E/F π for the fiber of E → P 1

over π. If π �= ∞, then it is the projective plane curve
given by “reducing modulo π” the model for E over OK ,
while for π = ∞, we use the model for E over F q [u]. Then
E/F π is a smooth curve if and only if the image of Δπ in
F π is nonzero; otherwise, it has a unique singular point.
We write M for the finite subset of π such that E/F π is
singular with a node, A for the finite subset such that
E/F π is singular with a cusp, and U for the open com-
plement P 1 − M − A; they are the loci of multiplicative,
additive, and good reduction respectively of E → P 1 . We
recall that if π �= ∞ ∈ M ∪ A, then π ∈ M if and only if
the image of b in F π is nonzero, and a similar criterion
holds if π = ∞ ∈ M ∪ A.

We decompose M into the subset M+ of π for which
the slopes of the two branches through the node of E/F π

are rational over F π and the subset M− for the comple-
ment M − M+; they are the loci of split and nonsplit
reduction respectively. The following lemma gives a cri-
terion for deciding whether a given π �= ∞ ∈ M lies in
M+ or M−, while for π = ∞, one can use the model for
E over F q [u] to deduce a similar criterion.

Lemma 2.1. If π �= ∞ ∈ M , then π ∈ M+ if and only if
the image of 6b in F π is a square.

Proof. Over F π , our affine model specializes to

y2 = (x − c)2(x + 2c)

for some c �= 0 ∈ F π , and the node lies at (x, y) = (c, 0).
The substitution y = s · (x − c) and cancellation of (x −
c)2 leads to the curve s2 = x + 2c, the blowup of our orig-
inal curve at the node. The slopes of the two branches
are the s-coordinates of the points (x, s) = (c, s) that lie
on this curve, whence s = ±√

3c. In particular, the slopes
are rational over F π if and only if 3c is a square in F π .
In terms of the singular model, we see that the image of
b in F π is 2c3 , whence 3c is a square in F π if and only if
6b = 3c · (2c)2 is.

In the first three lines of Table 1, produced using
[Silverman 86, Table 15.1], we give criteria for determin-
ing the type of additive reduction E has over π ∈ A. In
the last line of the table we define a constant επ , which
will be used in the next section.

Kodaira symbol I∗n I∗0 II IV IV∗ II∗ III III∗

ordπ (Δπ ) 6 + n 6 2 4 8 10 3 9
j (mod π) ∞ �≡ ∞ 0 0 0 0 1728 1728

επ −1 −1 −1 −3 −3 −1 −2 −2

TABLE 1. Additive reduction information for E/K .

2.2. L -Functions

We keep the notation of the previous section and add the
assumption that j is nonconstant, i.e., that it lies in the
complement K − F q , and we remark that most of what
follows extends to the case that Δ (but not necessarily
j) is nonconstant.

For each π ∈ |U | and m ≥ 1, we write F πm for the
unique extension of F π of degree m, E(F πm ) for the set
of F πm -rational points of E/F π , and

aπm = qm deg(π ) + 1 − #E(F πm ).

For each π ∈ |U |, the zeta function of E/F π is given
by the exponential generating series

Z(T,E/F π ) = exp

( ∞∑
m=1

#E(F πm )
Tm

m

)
. (2–1)

It is a rational function in Q (T ) with denominator

(1 − T )(1 − qdeg(π )T )

and numerator

L(T,E/F π ) = 1 − aπ 1 T + qdeg(π )T 2 .

Because we assumed that j is nonconstant, the L-
function L(T,E/K) is a polynomial in Z[T ] with con-
stant coefficient 1 (cf. [Katz 02, bottom of p. 11]) and
satisfies

deg(L(T,E/K)) = deg(M) + 2 deg(A) − 4.

It has an Euler product expansion

L(T,E/K) =
∏

π∈|U |
L(T deg(π ) ,E/F π )−1 (2–2)

×
∏

π∈M +

(1 − T deg(π ))−1
∏

π∈M −
(1 + T deg(π ))−1 .

Using (2–1) and the formal identity

1
1 − αT

= exp

( ∞∑
n=1

(αT )n/n

)
,
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it is easy to show that

L(T deg(π ) ,E/F π )

= exp

( ∑
n≥1,deg(π )|n

deg(π) · aπn / d e g (π )
Tn

n

)
.

Therefore, if we define

bn =
∑

π∈|U |
deg(π )|n

deg(π) · aπn / d e g (π ) +
∑

π∈M +

deg(π )|n

deg(π)

+
∑

π∈M −
deg(π )|n

deg(π)(−1)n/ deg(π ) ,

then we can rewrite (2–2) as

L(T,E/K) = exp

( ∞∑
n=1

bn
T n

n

)
. (2–3)

If we truncate the formal series expansion of the right
side of (2–3) by reducing modulo TN +1 for N ≥ 0, then
we obtain the congruence

L(T,E/K) ≡ exp

(
N∑

n=1

bn
T n

n

)
(mod TN +1). (2–4)

Thus L(T,E/K) (mod TN +1) is completely determined
by {bn : 1 ≤ n ≤ N} for N = deg(L(T,E/K)), and by
definition, this set is determined by the Euler factors
over π ∈ |P 1 | satisfying deg(π) ≤ N . In fact, by taking
the functional equation into consideration, as described
below, it suffices to take N = �deg(L(T,E/K))/2�.

If we write

L(T,E/K) =
N∑

n=0

cnT n for N = deg(L(T,E/K)),

then to recover c0 , . . . , cN from (2–4), it suffices to apply
the following lemma.

Lemma 2.2. If {c0 = 1} ∪ {bn , cn : 1 ≤ n ≤ N} are num-
bers satisfying

exp

(
N∑

n=1

bn
T n

n

)
≡

N∑
n=0

cnT n (mod TN +1),

then they satisfy the recurrence relation

cn =
1
n

n∑
m=1

bm · cn−m , n ≥ 1.

Proof. If we take the (formal) logarithmic derivative of
both sides of the assumed relation between the bn and cn

and clear denominators, then we obtain the relation(
N∑

n=1

bnT n

)(
N∑

n=0

cnT n−1

)
≡

N∑
n=1

ncnTn−1 (mod TN +1).

The lemma follows by expanding the left side and com-
paring the coefficients on each side.

As stated above, L(T,E/K) satisfies a functional
equation: there is ε(E/K) ∈ {±1} such that

L(T,E/K) = ε(E/K) · (qT )N · L(1/(q2T ), E/K),
(2–5)

and hence we have the relation

cn = ε(E/K) · q2n−N · cN −n , 0 ≤ n ≤ N. (2–6)

In the following lemma we write ( επ

π ) for the Legendre
symbol in F π of επ , defined in Table 1, and give a formula
for ε(E/K) (cf. [Hall 06, Corollary 5]).

Lemma 2.3.

ε(E/K) = (−1)#M + ·
∏
π∈A

(επ

π

)
.

Proof. This follows from calculations in [Rohrlich 96],
where the sign is the global root number of E/K and
is given by a product of local root numbers. If π ∈ |U |,
then the local root number is trivial by [Rohrlich 96,
Proposition 8] with τ = 1. If π ∈ M ∪ A, then we apply
[Rohrlich 96, Theorem 2 (ii), (iii)] with τ = 1 for the re-
maining cases. Note that if π is in A and does not have
Kodaira symbol I∗n with n > 0, then we need the assump-
tion that q is not divisible by 2 or 3.

We observe that the recurrence relation given by
Lemma 2.2 enables us to perform a consistency check
when trying to compute L(T,E/K): the bm and cm are
integers, so for each n ≥ 1, the integer

∑n
m=1 bm · cn−m

must be divisible by n. A second consistency check is to
compute cn for one or more n > �N/2� using the same
method as for smaller n and then to verify that (2–6)
holds. While one would not want to use the latter check
when computing large data sets, it is very useful for mak-
ing sure that the calculations are correct, because one can
use it to test a small subset of data.

2.3. Quadratic Twists

We continue the notation of the previous sections. Thus
we fix an elliptic curve E/K and a minimal Weierstrass
model y2 = x3 + ax + b of E over OK . For each f ∈ K×,
we define Ef /K to be the elliptic curve with affine model
y2 = x3 + f 2ax + f 3b.
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Lemma 2.4. Suppose L/K is an extension. If an el-
liptic curve over K is L-isomorphic to E, then it is
K-isomorphic to some Ef , and

√
f ∈ L. Conversely, if√

f ∈ L, then E and Ef are L-isomorphic.

Proof. If y2 = x3 + a′x + b′ is an affine model for an
elliptic curve E′/K, then an L-isomorphism E → E ′

must take the form (x, y) �→ (x/c2 , y/c3) for some c ∈ L×

(see [Silverman 86, p. 50]); recall that j is nonconstant,
hence neither 0 nor 1728. In particular, a′ = c4a and
b′ = c6b, so f = c2 = b′/a′ lies in K× and E ′ = Ef . Con-
versely, if c = ±√

f ∈ L, then (x, y) �→ (x/c2 , y/c3) is an
L-isomorphism E → Ef .

The lemma implies that L = K(
√

f) is the smallest
extension over which E,Ef are L-isomorphic. Hence if
f lies in the complement K× − (K×)2 , then Ef /K is a
so-called quadratic twist of E/K.

Lemma 2.5. Ef ,Eg are K-isomorphic if and only if f =
gc2 for some c ∈ K×.

Proof. Replace E/K by Eg/K and apply the previous
lemma with L = K.

We define the family of polynomials

F = {f ∈ OK : f is monic, square-free, prime to Δ}

and write Fd ⊂ F for the subset of f satisfying deg(f) =
d. The previous lemma implies that the Ef are mutually
non-K-isomorphic for f ∈ F, while for a fixed d, we will
see that deg(L(T,Ef /K)) is independent of f ∈ Fd . The
latter fact would not be true if we dropped the condition
that f be relatively prime to Δ. As we will see, if α ∈
F×

q is a nonsquare, then L(T,Eαf /K) = L(−T,Ef /K),
which is why we restrict to monic f .

If f ∈ F, then one can easily verify that y2 = x3 +
f 2ax + f 3b is a minimal Weierstrass model for Ef over
OK with discriminant f 6 · Δ. There is a unique integer
e such that the substitution (t, x, y) �→ (1/u, x/ue, y/ue)
yields a minimal Weierstrass model for Ef over F q [u],
and we glue the models together over P 1 − {0,∞} to
construct the minimal Weierstrass model Ef → P 1 . We
write Mf and Af respectively for the divisors of multi-
plicative and additive reduction of Ef → P 1 .

We write A 1 for the complement P 1 − {∞}. If π ∈
|A 1 |, then one can easily verify that

Mf ∩ A 1 = M ∩ A 1

and

Af ∩ A 1 = (A ∩ A 1) ∪ {π ∈ |A 1 | : π|f}.
If π ∈ Mf ∩ A 1 , then one can also easily verify that
Ef /F π has the same splitting behavior as E/F π if and
only if the image of f is a square in F π , and otherwise it
has the opposite splitting behavior; that is,

M±
f ∩ A 1 =

{
π ∈ M± ∩ A 1 :

(
f

π

)
= ±1

}

∪
{

π ∈ M∓ ∩ A 1 :
(

f

π

)
= ∓1

}
.

If f ∈ Fd and d is even, then E and Ef are isomorphic over
F∞. On the other hand, if d is odd, then the Kodaira
symbols of E/F∞ and Ef /F∞ form an unordered pair
{S, S∗}, where S ∈ {In , II, III, IV}.

If we fix a nonsquare α ∈ F×
q and f ∈ F, then a similar

calculation for Eαf shows that the Kodaira symbols for
Ef and Eαf are the same for all π ∈ |P 1 |, so Mαf = Mf

and Aαf = Af . If π ∈ Af , then Ef and Eαf are isomor-
phic over F π . On the other hand, for every π ∈ |P 1 − Af |,
there is a unique quadratic twist of Ef /F π , which we call
the scalar twist, and it is easy to show that Eαf /F π is
isomorphic to Ef /F π if deg(π) = [F π : F q ] is even; oth-
erwise, it is the scalar twist. We call Eαf the scalar twist
of Ef .

2.4. L -Functions of Quadratic Twists

We continue the notation of the previous section and fix
an elliptic curve E/K and a quadratic twist Ef /K. If
Uf , Mf , and Af are the primes over which Ef has good,
multiplicative, and additive reduction respectively, then
we can use the results of Section 2.2 to infer that the
L-function L(T,Ef /K) has Euler product expansion

L(T,Ef /K) =
∏

π∈|Uf |
L(T deg(π ) ,Ef /F π )−1

×
∏

π∈M +
f

(1 − T deg(π ))−1 ×
∏

π∈M −
f

(1 + T deg(π ))−1 .

There is an important observation that relates this to
the Euler product expansion in (2–2) of L(T,E/K): if π

lies in U ∩ Uf and if χπ (f) ∈ {±1} denotes the Legendre
symbol of f (mod π), then

L(T,Ef /F π ) = L(χπ (f)T,E/F π ).

In particular, if one has precomputed sufficiently many
Euler factors for L(T,E/K), then for most of the Euler
factors of L(T,Ef /K), the cost of computing the factor
is essentially the cost of computing χπ (f).
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2.5. Pullbacks

We continue the notation of previous sections and fix
an elliptic curve E/K and a minimal Weierstrass model
y2 = x3 + ax + b of E over OK . We write M,A respec-
tively for the subsets of primes in K over which E has
multiplicative and additive reduction respectively.

We fix a rational function field L = F q (w) and a non-
constant element θ ∈ L, and we write θ∗ : K → L for the
embedding induced by sending t to θ. Let OL ⊂ L be the
integral closure of OK , and let O∞̄ ⊂ L be the integral
closure of O∞ ⊂ K. We call the primes of OL the finite
primes of L, and the primes of O∞̄ the infinite primes of
L. In general, OL is not F q [w] and O∞̄ is not the local
ring with uniformizer 1/w, but rather, the infinite primes
are the poles of θ. If π is a prime (finite or infinite) in
L, we write θ(π) for the corresponding prime in K, fπ

for the degree of inertia of π over θ(π), and eπ for the
ramification degree.

We write EL for the elliptic curve over L (eliding
the dependence on the choice of θ) with affine model
y2 = x3 + θ∗(a)x + θ∗(b), and thus the coefficients of the
model are rational functions in w when a, b are viewed
as elements of L via θ∗. A priori, this model is not a
minimal Weierstrass model of EL over OL , but if π is a
finite prime that is unramified in L or if θ(π) does not
lie in A, then the model is a minimal Weierstrass model
over the local ring Oπ . Similarly, if π ∈ O∞̄ is an infinite
prime, then a minimal Weierstrass model for E over O∞
is guaranteed to be a minimal Weierstrass model over
Oπ only if π is unramified over θ(π) or if ∞ does not lie
in A.

Now suppose that π is a prime of L such that π is ram-
ified over θ(π) and E has bad reduction over θ(π), and
let y2 = x3 + aπ x + bπ be a minimal Weierstrass model
of E over Oθ(π ) and let Δθ(π ) be the discriminant of
this model. If E has Kodaira type In over θ(π) and if
e = eπ (e being the unique integer used to obtain a model
for E over F q [u]), then y2 = x3 + θ∗(aπ )x + θ∗(bπ ) is a
minimal Weierstrass model of EL over Oπ with discrim-
inant Δπ = θ∗(Δθ(π )) and EL has Kodaira type Ien over
π. On the other hand, if θ(π) lies in A, then the Ko-
daira type of EL over π may differ from the Kodaira
type of E over θ(π) depending on e = eπ . More pre-
cisely, if E has Kodaira type I∗n over θ(π), then EL has
Kodaira type Ien or I∗en over π if e is even or odd re-
spectively. Otherwise, the discriminant Δπ for a minimal
Weierstrass model of EL over Oπ satisfies ordπ (Δπ ) ≡
e · ordθ(π )(Δθ(π )) (mod 12). Hence the Kodaira type of
EL over π is completely determined by the Kodaira type
of E over θ(π) and Table 1.

Aside from the fact that one can use pullbacks to gen-
erate new elliptic surfaces from old, the other important
role they play lies in the fact that every elliptic curve
over L with nonconstant j-invariant can be written as
a quadratic twist of the pullback of the “versal” elliptic
curve E/K with affine model

y2 = x3 − 108t

t − 1728
x +

432t

t − 1728
.

One can easily verify that this elliptic curve has j-
invariant t. Hence for an elliptic curve over L, one can
take θ to be the j-invariant and use Lemma 2.5 to in-
fer that an appropriate quadratic twist of the pullback
will be the original elliptic curve over L. We remark
that if

√
2 �∈ F q , this model is the twist of the model in

[Silverman 86, proof of Proposition III.1.4] by the quad-
ratic extension K(

√
2)/K. The latter model has split-

multiplicative reduction at t = ∞, while our model forces
ε(E/K) = −1. In both cases, the L-function has degree
1, and thus in our model, we have L(T,E/K) = 1 − qT .
One can verify that the point P = (4, 8) lies on E and
has height 1/2, and thus the Mordell–Weil and analytic
ranks of E are both equal to 1.

2.6. L -Functions of Pullbacks

We continue the notation of the previous section and fix
an elliptic curve E/K and a pullback EL/L. If UL , ML ,
and AL are the primes over which EL has good, mul-
tiplicative, and additive reduction respectively, then the
L-function L(T,EL/L) has Euler product expansion

L(T,EL/L) =
∏

π∈|UL |
L(T deg(π ) ,EL/F π )−1

×
∏

π∈M +
L

(1 − T deg(π ))−1 ×
∏

π∈M −
L

(1 + T deg(π ))−1 .

As in the case of quadratic twists, if one has computed
enough information for E/K, then it is relatively cheap to
compute most of the Euler factors of L(T,EL/L). More
precisely, if EL has good reduction over π and if E has
good reduction over p = θ(π), then

L(T,EL/F π ) = 1 − apf T + qdeg(π )T 2 ,

where fπ is the degree of inertia of π over p and apf π

can be determined by the expansion (2–1). In practice,
it is easier to keep track of apn for several n than to use
(2–1) directly, because among other reasons, it is difficult
to compare elements of F p with the corresponding sub-
field of F π = F pf π . Nonetheless, the amount of additional
work one must do is small, since “most” elements of F qn

have degree n over F q , and the upshot is that most of



368 Experimental Mathematics, Vol. 21 (2012), No. 4

the work of computing bn in the corresponding expansion
(2–3) for L(T,EL/L) is the cost of explicitly evaluating
the map θ : P 1(F qn ) → P 1(F qn ) for all elements in the
domain.

3. THE LIBRARY ELLFF

The discussion in Section 2.2 above naturally leads to
a naive algorithm to compute the L-function of a non-
isotrivial elliptic curve defined over a function field via
counting points on a finite number of its fibers. More-
over, if sufficiently many Euler factors have been com-
puted for the versal elliptic curve, one can realize a
given elliptic curve as a pullback and quadratic twist
and use the results of Sections 2.3–2.6 to significantly
reduce the number of fibers on which one needs to count
points. The authors have written a standalone C++ li-
brary called ELLFF built on Shoup’s number theory li-
brary [Shoup 09], which can be added as a module to
the free open-source mathematics software system Sage.
The package allows anyone to efficiently compute these
L-functions on their own.3

Internally, the library uses tables, computed on de-
mand, to represent Euler factors. If one asks for the L-
function of a curve, then the library demands the min-
imal number of tables necessary. One may also demand
and manipulate the tables directly, e.g., in order to study
how the sizes of special fibers vary. The library uses a
database in order to reduce the complexity of computing
a table, e.g., by returning a previously calculated copy of
the table or twisting a table for another curve with the
same j-invariant. A user whose database has the appro-
priate tables for the versal curve will benefit from such
reductions, and thus we have made available a modest
collection for download. Users may also save their own
tables in the database in order to facilitate calculating
tables for families of curves. For more information and
setup instructions, see http://ellff.sagemath.org.

4. COMPUTATIONS

Using the discussion from Section 2, a database of
L-functions was amassed for the family of quadratic
twists of the following four elliptic curves (with notation

3 The library currently allows for only characteristic not 2 or 3,
though handling these cases is straightforward and will be ad-
dressed in a future release.

consistent with that found in [Miranda and Persson 86]):

X222 : y2 = x3 − 27(t4 − t3 + t2)x (4–1)
+ 27(2t6 − 3t5 − 3t4 + 2t3),

X211 : y2 = x3 − 27t4x + 54t5(t − 2), (4–2)
X321 : y2 = x3 − 108t3(4t − 3)x + 432t5(8t − 9), (4–3)
X431 : y2 = x3 − t3(27t − 24)x + t4(54t2 − 72t + 16).

(4–4)

These are the only elliptic curves, up to isogeny, over
F q (t) with (q, 6) = 1 such that #M = 2 and #A = 1.
They are normalized so that ∞ ∈ M+, t ∈ A, and
t − 1 ∈ M , forcing the L-function to be trivial for each
of the curves. Note that the first curve is the Legendre
curve,4 given by the alternative model

X222 : y2 = x(x + t)
(
x + t2

)
.

For each of these curves, we considered all prime
q ∈ Q = {5, 7, . . . , 29} and computed the L-functions of
all the twists with bounded degree. The bound on the de-
gree was determined by considerations of computational
feasibility and depended on the size of the field of con-
stants. Table 2 lists the number of twists over F q of de-
gree d in each family Fd . This number does not depend
on which of the four curves above one considers. A blank
entry in the table denotes that the L-functions for all
twists for the given d and q were not determined due to
the computation requiring an excessive amount of time.

4.1. Goldfeld’s Conjecture

In 1979, Goldfeld conjectured an average value for the
analytic rank of a family of quadratic twists of a fixed
elliptic curve E/Q :

Conjecture 4.1. [Goldfeld 79] For D a discriminant,

lim
D→∞

∑
|d|<D r(Ed)

#{d : |d| < D} =
1
2
, (4–5)

where r(Ed) is the order of vanishing at s = 1 of the L-
function of the quadratic twist Ed/Q .

Goldfeld’s conjecture concerns the analytic rank of
an elliptic curve, though it is important to note that
many authors replace the analytic rank with the alge-
braic rank (i.e., the rank, as a free Z-module, of the
group E(K) of K-rational points on E modulo tor-
sion), invoking the Birch–Swinnerton-Dyer conjecture if

4 Strictly speaking, X222 is a twist by −t of the usual Legendre
curve model y2 = x(x − 1)(x − t).
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5 7 11 13 17 19 23 29
#F1 3 5 9 11 15 17 21 27
#F2 13 31 91 133 241 307 463 757
#F3 71 227 1019 1751 4127 5867 10691 22007
#F4 345 1573 11181 22729 70113 111421 213762 638121
#F5 1739 11033 123029 295523
#F6 8677 77203
#F7 43407
#F8 217009
#F9 1085075
All 1356339 90072 135329 320147 74496 117612 224937 660912

TABLE 2. Number of twists in Fd for q ∈ Q.

needed. For a survey of results on the average value
and variation of the (algebraic) ranks of elliptic curves
in a family of quadratic twists in the number field set-
ting, see [Rubin and Silverberg 02]. A more recent paper
[Bektemirov et al. 07] provides data for the average value
and distribution of the analytic ranks of elliptic curves
over Q ordered by conductor. Thus the reader should be
wary of concluding that the data presented therein ei-
ther support or undermine Goldfeld’s conjecture, which
considers the family of quadratic twists of a fixed elliptic
curve and not all elliptic curves with bounded conductor.

Goldfeld’s conjecture has a direct analogue in the func-
tion field setting: for an elliptic curve E over K, we set its
analytic rank r to be the order of vanishing of L(T,E/K)
at T = 1/q. Instead of considering all twists by d with
|d| < D, we consider those twists in F∗

D =
⋃

d≤D Fd and
let D grow to infinity as before:

Conjecture 4.2. For D a positive number,

lim
D→∞

∑
f∈F∗

D
r(Ef )

#F∗
D

=
1
2
, (4–6)

where r(Ef ) is the order of vanishing at s = 1 of the L-
function of the quadratic twist Ef /F q (t).

One would like a lower bound on the average ana-
lytic rank over the family of interest Fd analogous to that
found in [Goldfeld 79, Proposition 1, p. 114]. In contrast
to that proposition, where the average is taken over all
discriminants, here determining the average over Fd is
nontrivial. But using the functional equation, it is clear
that if in the limit, the average of the sign of the func-
tional equation over Fd is 0, then the average analytic
rank over Fd is at least 1/2. We next prove such a lower
bound using this line of argument.

We begin by letting M ∩ A 1 = {π1 , . . . , πr} be the fi-
nite primes where E/K has multiplicative reduction and
setting N = π1 · · ·πr .

Proposition 4.3. There exists εd ∈ {±1} such that for all
f ∈ Fd ,

ε(Ef /K) = εd · ε(E/K) ·
(

f

N

)
, (4–7)

where
( ·

N

)
is the Jacobi symbol of N .

Proof. We proceed by examining the contribution to the
sign from the places of bad reduction.

Case 1: If π ∈ A1 ∩ A 1 , then E/K and Ef /K have the
same Kodaira type at π. Thus there is no change to the
local contribution from ε(E/K) to ε(Ef /K) for such π.

Case 2: If π is a finite prime that divides f , then Ef has
reduction of type I∗0 over π. Thus the contribution to the
sign in this case is given by(επ ,f

π

)
=
(−1

π

)
≡ qdeg π (mod 4),

implying that the total contribution εf to the sign coming
from those π ∈ Af − A satisfies

εf ≡ qd (mod 4).

Thus the change in the local contribution from ε(E/K)
to ε(Ef /K) from these primes depends only on d.

Case 3: For π ∈ Mf ∩ A 1 = M ∩ A 1 , the splitness at π

changes if and only if ( f
π ) = −1. Thus the total change in

the local contribution from ε(E/K) to ε(Ef /K) is ( f
N ).

Case 4: For π = ∞, the reductions of E/K and Ef /K

are the same if d is even by the discussion in Section
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2.3. If d is odd, then the reduction depends only on the
leading coefficient of f . Thus the local contribution to
the sign is independent of f ∈ Fd , so the change in the
local contribution from ε(E/K) to ε(Ef /K) for π = ∞
depends only on d.

These cases exhaust all possible changes to the sign of
the functional equation introduced by twisting, yielding
equation (4–7).

Corollary 4.4.

1
#Fd

∑
f∈Fd

ε(Ef /K) =
εd · ε(E/K)

#Fd

∑
f∈Fd

(
f

N

)
.

Corollary 4.4 reduces the average of the sign of the
functional equation to the average of the Jacobi symbol
over Fd . The following proposition is due to private cor-
respondence with E. Kowalski:

Proposition 4.5. (Kowalski.) With notation as above, we
have

lim
d→∞

∑
f∈Fd

( f
N )

#Fd
= 0.

Proof. Unless stated otherwise, we write f, g, h ∈ F q [t]
for arbitrary monic polynomials. Write Δ = NN ′ and let
χΔ(f) be the characteristic function of those f that are
square-free and coprime to Δ. Setting

Ad =
∑
f∈Fd

(
f

N

)
,

we then have

Ad =
∑

deg(f )=d

χΔ(f)
(

f

N

)

and

#Fd =
∑

deg(f )=d

χΔ(f).

Let μ(·) be the Möbius function for polynomials.
If deg(g) > 0, then

∑
h |g μ(h) = 0, and otherwise,∑

h |g μ(h) = 1. Thus

f �→
∑
g 2 |f

μ(g) and f �→
∑

h |(Δ ,f )

μ(h)

are the characteristic functions for square-free polyno-
mials and polynomials coprime to Δ respectively, and
hence

χΔ(f) =
∑
g 2 |f

μ(g)
∑

h |(Δ ,f )

μ(h).

Note that if (g,Δ) �= 1, then the right-hand sum over
h vanishes, and hence we can restrict to g such that
(g,Δ) = 1. In particular, if we substitute into the above
expression for Ad and rearrange terms, we have

Ad =
∑
h |Δ

μ(h)
∑

deg(g)≤ d
2

(g ,Δ)=1

μ(g)
∑

g 2 h |f
deg(f )=d

(
f

N

)
.

If we write f = f1g
2h in the innermost sum, then we have

Ad =
∑
h |Δ

μ(h)
(

h

N

) ∑
deg(g)≤ d

2
(g ,Δ)=1

μ(g)
∑

deg(f1 )=e

(
f1

N

)
,

where e = d − 2 deg(g) − deg(h). Moreover, if we write
Be for the sum Be =

∑
deg(f )=e(

f
N ) and if we suppose

e ≥ deg(N), then

Be =
∑

α∈F q [t]/(N )

( α

N

) ∑
deg(f )=e

f≡α(mod N )

1

=
∑

α∈F q [t]/(N )

( α

N

)
qe−deg(N ) = 0

(because the last sum is a complete character sum).
Therefore, if we write e = d − 2δ − deg(h) e′ = 1

2 (d −
deg(N) − deg(h), and suppose e < deg(N), we then have

Ad =
∑
h |Δ

μ(h)
(

h

N

) ∑
e ′≤δ≤ d

2

∑
deg(g)=δ
(g ,Δ)=1

μ(g)Bd−2δ−deg(h) ,

where here e′ denotes 1
2 (d − deg(N) − deg(h)). Ob-

serve that for all e, δ ≥ 0, we have |Be | ≤ qe and
(
∑

deg(g)=δ 1) ≤ qδ . Thus for d ≥ 1,

|Ad | ≤
∑
h |Δ

μ(h)
∑

δ

qd−2δ−deg(h)
∑

deg(g)=δ
(g ,Δ)=1

1

≤
∑
h |Δ

μ(h)
∑

δ

qdeg(N )qd/2 � qdeg(N )+d/2 ,

where
∑

δ means summation over 1
2 (d − deg(N) −

deg(h)) ≤ δ ≤ d
2 and where the implied constant depends

on Δ and N . On the other hand, #Fd � qd , so

lim
d→∞

|Ad |
#Fd

� lim
d→∞

qdeg(N )−d/2 = 0,

proving the proposition.

This proposition then leads to the desired corollary:

Corollary 4.6. With notation as above, we have

lim
D→∞

∑
f∈F∗

D
r(Ef )

#F∗
D

≥ 1
2
.
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D 5 7 11 13 17 19 23 29
1 1.000 0.400 0.667 0.636 0.733 0.588 0.571 0.704
2 0.688 0.667 0.680 0.674 0.668 0.679 0.661 0.652
3 0.644 0.669 0.622 0.629 0.610 0.607 0.588 0.576
4 0.653 0.659 0.638 0.620 0.605 0.599 0.588 0.575
5 0.666 0.633 0.590 0.581
6 0.628 0.609
7 0.623
8 0.592
9 0.582

TABLE 3. μ(X222 , D) for q ∈ Q.

4.2. Average Analytic Rank Data

We define

μ(E,D) =

∑
f∈F∗

D
r(Ef )

#F∗
D

to be the average rank of the family of quadratic twists of
E up to degree D. This value was calculated for the four
elliptic curves discussed above with increasing D, and
the data are presented in Tables 3 through 6, where the
dependence of the average rank on D is made explicit.
As in the case of Table 2, an empty entry denotes that
those computations were not done.

Considering each table separately, we note that the
individual columns present the data pertaining to Gold-
feld’s conjecture. In particular, for the largest data sets
with q = 5, there is a slow convergence to the conjec-
ture value of 1/2. On the other hand, each row of a ta-
ble presents data relevant to [Katz and Sarnak 99], where
one lets q grow to infinity to determine that the conju-
gacy classes of the Frobenius automorphism are equidis-
tributed in the special orthogonal group of N × N matri-
ces with respect to Haar measure, where N is the degree
of the L-function.

D 5 7 11 13 17 19 23 29
1 0.333 0.400 0.444 0.636 0.467 0.588 0.571 0.481
2 0.688 0.556 0.540 0.549 0.527 0.568 0.562 0.545
3 0.598 0.601 0.533 0.579 0.536 0.562 0.526 0.524
4 0.662 0.562 0.543 0.534 0.529 0.532 0.525 0.521
5 0.586 0.565 0.525 0.538
6 0.634 0.539
7 0.554
8 0.581
9 0.535

TABLE 4. μ(X211 , D) for q ∈ Q.

D 5 7 11 13 17 19 23 29
1 0.333 0.400 0.444 0.636 0.600 0.471 0.571 0.481
2 0.562 0.556 0.540 0.618 0.590 0.580 0.587 0.585
3 0.690 0.570 0.577 0.605 0.583 0.565 0.552 0.558
4 0.625 0.609 0.569 0.574 0.559 0.555 0.551 0.543
5 0.618 0.571 0.553 0.554
6 0.602 0.569
7 0.587
8 0.568
9 0.556

TABLE 5. μ(X321 , D) for q ∈ Q.

We can also consider how the average rank varies
among each of the four curves for a fixed q, as presented in
Figures 1 and 2. Recall that the four curves are not isoge-
nous but have nearly the same reduction types. Even for
the smallest data sets (q ∈ {17, 19, 23, 29}), there is good
numerical evidence that the average ranks for each of the
four curves are converging to the same value for any given
q. Again, q = 5 provides the strongest evidence that this
value is 1/2. Note also that in general, the average rank
of the Legendre curve X222 dominates the rank of the
other three curves.

4.3. Rank Distributions

Combining Goldfeld’s conjecture with the parity conjec-
ture leads to a conjecture on the density of ranks in a
family of quadratic twists (for details of the formulation,
see [Rubin and Silverberg 02, Section 7.6]):

Conjecture 4.7. With notation as in Conjecture 4.2,

lim
D→∞

#{f ∈ F∗
D : r(Ef ) = 0}
#F∗

D

= lim
D→∞

#{f ∈ F∗
D : r(Ef ) = 1}
#F∗

D

=
1
2
,

D 5 7 11 13 17 19 23 29
1 0.333 0.800 0.444 0.636 0.467 0.588 0.571 0.556
2 0.562 0.611 0.640 0.618 0.613 0.611 0.616 0.614
3 0.621 0.646 0.602 0.632 0.580 0.594 0.567 0.557
4 0.616 0.617 0.593 0.590 0.576 0.575 0.562 0.553
5 0.592 0.600 0.558 0.555
6 0.601 0.574
7 0.575
8 0.568
9 0.548

TABLE 6. μ(X431 , D) for q ∈ Q.
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FIGURE 1. Variation of μ(Xi , D) as q varies.

whereas

lim
D→∞

#{f ∈ F∗
D : r(Ef ) ≥ 2}
#F∗

D

= 0.

As the data on average rank above suggest, the dis-
tribution of analytic ranks for our four families is close
to that predicted by the density conjecture with a non-
trivial number of twists with rank greater than or equal
to two.5 We present the relevant data in Table 7, where
we have removed the dependence of the distribution on
the degree of the twisting polynomials and instead con-
sider all the L-functions we were able to compute given
some q. For the dependence of the rank distribution on
the degree, see the tables at http://ellff.sagemath.org.

5 The largest rank discovered was a rank-5 curve, a twist of
X222/F 5 (t) by f = t7 + 2t6 + t5 + 4t4 + 4t3 + t2 + 2t + 1.

5. CONCLUSION

The remarkable property that the L-function of a non-
isotrivial elliptic curve over a function field is a polyno-
mial yields an effective algorithm to determine its coef-
ficients by computing the number of points on a finite
number of fibers. These fibers precisely correspond to
the Euler factors that determine L(E/K, T ), and by re-
alizing a given curve as a quadratic twist or pullback of
another curve, the number of Euler factors that need to
be computed can be minimized. In particular, the versal
elliptic curve provides a (noncanonical) choice for an el-
liptic curve from which one can pull back and twist to
recover any given elliptic curve, allowing for the efficient
computation of the given curve’s L-function, provided
sufficiently many Euler factors have been precomputed.
These algorithms have been incorporated into ELLFF,
a software library for the open-source mathematical
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FIGURE 2. Variation of μ(Xi , D) as q varies.

software system Sage, allowing anyone to quickly com-
pute such L-functions.

Experimentally, we computed the L-functions of four
different families of quadratic twists in order to examine
their analytic ranks for numerical evidence pertaining to
Goldfeld’s conjecture. Using an elementary argument, we
know that the asymptotic average rank over our family of
quadratic twists is at least 1/2 as the degree of the twist-
ing polynomial becomes arbitrarily large. In contrast to
the situation in number fields, the case of function fields
provides strong evidence, especially for the largest data
sets, that this average is indeed 1/2, thus supporting the
validity of Goldfeld’s conjecture in the function field case.
Moreover, the experimental data also suggest that the
analytic ranks are distributed closely with the density
conjecture’s prediction. Nonetheless, the presence of a

nontrivial number of curves of rank at least 2 in even
the largest data sets may suggest that the convergence
to this distribution is rather slow.

This work is part of a small but growing body of
computational number theory directly focused on func-
tion fields. Historically, computational number theorists
have primarily worked over number fields, in particular
Q . This (understandable) bias has produced a dearth of
algorithms and data for the function field setting, de-
spite the fact that many of the ideas from number fields
can be formulated more generally for any global field.
There is much work left to be done—both theoretical and
computational—for the case of function fields, but we be-
lieve that the example of L-functions of elliptic curves in-
dicates that the effort is worthwhile and yields interesting
mathematics.
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q 5 7 11 13
Rank 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3
X222 0.461 0.498 0.039 0.002 0.447 0.499 0.053 0.002 0.457 0.498 0.043 0.002 0.462 0.498 0.038 0.002
X211 0.483 0.500 0.018 0.000 0.481 0.500 0.019 0.001 0.488 0.500 0.012 0.000 0.481 0.500 0.019 0.000
X321 0.473 0.499 0.027 0.001 0.468 0.497 0.031 0.003 0.474 0.500 0.026 0.000 0.474 0.499 0.026 0.000
X431 0.477 0.499 0.023 0.001 0.464 0.499 0.036 0.001 0.471 0.500 0.029 0.000 0.474 0.499 0.026 0.001

q 17 19 23 29
Rank 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3 0 1 2 ≥ 3
X222 0.450 0.498 0.059 0.002 0.452 0.498 0.048 0.002 0.458 0.498 0.042 0.002 0.463 0.499 0.036 0.001
X211 0.485 0.500 0.014 0.000 0.484 0.500 0.016 0.000 0.488 0.500 0.012 0.000 0.490 0.500 0.010 0.000
X321 0.471 0.500 0.029 0.000 0.473 0.500 0.027 0.001 0.475 0.500 0.025 0.000 0.479 0.500 0.021 0.000
X431 0.463 0.499 0.037 0.000 0.463 0.499 0.036 0.001 0.470 0.499 0.030 0.001 0.474 0.499 0.026 0.001

TABLE 7. Rank distributions for all curves over all d and q ∈ Q.
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