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Let K be a number field. The Gal(K/K)-action on the tor-
sion of an elliptic curve E/K gives rise to an adelic represen-
tation ρE : Gal(K/K) → GL2(Ẑ). From an analysis of max-
imal closed subgroups of GL2(Ẑ) we derive useful necessary
and sufficient conditions for ρE to be surjective. Using these
conditions, we compute an example of a number field K and
an elliptic curve E/K that admits a surjective adelic Galois rep-
resentation.

1. INTRODUCTION

Let E/K be an elliptic curve, with K a number field.

Fix an algebraic closure K of K and define GK :=

Gal(K/K). For each positive integer m ≥ 1 and each

prime number � ≥ 1, the action of GK on the various

torsion subgroups of E(K) gives rise to continuous rep-

resentations

ρE,m : GK → Aut(E(K)[m]) � GL2(Z/mZ)

and

ρE,�∞ : GK → Aut(E(K)[�∞]) � GL2(Z�).

These representations are neatly packaged into the single

representation

ρE : GK → Aut(E(K)tor) � GL2(Ẑ)

describing the action of GK on the full torsion subgroup

of E(K). Here Ẑ := lim←−Z/mZ �∏� primeZ� is the profi-

nite completion of Z. We refer to ρE,�∞ and ρE respec-

tively as the �-adic and adelic representations associated

to E/K. It is proved in [Serre 72] that if E does not

have complex multiplication (non-CM), then the adelic

image of Galois, ρE(GK), is open in GL2(Ẑ). Equiva-

lently, since the adelic image is always a closed subgroup,

Serre’s result asserts that ρE(GK) is of finite index in

GL2(Ẑ) when E/K is non-CM. The question naturally
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arises, then, whether this index is ever 1. In other words,

are there elliptic curves E/K for which ρE is surjective?

When K = Q the answer is no, as Serre himself proves

in the same paper [Serre 72, Section 4.4]. As we show

below, the obstacle in this situation is essentially the fact

that Qcyc = Qab, leaving open the possibility of ρE being

surjective for other number fields K. Indeed, we provide

simple necessary and sufficient conditions for the adelic

representation to be surjective and give an example of a

(non-Galois) cubic extension K/Q and an elliptic curve

E/K for which ρE is surjective.

1.1 Statement of Results

When is ρE surjective? That is, when do we have

ρE(GK) = GL2(Ẑ)? We may put aside the arithmo-

geometric component of this question for the time be-

ing and ask more generally, when is a closed subgroup

H ⊆ GL2(Ẑ) in fact all of GL2(Ẑ)?

The group GL2(Ẑ) is both a profinite and a product

group, as articulated by the two isomorphisms

lim←−GL2(Z/mZ) � GL2(Ẑ) �
∏

� prime

GL2(Z�). (1–1)

Consider the projection maps π� : GL2(Ẑ) → GL2(Z�)

that arise from the product group description of GL2(Ẑ).

An obvious necessary condition for a closed subgroup H

to be all of GL2(Ẑ) is that the restrictions π� : H →
GL2(Z�) must all be surjective. It turns out that this

condition is not so far from being sufficient; one need only

further stipulate that the restriction of the abelianization

map to H be surjective. As we will show, the abelianiza-

tion of GL2(Ẑ) is isomorphic to {±1} × Ẑ∗, and we may

describe the abelianization map as (sgn, det) : GL2(Ẑ)→
{±1} × Ẑ∗, where det is the determinant map, and

sgn: GL2(Ẑ)→ {±1} is a certain “sign” map on GL2(Ẑ).

Taken together this yields the following theorem.

Theorem 1.1. Let H ⊆ GL2(Ẑ) be a closed subgroup.

Then H = GL2(Ẑ) if and only if

(i) π� : H → GL2(Z�) is surjective for all primes � and

(ii) (sgn, det) : H → {±1} × Ẑ∗ is surjective.

Returning to our representation ρE , we can easily

rephrase Theorem 1.1 to derive simple necessary and suf-

ficient conditions for surjectivity.

Theorem 1.2. Let E/K be an elliptic curve defined over

a number field K. Let Δ ∈ K× be the discriminant of

any Weierstrass model of E/K. Then ρE is surjective if

and only if

(i) the �-adic representation ρ�∞ : GK → GL2(Z�) is

surjective for all �,

(ii) K ∩Qcyc = Q, and

(iii)
√
Δ /∈ Kcyc.

Remark 1.3. Suppose Δ and Δ′ are the discriminants of

two Weierstrass models of E/K. Then Δ′ = u12Δ for

some u ∈ K. Thus Δ /∈ Kcyc if and only if Δ′ /∈ Kcyc.

In other words, condition (iii) is well defined.

Remark 1.4. Condition (i) is clearly equivalent to the sur-

jectivity of the restrictions of the projection maps π� to

ρE(GK). As will be explained below, conditions (ii) and

(iii) are equivalent to the surjectivity of the restriction of

the abelianization map to ρE(GK).

This theorem suggests that when on the hunt for an

elliptic curve with surjective adelic Galois representation,

we should first find a “suitable” extension K/Q that sat-

isfies condition (ii) and that could possibly satisfy condi-

tion (iii) for some E/K. Note first that forK = Q, condi-

tion (iii) will never be satisfied, since
√
Δ ∈ Qab = Qcyc.

Thus there are no elliptic curves E/Q with surjective

ρE . Likewise, condition (ii) will not be satisfied by any

quadratic extension of Q. With an eye toward finding

a candidate number field of minimal degree, we should

then cast our net among the non-Galois cubic extensions

of Q. A candidate number field K having been fixed,

the more difficult task is finding an elliptic curve E/K

satisfying condition (i). In our example we work over the

field Q(α), where α is the real root of f(x) = x3 + x+1.

Thanks to similarities between the fields Q(α) and Q, we

are able to extend to elliptic curves E/Q(α) the tech-

niques used in [Serre 72] to compute the �-adic images

of elliptic curves E/Q. This allows us to easily find ex-

amples of elliptic curves over Q(α) with surjective adelic

Galois representations. We record one example here as a

theorem.

Theorem 1.5. Let K = Q(α), where α is the real root of

f(x) = x3 + x+1. Let E/K be the elliptic curve defined

by the Weierstrass equation y2 + 2xy + αy = x3 − x2.

The associated adelic representation ρE : GK → GL2(Ẑ)

is surjective.
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1.2 Related Results

The results of this paper first appeared in my doctoral

thesis [Greicius 07], wherein I also asked, in the spirit of

[Duke 97] and [Jones 06], whether in fact for any suit-

able K “most” elliptic curves have surjective adelic Ga-

lois representations. David Zywina has since answered

this question in the affirmative.

In more detail, given a number field K with ring of in-

tegers OK , fix a norm ||·|| on R⊗Z O2
K � R2[K:Q]. Given

x > 0, define BK(x) to be the set of pairs (a, b) ∈ O2
K

having norm no greater than x for which the associated

curve E(a, b) given by y2 = x3+ax+b is an elliptic curve.

Now define SK(x) to be the subset of BK(x) consisting

of pairs (a, b) whose associated elliptic curves have sur-

jective adelic Galois representations. In [Zywina 08] the

following theorem is proved using sieve methods.

Theorem 1.6. (Zywina.) Suppose K �= Q satisfies K ∩
Qcyc = Q. Then

lim
x→∞

|SK(x)|
|BK(x)| = 1.

In other words, most elliptic curves over K have surjec-

tive adelic Galois representation.

Remark 1.7. In fact, Zywina considers more generally the

situation in which K ∩Qcyc is not required to be Q. As

we recall below, in terms of arithmetic this means simply

that the inclusion det(ρE(GK)) ⊆ Ẑ∗ is not necessarily

an equality. He proves [Zywina 08, Theorem 1.3] the

expected generalization to this setting; namely, ifK �= Q,

then for “most” elliptic curves E/K we have ρE(GK) =

{A ∈ GL2(Ẑ) : detA ∈ det(ρE(GK))}.

1.3 Notation and Conventions

Let G be a topological group, and let H ⊆ G be a closed

subgroup. The commutator of H , denoted by H ′, is

the closure of the usual commutator subgroup [H,H ].

By a quotient of G we shall always mean a continu-

ous quotient. The abelianization of G is the quotient

Gab := G/G′.
The two isomorphisms of (1–1) give rise to reduction

maps rm : GL2(Ẑ) → GL2(Z/mZ) and projection maps

π� : GL2(Ẑ) → GL2(Z�), respectively. Following [Lang

and Trotter 76], we associate with these maps the follow-

ing notation:

(i) Let P ⊂ Z be the set of prime numbers. Given any

S ⊆ P let πS be the projection πS : GL2(Ẑ) →∏
�∈S GL2(Z�). Furthermore, for any X ⊆ GL2(Ẑ)

we define XS := πS(X). If S = {�}, we write

X� instead of X{�}. Thus, if we let G = GL2(Ẑ),

then under our notation we haveG� = GL2(Z�) and

GS =
∏

�∈S GL2(Z�).

(ii) Similarly, given any nonnegative integer m and any

subset X ⊆ GL2(Ẑ), we define X(m) = rm(X) ⊆
GL2(Z/mZ).

As a slight abuse, we will use the same notation when

working with subgroups of GL2(Z�) or GL2(Z/mZ).

Let K be a number field with algebraic closure K.

We set GK := Gal(K/K). The set of finite places of K

will be denoted by ΣK . For a rational prime �, let S�

be the set of places of ΣK lying above �. Next, define

ΣK to be the inverse limit of the sets ΣK′ , where K ′

runs over the finite subextensions of K/K. Fix a place

v ∈ ΣK . The completion at v is denoted by Kv, the

residue field at v by kv, and the cardinality of the residue

field by Nv. We define Sv := {w ∈ ΣK : w | v}. Given

w ∈ Sv, the decomposition group of w is defined asDw :=

{σ ∈ GK : σ(w) = w}. There is a surjection Dw �
Gal(kv/kv). The kernel of this map is the inertia group

of w, denoted by Iw . The Frobenius element Frobw is

the coset of Dw/Iw mapping to the Frobenius element of

Gal(kv/kv). A Galois representation ρ is unramified at v

if Iw ⊆ ker ρ for some (and hence all) w ∈ Sv.

Lastly, if E/K is an elliptic curve, we define SE to be

the set of places in ΣK where E has bad reduction.

2. SOME (PROFINITE) GROUP THEORY

In this section we set about proving Theorem 1.1. As we

shall see, every proper closed subgroup H of a profinite

group G is contained in a maximal closed subgroup, from

which it follows that H = G if and only if H is not con-

tained in any maximal closed subgroup. The necessary

and sufficient conditions described in Theorem 1.1 are

then a consequence of Proposition 2.5 below, which de-

scribes the maximal closed subgroups of GL2(Ẑ) in terms

of the quotient maps to GL2(Z�) and GL2(Ẑ)
ab.

2.1 Maximal Closed Subgroups

Definition 2.1. Let G be a topological group. A maximal

closed subgroup of G is a closed subgroup H � G such

that if K is closed and H ⊆ K � G, then H = K.

Lemma 2.2. Let G be a profinite group. Any closed sub-

group H � G is contained in a maximal closed subgroup.

All maximal closed subgroups of G are open.
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Proof. Let H be any proper closed subgroup of G. Since

G is profinite, we have H = H =
⋂{HN |N �o G} (see

[Wilson 98, 0.3.3]). Here N �o G signifies that N is a

normal open subgroup of G. If HN = G for all N �o G,

then H = G, a contradiction. Thus there is an N �o G

such that H ⊆ HN � G. Now consider the quotient map

π : G→ G/N . Since N is open, the quotient group G/N

is finite. Since HN/N � G/N , there is a maximal sub-

group K � G/N containing HN/N . Then L = π−1(K)

is a maximal closed subgroup of G containing HN , and

hence H . In fact L is open, since [G : L] is finite. Thus

we have proved that every proper closed subgroup is con-

tained in an open maximal closed subgroup. It follows

that maximal closed subgroups are themselves open.

Consider now a product of profinite groups G =∏
α∈Λ Gα. Since the projections πα are all surjective,

we get many maximal closed subgroups of G of the form

π−1
α (Kα), where Kα � Gα is a maximal closed subgroup

of Gα. Similarly, there are maximal closed subgroups of

G arising from the abelianization Gab = G/G′ via the

abelianization map G→ G/G′. We show below that un-

der certain technical conditions all maximal closed sub-

groups of G are accounted for in this way. We will make

use of the following notion.

Definition 2.3. Given a profinite group G, let Quo(G)

be the set of isomorphism classes of finite, nonabelian,

simple quotients of G.

Remark 2.4. In [Serre 98, IV-25], Occ(G) is similarly

defined to be the set of (isomorphism classes of) finite

nonabelian simple groups H that “occur” in G, in the

sense that there exist closed subgroups K1 ⊆ K2 ⊆ G

with K1 � K2 and K2/K1 � H . We have Quo(G) ⊆
Occ(G). As with Serre’s Occ, the operation Quo behaves

well with respect to inverse limits. Namely, If G = lim←−Gα

is an inverse limit of profinite groups, and the maps G→
Gα are all surjective, then Quo(G) =

⋃
α∈Λ Quo(Gα). In

particular, Quo(
∏

α Gα) =
⋃
Quo(Gα).

Proposition 2.5. Let {Gα}α∈Λ be a family of profinite

groups such that Quo(Gα)∩Quo(Gα′) = ∅ for all α �= α′.
Let G =

∏
α∈Λ Gα and suppose H � G is a maximal

closed subgroup. Then either

(i) Hα = πα(H) is a maximal closed subgroup of Gα

for some α, in which case H = Hα ×
∏

α′ �=α Gα,

or

(ii) Hα = Gα for all α, in which case H contains G′

and the image of H in Gab = G/G′ is maximal.

In other words, all maximal closed subgroups of G arise

either from a maximal closed subgroup of Gα for some

α ∈ Λ or from a maximal closed subgroup of Gab = G/G′.

The proof of Proposition 2.5 will rely on the following

variant of Goursat’s lemma.

Lemma 2.6. (Topological Goursat’s lemma.) Let G1, G2

be profinite groups, and let H be a maximal closed sub-

group of G1 ×G2 such that πi(H) = Gi for the two pro-

jections π1 and π2. Identifying the Gi with their canon-

ical injections in G1 × G2, let Ni = H ∩ Gi. Then the

Ni are open normal subgroups of the Gi, the quotients

Gi/Ni are simple groups, and there is an isomorphism

φ : G1/N1 � G2/N2, whose graph is induced by H.

Proof. The proof that the Ni are open and normal is

straightforward. The isomorphism φ then arises from

the chain of isomorphisms G1/N1 � H/N1N2 � G2/N2.

It remains only to show that the Gi/Ni are simple.

The isomorphism φ implies that N1 = G1 if and only if

N2 = G2 if and only ifH = G1×G2. SinceH is maximal,

we see thatN1 �= G1. Now suppose we hadN1 � N � G1

for some normal subgroup N �G1. Since N is closed and

normal in G1, it is also closed and normal considered as

a subgroup of G1 ×G2, in which case HN is closed and

H � HN . Furthermore, HN � G1 × G2, since HN ∩
G1 = (H ∩ G1)N = N1N = N �= G1. This contradicts

the fact thatH is maximal. Thus there can be no suchN .

This proves thatG1/N1 (and henceG2/N2) is simple.

Proof of Proposition 2.5. If Hα � Gα for some α, then

Hα is maximal in Gα. Furthermore, since H ⊆ Hα ×∏
α′ �=α Gα � G, we must have H = Hα ×

∏
α′ �=α Gα.

Assume now that Hα = Gα for all α ∈ Λ. Since

H � G is open, there is a finite nonempty set S ⊆ Λ such

that kerπS ⊆ H . Since H is maximal, the projection HS

is a maximal closed subgroup of GS and H = HS ×∏
α′ /∈S Gα′ . Since G′ =

∏
α∈ΛG′

α, it suffices to prove

the corresponding statement for HS . In other words, we

need only prove that given any finite set S ⊆ Λ and any

maximal closed subgroup H ⊆ GS , if Hα = Gα for all

α ∈ S, then G′
S ⊆ H . We do so using induction on |S|,

the case |S| = 1 being trivial.

Assume |S| > 1. Take any α ∈ S and set S′ = S−{α}.
Suppose HS′ �= GS′ . Then HS′ is maximal and we

have H = HS′ × Gα. By induction, HS′ contains G′
S′ ,

and thus H contains G′
S .
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Suppose HS′ = GS′ . Let NS′ = H ∩ GS′ and let

Nα = H∩Gα, where we identify Gα with kerπS′ and GS′

with kerπα. By the topological Goursat’s lemma, these

subgroups are normal in GS and there is an isomorphism

of simple groups GS′/NS′ � Gα/Nα. But

Quo(GS′) ∩Quo(Gα) = Quo(
∏

α′∈S′
(Gα′ )) ∩Quo(Gα)

=
⋃

α′∈S′
Quo(Gα′) ∩Quo(Gα)

= ∅.

Thus the simple groups GS′/NS′ and Gα/Nα are abelian,

in which case G′
S′ ⊆ NS′ and G′

α ⊆ Nα. It follows that

G′
S ⊆ H .

Corollary 2.7. Let H be a maximal closed subgroup of

GL2(Ẑ) =
∏

� primeGL2(Z�). Then either

(i) H� = π�(H) is a maximal closed subgroup of

GL2(Z�) for some prime �

or

(ii) H� = GL2(Z�) for all �, in which case G′ ⊆ H.

Proof. We need only show that the groups GL2(Z�) sat-

isfy the technical condition of the proposition. We have

Quo(GL2(Z�)) = Quo(lim←−GL2(Z/�
nZ))

=
⋃

Quo(GL2(Z/�
nZ)).

Now any element of Quo(GL2(Z/�
nZ)) must appear as

one of the factor groups in a Jordan–Hölder series of

GL2(Z/�
nZ). However, as is well known, the only (po-

tentially) simple factor group that appears in a Jordan–

Hölder series of GL2(Z/�
nZ) is PSL2(F�) (see [Serre

98, IV-25], for example). Then Quo(GL2(Z/�
nZ)) ⊆

{[PSL2(F�)]}, where the brackets denote isomorphism

class. Since PSL2(F�) �� PSL2(F�′) for � �= �′, we have

Quo(GL2(Z�)) ∩Quo(GL2(Z�′)) = ∅.

2.2 The Abelianization of GL2(Ẑ)

Theorem 1.1 follows easily from Corollary 2.7 once we

have identified GL2(Ẑ)
ab = GL2(Ẑ)/(GL2(Ẑ))

′. From

the product description GL2(Ẑ) =
∏

� primeGL2(Z�), we

see immediately that GL2(Ẑ)
′ =

∏
� primeGL2(Z�)

′. So

our task is reduced to determining GL2(Z�)
′ for each

prime �.

Lemma 2.8. Let � �= 2 be prime. Then GL2(Z�)
′ =

SL2(Z�) = ker(GL2(Z�)
det−−→ Z∗

� ).

Proof. See [Lang and Trotter 76, Part II, Section 3,

Lemma 1, and Part III, Section 4].

The � = 2 case is slightly subtler. Recall first that we

may identify GL2(F2) with the permutation group S3

by considering the matrices as permutations of the three

nonzero vectors of F2×F2. This allows us to define a sign

map sgn: GL2(F2) → {±1}. By composing with reduc-

tion maps, we get sign maps from GL2(Z2) and GL2(Ẑ).

By abuse of notation we will denote all of these maps

by sgn.

Lemma 2.9. The map (sgn, det) : GL2(Z2)→ {±1} × Z∗
2

is surjective. We have

GL2(Z2)
′ = (ker sgn) ∩ SL2(Z2) = kerGL2(Z2)

(sgn, det)−−−−−−→ {±1} × Z∗
2.

Proof. See [Lang and Trotter 76, Part III, Section 2].

Combining the two lemmas yields the following result.

Proposition 2.10. The map (sgn, det) : GL2(Ẑ) →
{±1} × Ẑ∗ is surjective. The commutator subgroup of

GL2(Ẑ) is GL2(Ẑ)
′ = ker(sgn, det). We may identify the

abelianization GL2(Ẑ)→ GL2(Ẑ)
ab with

GL2(Ẑ)
(sgn, det)−−−−−−→ {±1} × Ẑ∗.

We can now prove our first theorem.

Proof of Theorem 1.1. If H = GL2(Ẑ), then conditions

(i) and (ii) obviously hold. Suppose H � GL2(Ẑ) and

π�(H) = GL2(Z�) for all primes �. Then there is a maxi-

mal closed subgroupK with H ⊆ K � G. ClearlyK also

satisfies π�(K) = GL2(Z�) for all primes �. Then K con-

tains the commutator subgroup GL2(Ẑ)
′ = ker(sgn, det),

by Proposition 2.5. Since K �= GL2(Ẑ), we have

(sgn, det)(K) �= {±1} × Ẑ∗. Since H ⊆ K, we also have

(sgn, det)(H) �= {±1} × Ẑ∗.

2.3 Maximal Closed Subgroups of GL2(Ẑ)

It will be useful in what follows to have a more de-

tailed picture of the maximal closed subgroup structure

of GL2(Ẑ). According to Propositions 2.5 and 2.10, we

may proceed by examining the maximal closed subgroups

of GL2(Z�) and GL2(Ẑ)
ab � {±1} × Ẑ∗.

For the most part we will be concerned with maximal

closed subgroups H � GL2(Ẑ) for which the determinant
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map is surjective. Of course, maximal closed subgroups

with det(H) �= Ẑ∗ correspond to maximal closed sub-

groups of Ẑ∗. These in turn are neatly described by class

field theory via the isomorphism Ẑ∗ � Gal(Qab/Q).

2.3.1 Maximal Closed Subgroups Arising from
{±1} × Ẑ∗. Let H � GL2(Ẑ) be a maximal closed

subgroup such that H� = GL2(Z�) for all � and

det(H) = Ẑ∗. By Corollary 2.7 and the definition of

(sgn, det), this H corresponds to a maximal subgroup

{±1} × Ẑ∗ that surjects onto the two factors {±1} and
Ẑ∗. It follows easily that the corresponding subgroup is

the kernel of a character {±1}× Ẑ∗ → {±1} of the form

(id, χ), for some nontrivial character χ : Ẑ∗ : → {±1}.
In other words, our original H � GL2(Ẑ) is the

kernel of a character of the form sgn ·(χ ◦ det) for

some nontrivial character χ : Ẑ∗ → {±1}; that is,

H = Hχ := {g ∈ GL2(Ẑ) : sgn(g) = χ(det(g))}. We call

Hχ the Serre subgroup of GL2(Ẑ) with character χ.

2.3.2 Maximal Closed Subgroups Arising from
GL2(Z�). Suppose now that our maximal closed

subgroup corresponds to a subgroup H � GL2(Z�).

Set M := M2(Z�). The open normal subgroups

V�n := I + �nM constitute a fundamental basis of

open neighborhoods of the identity in GL2(Z�). For

n ≥ 1 the quotient V�n/V�n+1 is isomorphic to M2(F�),

and comes equipped with a GL2(F�)-module struc-

ture; multiplication by g ∈ GL2(F�) is defined as

g · (I + �nA) := I + �nGAG−1, where G is any lift

of g to GL2(Z/�
n+1Z). Now since H is open, it must

contain V�n for some n, in which case H corresponds

to the maximal subgroup H(�n) � GL2(Z/�
nZ). How

big must n be before we can see this correspondence?

This question is answered by the following lemmas and

corollaries.

Lemma 2.11. [Lang and Trotter 76, Part I, Section 6,

Lemmas 2 and 3] Let U ⊆ V� = I + �M2(Z�) ⊆ GL2(Z�).

(i) If � is odd and U � V�/V�2 , then U = V�.

(ii) If � = 2 and U ∩ V4 � V4/V8, then U ∩ V4 = V4. If

in addition U � V2/V8, then U = V2.

Lemma 2.12. [Serre 98, IV-23] Let � ≥ 5. Suppose H ⊆
SL2(Z�) is a closed subgroup such that H � SL2(F�).

Then H = SL2(Z�).

Corollary 2.13. Let H ⊆ GL2(Z�) be a closed subgroup.

(i) If � = 2 and H � GL2(Z/8Z), then H = GL2(Z�).

(ii) If � is odd and H � GL2(Z/�
2Z), then H =

GL2(Z�).

(iii) If � ≥ 5, H � GL2(F�) and det(H) = Z∗
� , then

H = GL2(Z�).

Proof. The first two statements are simple consequences

of Lemma 2.11 and the observation that if H �
GL2(Z/�

nZ) � GL2(Z�)/V�n , then (H ∩ V�r ) � V�r/V�n

for any r < n.

To prove the third statement, we need only show that

SL2(Z�) ⊆ H . Since H � GL2(F�), we also have H ′ �
GL2(F�)

′ = SL2(F�). Then H ′ ⊆ GL2(Z�)
′ = SL2(Z�) is

a closed subgroup of SL2(Z�) that surjects onto SL2(F�).

Thus H ′ = SL2(Z�), by Lemma 2.12, and we see that

SL2(Z�) ⊆ H , as desired.

Corollary 2.14. The maximal closed subgroups of

GL2(Z�) are in one-to-one correspondence with

(i) the maximal subgroups of GL2(Z/8Z) if � = 2;

(ii) the maximal subgroups of GL2(Z/�
2Z) if � is odd.

For � ≥ 5 the maximal closed subgroups of GL2(Z�) with

surjective determinant are in one-to-one correspondence

with the maximal subgroups of GL2(F�) with surjective

determinant.

The maximal subgroup structure of GL2(F�) for �

prime is well known (see [Serre 72, Section 2.6] or

[Mazur 77, p. 36], for example). According to Corol-

lary 2.14, for � ≥ 5 these account for all maximal closed

subgroups of GL2(Z�) with surjective determinant. For

the primes 2 and 3, we get a few extra closed subgroups

coming from GL2(Z/8Z) and GL2(Z/9Z), respectively.

We conclude this section with a slightly closer look at

the subgroup structure of GL2(Z/8Z).

Lemma 2.15. Let H be a subgroup of GL2(Z/8Z) such

that H � GL2(Z/4Z). Then [G : H ] ≤ 2.

Proof. Set M := M2(Z/8Z). Since H(I + 4M) =

GL2(Z/8Z), and since #(I + 4M) = 24, we need only

show that #(H ∩ (I + 4M)) ≥ 23. For this it suffices to

show that

H ∩ (I + 4M) ⊇ {I + 4A : trA ≡ 0 (mod 2)}.

As above, I + 4M is a GL2(F2)-module, where the ac-

tion is defined by conjugation. Since H � GL2(F2), the
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subgroup H ∩ (I + 4M) ⊆ I + 4M is in fact a GL2(F2)-

submodule of I + 4M . Furthermore, {I + 4A : trA ≡ 0

(mod 2)} is generated as a GL2(F2)-module by I+4 ( 0 1
0 0 ).

Thus we need only show that I + 4 ( 0 1
0 0 ) ∈ H . Since

H � GL2(Z/4Z), it follows that H contains an element

of the form

B =

(
I + 2

(
0 1
0 0

))
(I + 4A).

Then H also contains B2 = I + 4 ( 0 1
0 0 ).

Corollary 2.16. Let H ⊆ GL2(Z2) be a closed subgroup

such that H � GL2(Z/4Z) and (sgn, det)(H) = {±1} ×
Z∗
2. Then H = GL2(Z2).

Proof. We need only prove that the mod-8 image H(8)

is all of GL2(Z/8Z). By the previous lemma, H(8) is

of index at most 2. Then H(8) contains ker(sgn, det),

the commutator of GL2(Z/8Z), and corresponds via

(sgn, det) to a subgroup of {±1} × (Z/8Z)∗. But by

hypothesis, (sgn, det)(H(8)) = {±1} × (Z/8Z)∗. Thus

H(8) = GL2(Z/8Z) and H = GL2(Z2).

Remark 2.17. In fact, there are exactly seven index-2 sub-

groups of GL2(Z/8Z), corresponding to the seven non-

trivial characters of {±1} × Z/8Z∗. Let us denote the

three nontrivial characters of (Z/8Z)∗ by χ3, χ5, and χ7;

here χi is the unique character whose kernel is gener-

ated by i in (Z/8Z)∗. Then the index-2 subgroups of

GL2(Z2) are the kernels of the characters sgn, χi ◦ det,
and sgn ·(χi ◦ det), where i ∈ {3, 5, 7}.

Suppose H is one of these index-2 subgroups. Then

the image of H in GL2(Z/4Z) is either all of GL2(Z/4Z)

or of index 2. Furthermore, the image is of index 2 if

and only if (I + 4M) ⊆ H . The only subgroups above

for which this is true are ker(sgn), ker(χ5 ◦ det), and

ker(sgn ·(χ5◦det)). Their corresponding images modulo 4

are the three subgroups of GL2(Z/4Z) of index 2, namely

ker(sgn), ker(det) = SL2(Z/4Z), and ker(sgn · det).

3. SOME ARITHMETIC

3.1 The Adelic Representation

We return to the situation of an elliptic curve E/K with

K a number field and consider its �-adic representa-

tions ρE,�∞ : GK → GL2(Ẑ) and adelic representation

ρE : GK → GL2(Ẑ). Deriving necessary and sufficient

conditions for ρE to be surjective is now simply an ex-

ercise in translating the statements of Theorem 1.1 into

statements about our Galois representations.

Theorem 3.1. Let E/K be an elliptic curve defined over

a number field K. Let Δ ∈ K× be the discriminant of

any Weierstrass model of E/K. Then ρE is surjective if

and only if

(i) the �-adic representation ρ�∞ : GK → GL2(Z�) is

surjective for all �,

(ii) K ∩Qcyc = Q, and

(iii)
√
Δ /∈ Kcyc.

Proof. Set H = ρE(GK). According to Theorem 1.1, we

have H = GL2(Ẑ) if and only if π�(H) = GL2(Ẑ) for all

� and (sgn, det)(H) = {±1} × Ẑ∗.
Since ρE,�∞ = π� ◦ ρE , the first statement is clearly

equivalent to condition (i) above. It remains to show that

the surjectivity of (sgn, det)|H is equivalent to conditions

(ii) and (iii). To do so, we must understand how sgn and

det arise from the arithmetic of our elliptic curve.

The det map is easy to identify. From properties of the

Weil pairing, it follows that it is essentially the cyclotomic

character; i.e., we have a commutative diagram

GK
ρE ��

res

����
���

���
���

� GL2(Ẑ)

det
��

Gal(Kcyc/K) � Ẑ∗.

The sgn map, on the other hand, was defined as the

composition

GL2(Ẑ)
r2−→ GL2(F2) � S3

sgn−−→ {±1}.

Since r2 ◦ ρE = ρE,2, if we start with some σ ∈ GK , we

see that sgn(ρ(σ)) is ±1 depending on whether σ is an

even or odd permutation of the three nontrivial points

of E[2](K). If we choose a Weierstrass model for E/K

and write ei for the x-coordinates of the three nontrivial

2-torsion points, we have
√
Δ = ±4∏i>j(ei − ej) (see

[Serre 72, Section 5.3]). Thus σ is even if and only if

σ(
√
Δ) =

√
Δ. In other words, sgn ◦ρE = χΔ, where

χΔ : GK → {±1} is the (possibly trivial) character de-

fined by K(
√
Δ).
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Now consider the tower of fields

K

Kcyc

����������
K(
√
Δ)

���������

Qcyc

����������
K

N2

����������

N1
���������

GK

K ∩Qcyc

N2

���������

									

Q

Ẑ
∗



















Here various Galois extensions have been labeled with

their corresponding Galois group. Namely, we have (tak-

ing some liberties with identifications) Gal(Qcyc/Q) =

Ẑ∗, Gal(K(
√
Δ)/K) = N1 ⊆ {±1} and Gal(Qcyc/K ∩

Qcyc) = Gal(Kcyc/K) = N2 ⊆ Ẑ∗.
We have just seen that the map (sgn, det)◦ρE : GK →

{±1} × Ẑ∗ is just the product of the restriction maps

GK
res×res−−−−−→ N1 ×N2,

σ �−→ (σ|K(
√
Δ), σ|Kcyc),

and in general we have (sgn, det)(H) ⊆ N1 × N2 ⊆
{±1} × Ẑ∗. Thus (sgn, det)(H) = {±1} × Ẑ∗ if and only

if both set inequalities in this chain are in fact equalities.

By Galois theory, the first inequality is an equality if and

only if
√
Δ /∈ Kcyc, and the second inequality is an equal-

ity if and only if
√
Δ /∈ K and K∩Qcyc = Q. Combining

these, we conclude that (sgn, det)(H) = {±1}× Ẑ∗ if and
only if

√
Δ /∈ Kcyc and K ∩Qcyc = Q.

Remark 3.2. Conditions (ii) and (iii) are equivalent to

the single statement

(ii)′ K(
√
Δ) ∩Qcyc = Q.

Though this has the advantage of brevity, we prefer the

stated form of the theorem, since it more clearly points

the way to finding elliptic curves with surjective adelic

representations.

Remark 3.3. The theorem and its proof elucidate what

happens when K = Q. Since Qcyc = Qab, we have

Q(
√
Δ) ⊆ Qcyc. Tracing through the various maps, we

see that for any σ ∈ GQ,

sgn(ρE(σ)) = σ|
Q(

√
Δ) = (σ|Qcyc)|

Q(
√
Δ)

= χΔ(det(ρE(σ))),

where as before, χΔ : Ẑ∗ → {±1} is the (possibly trivial)

character arising from the extension Q(
√
Δ)/Q. Then

ρE(GQ) is contained in the Serre subgroup HχΔ = {g ∈
GL2(Ẑ) : sgn g = χΔ(det g)}. Thus [GL2(Ẑ) : ρE(GQ)] ≥
[GL2(Ẑ) : HχΔ ] = 2. In particular, ρE/Q(GQ) �= GL2(Ẑ).

3.2 Semistable Elliptic Curves

Guided now by Theorem 3.1, we would like to find el-

liptic curves E/K for which ρE,�∞ is surjective for all

�. Recall that when E/K is non-CM, the adelic image

is open, which implies that ρE,�∞(GK) = GL2(Z�) for

all but finitely many primes. Accordingly, we will call

the primes � for which ρE,�∞ is not surjective the excep-

tional primes of E/K. Ideally, we would like to be able

to determine the set of exceptional primes for any given

non-CM elliptic curve. For � ≥ 5, Corollary 2.13 and the

surjectivity of det : ρE,�∞(GK) → Z∗
� imply that ρE,�∞

is surjective if and only if ρE,� is surjective. For � = 2, 3

we have to do a little more work.

In either case, an important first step is to determine

the mod-� image ρE,�(GK) for all �. It turns out that we

can learn much about ρE,�(GK) simply by studying the

image of inertia ρE,�(Iw) for various inertia subgroups

Iw ⊆ Gal(K/K). (See Section 1.3 for notation and def-

initions related to inertia groups.) Serre studies iner-

tia representations extensively in [Serre 72]. When the

non-CM elliptic curve E is semistable, the results are

particularly nice, yielding techniques for computing the

exceptional primes of E. Modulo some group theory,

everything follows from the picture of the inertia rep-

resentations given by the lemma below, which is essen-

tially a synthesis of various facts scattered throughout

[Serre 72]—more specifically, the corollary to Proposi-

tion 13 in Section 1.12 and some properties of semistable

curves discussed in Section 5.4.

Lemma 3.4. Let K be a number field, � a rational prime

unramified in K, and E/K a semistable elliptic curve

with j-invariant jE. Fix v ∈ ΣK and w ∈ ΣK with w | v.
Recall that SE is the set of bad places of E/K, and that

S� is the set of places v ∈ ΣK such that v | l. Then we

have the following:

(i) If v ∈ ΣK − SE − S�, then ρE,�(Iw) is trivial.

(ii) If v ∈ SE − S�, then ρE,�(Iw) is either trivial or

cyclic of order �.

(iii) If v ∈ SE and � � v(jE), then ρE,�(Iw) contains an

element of order �.
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(iv) If v | l, then

ρE,�(Iw) =

{(
s 0
0 1

)
: s ∈ F∗

�

}

when E has (good) ordinary reduction at v,

ρE,�(Iw) =

{(
s t
0 1

)
: s ∈ F∗

� , t ∈ F�

}

when E has bad (multiplicative) reduction at v, and

ρE,�(Iw) is a nonsplit Cartan subgroup when E has

(good) supersingular reduction at v.

Amazingly enough, this simple description of the iner-

tia representations imposes strict restrictions on nonsur-

jective mod-� representations arising from a semistable

E/K. The propositions and corollaries that follow are

for the most part straightforward generalizations of the

results in [Serre 72, Section 5.4]. We formulate them for

a number field K satisfying the following properties:

(i) There is a real embedding K ↪→ R. This gives rise

to a complex conjugation map σ ∈ GK satisfying

σ2 = 1 and det(ρE,�(σ)) = −1 for all � ≥ 3. It

follows that ρE,�(σ) is diagonalizable in GL2(F�) for

all � ≥ 3, with eigenvalues 1 and −1.
(ii) The narrow class group C∞K is trivial. Recall that

C∞K is the group of fractional ideals of K modulo

the subgroup of totally real principal fractional ide-

als. This assumption has as a consequence that

any abelian extension of K unramified at all finite

primes is trivial.

(iii) We have K ∩Qcyc = Q. This property ensures that

det : ρE(GK)→ Ẑ∗ is surjective.

Proposition 3.5. Let K be a number field with a real em-

bedding and a trivial narrow class group and satisfying

K ∩ Qcyc = Q. Let E/K be a semistable elliptic curve

with j-invariant jE. Suppose � is a prime unramified in

K. If � = 2, 3, 5, suppose further that � � v(jE) for some

v ∈ SE. If ρE,�(GK) �= GL2(F�), then ρE,�(GK) is con-

tained in a Borel subgroup of GL2(F�).

Proof. The proposition is nearly identical to [Serre 72,

Proposition 21]. As such we are content to sketch a proof,

mainly just to illustrate Lemma 3.4 at work.

If v ∈ SE and � � v(jE), then according to Lemma 3.4,

the mod-� image contains an element of order �. From

group theory it follows that the mod-� image either con-

tains SL2(F�) or is contained in a Borel subgroup. The

former is impossible, since the determinant map is sur-

jective (since K ∩ Qcyc = Q), and we assume that the

mod-� representation is not surjective.

Now assume that � is unramified in K and � ≥ 7.

Lemma 3.4 implies that the mod-� image contains a split

semi-Cartan subgroup or a nonsplit Cartan subgroup.

Again it follows from group theory that the mod-� image

is contained in either a Borel subgroup or a Cartan sub-

group, or else it is contained in the normalizer of a Cartan

subgroup, but not the Cartan subgroup itself. The last

case would give rise to a (nontrivial) unramified character

χ : GL → {±1}, contradicting the fact that K has trivial

narrow class group. If the mod-� image is contained in

a Cartan subgroup, it must be a split Cartan subgroup,

thanks to the complex conjugation σ ∈ GK , which is di-

agonalizable modulo �. Since split Cartan subgroups are

contained in a Borel subgroup, we are done.

As we mentioned in the introduction, Theorem 3.1

leads the hunter of elliptic curves with surjective adelic

representations naturally to non-Galois cubic extensions

of Q. With this in mind we include the following corollar-

ies, which specialize to number fields K with [K : Q] = 3.

Note that in this case the existence of a real embedding

is automatic.

Corollary 3.6. Let E, K, and � be as in Proposition 3.5

and suppose that ρE,�(GK) �= GL2(F�). Assume further

that [K : Q] = 3 and that (U+
K − 1) ∩ UK �= ∅. There is

a basis of E[l](K) in terms of which ρE,� is of the form( χ1 ∗
0 χ2

)
for characters χi : GK → F∗

� . Furthermore, one

of the characters is trivial and the other is det ◦ρE,�.

Remark 3.7. Recall that UK (respectively U+
K) is the

group of units (respectively totally positive units) of K.

Proof. Since ρE,�(GK) �= GL2(F�), Proposition 3.5 im-

plies that ρE,�(GK) is contained in a Borel subgroup.

The first statement now follows easily.

Assume that we have picked a basis such that ρE,� is of

the form
( χ1 ∗

0 χ2

)
. Since χ1 ·χ2 = det ◦ρE,�, we need only

show that one of the characters is trivial. A character

χ : GK → F∗
� is trivial if and only if it is unramified for

all v ∈ ΣK—a consequence of K having trivial narrow

class group. Thus we need only show that one of the two

characters is unramified everywhere.

First observe that both characters are unramified for

all v � l. Indeed, if v /∈ SE and v � l, then ρE,� is it-

self unramified. Likewise, if v ∈ SE and v � l, then by

Lemma 3.4, for any w | v the image of Iw in GL2(F�) is
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either trivial or cyclic of order �. In either case, we see

that

ρE,�(Iw) ⊆
{(

1 t
0 1

)
: t ∈ F�

}
,

whence both χi are unramified. So it remains only to

show that there is one character that is also unramified

at each place v | l. The argument now divides into cases

depending on the splitting behavior of �.

Case 1: � is inert. Take the unique v | l and an inertia

group Iw for some w | v. The image of inertia ρE,�(Iw)

cannot be a nonsplit Cartan subgroup, since it is con-

tained in a Borel subgroup. But then by Lemma 3.4,

ρE,�(Iw) must be of the form ( ∗ 0
0 1 ) or (

∗ ∗
0 1 ). Then one of

the χi, call it χi0 , is trivial when restricted to Iw. This

shows that χi0 is unramified at v, and hence everywhere,

as desired.

Case 2: � is totally split. Suppose (�) = pqr. As in the

inert case, at each v | l, exactly one of the characters is

unramified. Since there are three places above �, by the

pigeonhole principle one of the characters, call it χi0 , is

unramified at at least two of the places.

Suppose χi0 is ramified at exactly one place. As-

sume that this place is v = p. In terms of Galois the-

ory, χi0 corresponds to an abelian extension L/K with

Gal(L/K) � F∗
� such that only p and possibly ∞ ramify

in L. According to class field theory, there is a mod-

ulus of the form m = ∞ · pn such that L is contained

in the ray class field Km. We then have a surjection

CmK � Gal(Km/K) � Gal(L/K) � F∗
� , where CmK is the

group of fractional ideals of K relatively prime to p mod-

ulo the group of principal ideals of the form (a), where

a ≡ 1 (mod pn) and a is totally positive. Furthermore,

there is an exact sequence [Neukirch 99, Section VI.1]

1→ U+
K/Um,1 → (OK/pn)∗ → CmK → C∞K → 1,

where Um,1 is the subgroup of totally positive units that

are congruent to 1 modulo pn. Since C∞K = 1 in our case,

we get a composition of surjections

(OK/pn)∗ � CmK � F∗
� ,

whose kernel contains U+
K/Um,1. Since � � (� − 1), the

composition must factor as

(OK/pn)∗ �� ��

�� ��
��

��
F∗
�

(OK/p)∗

�� ���������

.

Since (OK/p)∗ � F∗
� , the surjection (OK/p)∗ � F∗

� is in

fact an isomorphism.

Now take any u ∈ (U+
K − 1) ∩ UK . Then u is a unit

and u + 1 ∈ U+
K . Since the image of u + 1 in (OK/p)∗

is in the kernel of the isomorphism (OK/p)∗ → F∗
� , we

must have u+ 1 ≡ 1 (mod p). But then u ≡ 0 (mod p),

a contradiction because u is a unit. Thus χi0 must be

ramified at all places in S�, and hence at all places in

ΣK . It follows that χi0 is trivial.

Case 3: (�) = pq. Lastly, suppose (�) = pq, with

f(p) := [OK/pO : F�] = 2. Assume that each charac-

ter is ramified at exactly one of the primes lying above

�. Suppose χi0 is ramified at q and χ1−i0 is ramified at

p. Then, using χi0 , we may argue exactly as in the to-

tally split case to show that α ∈ q, a contradiction. Thus

one of the characters is unramified at both primes lying

above �, making it trivial.

Corollary 3.8. Let E, K, and � be as in Corollary 3.6

and ρE,�(GK) �= GL2(F�). Given v ∈ ΣK − SE, let φv ∈
End(Ẽv) be the Frobenius endomorphism and let tv be its

trace. Then tv ≡ 1 +Nv (mod l).

Remark 3.9. Since #Ẽv(kv) = 1− tv +Nv, the condition

tv ≡ 1 +Nv (mod l) is equivalent to � | #Ẽv(kv).

Proof. Suppose first that v ∈ ΣK − SE − S�. The

representation ρ�∞ is unramified at v, and the �-adic

Tate modules of E/K and its reduction Ẽv/kv are iso-

morphic as Dw/Iw-modules for any w ∈ Sv. Then

tr(φv) = tr(ρ�(Frobw)) (mod l) and Nv = det(φv) =

det(ρ�(Frobw)) (mod l) for any w ∈ Sv. (Observe that

although strictly speaking Frobw is a coset in Dw/Iw,

the value ρ�(Frobw) is well defined, since ρ� is unrami-

fied at v.)

Now by Corollary 3.6,

tv ≡ tr(ρ�(Frobw)) ≡ χ1(Frobw) + χ2(Frobw)

≡ 1 + det(ρE,�(Frobw))

≡ 1 + det(ρ�(Frobw))

≡ 1 +Nv (mod l),

and the claim is proved in this case.

Now suppose v /∈ SE but v ∈ S�. Since ρE,�(GK)

is contained in a Borel subgroup, it cannot contain a

nonsplit Cartan subgroup. It follows from Lemma 3.4

that E has ordinary reduction at v.

First consider � = 2. Let v be a place of K lying

over 2. Since E has good ordinary reduction at v, the

reduction Ẽv has exactly one point, P , of order 2. Then

P is fixed by Gal(kv/kv), and hence is kv-rational. But
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then 2 divides #Ẽv(kv) = 1 − tv + Nv, in which case

tv ≡ 1 +Nv (mod 2).

Now consider � ≥ 3. Pick a basis {P1, P2} of E[�][K]

such that ρ =
( χ1 ∗

0 χ2

)
, as in Corollary 3.6. We know that

one of the χi is trivial.

Suppose χ1 = 1. Then E has a K-rational point P of

order �. If 〈P 〉 is in the kernel of the reduction map, we

have an exact sequence

0→ 〈P 〉 → E[l](K)→ Ẽv[l](kv)→ 0.

But then the representation of Iw for any w | v looks

like ( 1 ∗
0 1 ), contradicting Lemma 3.4. Thus the reduction

map sends P to a nontrivial kv-rational point of Ẽv[l](kv).

It follows that � divides #Ẽv(kv), whence tv ≡ 1 + Nv

(mod l).

Suppose χ2 = 1. Let C be the GK-invariant cyclic

subgroup defined by P1. Consider the quotient E′ =

E/C. Since E′ is isogenous to E, it has the same

reduction type at all places of ΣK , and furthermore

ρE′ ∼ ρE . In particular, it follows that t′v = tv and

#Ẽ′
v(kv) = #Ẽv(kv) for our place v. Now since χ2 is

trivial, E′[l] has a nontrivial K-rational point, and we

may argue as in the χ1 = 1 case to prove tv ≡ 1 + Nv

(mod l).

Suppose K satisfies the conditions of the previous

corollaries. We now have the necessary means for de-

termining the set of primes � for which ρE,� is surjective

for a given semistable elliptic curve E/K. First com-

pute #Ẽv(kv) for some v /∈ SE . Let R be the set of

prime divisors of #Ẽv(kv) and let T be the set of primes

in Z that ramify in K. According to Corollary 3.8, the

set of primes � for which ρE,� is not surjective is con-

tained in {2, 3, 5}∪R∪T . For this finite set of primes we

can then use the following criterion for checking whether

ρE,�(GK) = GL2(F�).

Proposition 3.10. Let � ≥ 5, and suppose H ⊆ GL2(F�)

is a subgroup satisfying

(i) H contains elements s1, s2 such that( tr(si)2−4 det(si)
l

)
= (−1)i and tr(si) �= 0.

(ii) H contains an element t such that u =

tr(t)2/ det(t) �= 0, 1, 2, 4 and u2 − 3u+ 1 �= 0.

Then H contains SL(F�). In particular, if det : H → F∗
�

is surjective, then H = GL2(F�).

Proof. See [Serre 72, Propostion 19].

3.3 A Suitable Cubic Extension

Let us fix a suitable number field. For the remainder

of the paper we will let K be the cubic extension Q(α),

where α is the real root of f(x) = x3 + x+ 1.

We easily see that K satisfies the conditions of Corol-

laries 3.6 and 3.8. The root α defines the sole real embed-

ding K ↪→ R. The discriminant of f is −31. This implies

that K is non-Galois, and hence that K ∩ Qcyc = Q. It

also follows that the ring of integers OK is Z[α], and that

31 is the only rational prime that ramifies in OK . Fur-

ther computation then reveals that the ideal and narrow

class groups of K are trivial. Lastly we show that α is

an element of (U+
K − 1) ∩ UK . Since α(α2 + 1) = −1, we

have α ∈ UK . (In fact, one can show that α generates

UK .) But then α+ 1 = −α3 is also a unit. It is also not

difficult to see that α + 1 is positive, and hence totally

positive. Thus we have α+ 1 ∈ U+
K and α ∈ (U+

K − 1).

As described in Section 3.2, with the help of Corol-

laries 3.6 and 3.8 we can now easily find elliptic curves

E/Q(α) with surjective adelic representations.

3.4 An Example

Let K = Q(α) and let E/K be the elliptic curve y2 +

2xy + αy = x3 − x2. We compute (ΔE) = P131Q2207,

where the rational primes 131 and 2207 factor as (131) =

P131Q131R131 and (2207) = P2207Q2207, with f(P2207) =

2. Furthermore, (jE) = (2)12(3)3/Q131Q2207. Since the

conductor of an elliptic curve divides the discriminant

[Silverman 94, IV.11.2], we see that E is semistable with

conductor N = P131Q2207.

Set H = ρ(GK) ⊆ GL2(Ẑ). From the splitting behav-

ior of 131 and 2207 we may deduce that
√
Δ /∈ Kcyc.

Since in addition K ∩ Qcyc = Q, it follows that the

abelianization map (sgn, det) : H → {±1} × Ẑ∗ is sur-

jective. By Theorem 3.1 we need only show that E/K

has no exceptional primes, i.e., that H� = GL2(Z�) for

all primes �.

Recall that for a good place v ∈ SE , we denote by

tv the trace of the Frobenius element φv ∈ End(Ẽv).

UsingMagma, we now reduce at various places to obtain

Table 1.

Since v(jE) = −1 for all v ∈ SE , it follows from Corol-

lary 3.8 that for all � �= 31, if H(�) �= GL2(F�), then � | 16
and � | 15 (the values of #Ẽv(kv) in rows 2 and 3 of our

table). There is no such �. Thus H(�) = GL2(F�) for all

� �= 31. Since detH is surjective, Corollary 2.13 implies

H� = GL2(Z�) for all � �= 2, 3, 31. It remains only to

show that these three primes are not exceptional.
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v #Ẽv(kv) Nv tv

(7) 324 343 20 (t2v − 4N2
v ) ≡ 20 (mod 31)

Q11 16 11 −4 (t2v − 4N2
v ) ≡ 3 (mod 31)

Q23 15 23 9

Q29 24 29 6

TABLE 1. Traces of Frobenius elements.

Case � = 31. The values (modulo 31) of t2v − 4N2
v for

v = (7) and v = Q11 are 20 and 3 respectively. The

first is a square modulo 31; the second is not. Further-

more, for v = (7) we have u = t2v/Nv ≡ 10 �≡ 0, 1, 2, 4

(mod 31) and u2 − 3u + 1 �≡ 0 (mod 31). Thus setting

s1 and t equal to ρE,31(Frobw) for any w | (7), and set-

ting s2 equal to ρE,31(Frobw′) for any w′ | Q11, we see

that H(31) ⊆ GL2(F31) satisfies the conditions of Propo-

sition 3.10. Thus H(31) contains SL2(F31). Since det :

H(31) → F∗
31 is surjective, we have H(31) = GL2(F31),

and hence H31 = GL2(Z31).

Case � = 3. Let M := M2(Z3). Since H(3) = GL2(F3),

we need only show that H ⊇ I+3M . By Lemma 2.11, it

suffices to show that H(9) ⊇ (I+3M)/(I+9M). Let v =

Q29, and let π ∈ H3 be ρ(Frobw) for any w ∈ Sv. From

our table, the characteristic polynomial of π is t2−6t+29.

Modulo 9 this factors as (t − 7)(t − 8). Since 7 �≡ 8

(mod 3), π is diagonalizable in GL2(Z3). After a change

of basis, we may assume that π ≡ (−2 0
0 −1

)
(mod 9), in

which case

π2 ≡
(
4 0
0 1

)
≡ I + 3

(
1 0
0 0

)
(mod 9).

But (I + 3M)/(I + 9M) is a GL2(F3)-module, and since

H(9) � GL2(F3), it follows that H(9) ∩ (I + 3M)/(I +

9M) is a GL2(F3)-submodule. (See Section 2.3.2.) Fur-

thermore, it is easily seen that I + 3 ( 1 0
0 0 ) generates

(I +3M)/(I +9M) as a GL2(F3)-module. Thus H(9) ⊇
(I + 3M)/(I + 9M), and hence H3 = GL2(Z3).

Case � = 2. Let M := M2(Z2). First we will show that

H(4) = GL2(Z/4Z). Since H � GL2(F2), it suffices to

show that H(4) ⊇ (I + 2M)/(I + 4M).

Let π = ρ2∞(σ) ∈ H2 be the image of a complex

conjugation automorphism σ ∈ GK . A calculation shows

that ΔE is positive (thinking of K = Q(α) as a subfield

of R). Thus
√
ΔE is fixed by complex conjugation. This

means that π ∈ ker(H2
sgn−−→ {±1}) = N(2∞); i.e., the

image r2(π) is contained in the normal subgroup{
I,

(
1 1
1 0

)
,

(
0 1
1 1

)}
⊆ GL2(F2).

But from the remarks in Section 3.3, we have tr π =

1 + (−1) = 0. Thus π ≡ I (mod 2); i.e., we have π =

I+2A ∈ I+2M . Since the characteristic polynomial of π

is t2−1, it follows that the characteristic polynomial of A

is t2+ t. Since this has distinct roots modulo 2, it follows

that A, and hence π, is diagonalizable in GL2(Z2). After

a suitable change of basis we may assume that

π =

(
1 0
0 −1

)
= I + 2

(
0 0
0 −1

)
=: I + 2A.

As with the � = 3 case, since H(2) = GL2(F2), the

subgroup H(4)∩(I+2M)/(I+4M) is in fact a GL2(F2)-

submodule of (I +2M)/(I+4M). Again it is easily seen

that I +2A generates (I +2M)/(I +4M) as a GL2(F2)-

module. Thus

H(4) ⊇ (I + 2M)/(I + 4M)

and

H(4) = GL2(Z/4Z).

Since (sgn, det)(H) = {±1} × Z∗
2 and H(4) =

GL2(Z/4Z), it now follows from Corollary 2.16 that

H = GL2(Z2).

Having shown that H� = GL2(Z�) for all � and that

(sgn, det)(H) = {±1} × Ẑ∗, we conclude that H =

GL2(Ẑ). In other words, the adelic representation ρE
is surjective in this example.
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