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Under two assumptions, we determine the distribution of the dif-
ference between two functions each counting the numbers less
than or equal to x that are in a given arithmetic progression mod-
ulo q and the product of two primes. The two assumptions are
(i) the extended Riemann hypothesis for Dirichlet L-functions
modulo q, and (ii) that the imaginary parts of the nontrivial zeros
of these L-functions are linearly independent over the rationals.
Our results are analogues of similar results proved for primes in
arithmetic progressions by Rubinstein and Sarnak.

1. INTRODUCTION

1.1 Prime Number Races

Let π(x; q, a) denote the number of primes in the pro-
gression a mod q. For fixed q, the functions π(x; q, a)
(for a ∈ Aq, the set of residues coprime to q) all satisfy

π(x, q, a) ∼ x

ϕ(q) log x
, (1–1)

where ϕ is Euler’s totient function [Davenport 00].
There are, however, curious inequities. For example,
π(x; 4, 3) ≥ π(x; 4, 1) seems to hold for most x, an ob-
servation of Chebyshev’s from 1853 [Chebyshev 53]. In
fact, π(x; 4, 3) < π(x; 4, 1) for the first time at x = 26,861
[Leech 57]. More generally, one can ask various questions
about the behavior of

Δ(x; q, a, b) := π(x; q, a) − π(x; q, b) (1–2)

for distinct a, b ∈ Aq. Does Δ(x; q, a, b) change sign in-
finitely often? Where is the first sign change? How many
sign changes are there with x ≤ X? What are the ex-
treme values of Δ(x; q, a, b)? Such questions are collo-
quially known as prime race problems, and were studied
extensively by Knapowski and Turán in a series of papers
beginning with [Knapowski and Turán 62]. See the sur-
vey articles [Ford and Konyagin 02] and [Granville and
Martin 06] and references therein for an introduction to
the subject and summary of major findings. Properties
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of Dirichlet L-functions lie at the heart of such investi-
gations.

Despite the tendency of the function Δ(x; 4, 3, 1) to
be negative, Littlewood showed that it changes sign in-
finitely often [Littlewood 14]. Similar results have been
proved for other q, a, b (see [Sneed 10] and references
therein). Still, in light of Chebyshev’s observation, we
can ask how frequently Δ(x; q, a, b) is positive and how
often it is negative. These questions are best addressed
in the context of logarithmic density. A set S of positive
integers has logarithmic density

δ(S) = lim
x→∞

1
log x

∑
n≤x
n∈S

1
n

,

provided the limit exists. Let δ(q, a, b) = δ(P (q, a, b)),
where P (q, a, b) is the set of integers n with Δ(n; q, a, b) >

0. It was shown in [Rubinstein and Sarnak 94] that
δ(q; a, b) exists, assuming two hypotheses: (i) the ex-
tended Riemann hypothesis for Dirichlet L-functions
modulo q (ERHq), and (ii) that the imaginary parts
of zeros of each Dirichlet L-function are linearly inde-
pendent over the rationals (GSHq, the grand simplic-
ity hypothesis). The authors also gave methods to ac-
curately estimate the “bias,” for example showing that
δ(4; 3, 1) ≈ 0.996 in Chebyshev’s case. More generally,
δ(q; a, b) = 1

2 when a and b are either both quadratic
residues modulo q or both quadratic nonresidues (un-
biased prime races), but δ(q; a, b) > 1

2 whenever a is a
quadratic nonresidue and b is a quadratic residue. A bit
later we will discuss the reasons behind these phenomena.
Sharp asymptotics for δ(q; a, b) have recently been given
in [Fiorilli and Martin 09], which explain other properties
of these densities.

1.2 Quasiprime Races

In this paper we develop a parallel theory for comparison
of functions π2(x; q, a), the number of integers ≤ x that
are in the progression a mod q and that are the product
of two primes p1p2 (p1 = p2 allowed). Put

Δ2(x; q, a, b) := π2(x; q, a) − π2(x; q, b),

let P2(q, a, b) be the set of integers n with Δ2(n; q, a, b) >

0, and set δ2(q, a, b) = δ(P2(q, a, b)). Table 1 shows all
such quasiprimes up to 100 grouped in residue classes
modulo 4.

Observe that Δ2(x; 4, 3, 1) ≤ 0 for x ≤ 100, and in
fact, the smallest x with Δ2(x; 4, 3, 1) > 0 is x = 26,747
(amazingly close to the first sign change of Δ(x; 4, 3, 1)).
Some years ago, Richard Hudson conjectured that the

pq ≡ 1 (mod 4) pq ≡ 3 (mod 4)

9 15

21 35

25 39

33 51

49 55

57 87

65 91

69 95

77

85

93

TABLE 1. All quasiprimes up to 100 grouped in residue
classes modulo 4.

bias for products of two primes is always reversed from
that of primes; i.e., δ2(q; a, b) < 1

2 when a is a quadratic
nonresidue modulo q and b is a quadratic residue. Un-
der the same assumptions as [Rubinstein and Sarnak 94],
namely ERHq and GSHq, we confirm Hudson’s conjec-
ture and also show that the bias is less pronounced than
the bias for Δ(x; q, a, b).

Theorem 1.1. Let a, b be distinct elements of Aq. Assum-
ing ERHq and GSHq, δ2(q; a, b) exists. Moreover, if a

and b are both quadratic residues modulo q or both quad-
ratic nonresidues, then δ2(q; a, b) = 1

2 . Otherwise, if a is
a quadratic nonresidue and b is a quadratic residue, then

1 − δ(q; a, b) < δ2(q; a, b) <
1
2
.

We can accurately estimate δ2(q; a, b) borrowing meth-
ods from [Rubinstein and Sarnak 94, Section 4]. In par-
ticular, we have

δ2(4; 3, 1) ≈ 0.10572.

We deduce Theorem 1.1 by connecting the distribution
of Δ2(x; q, a, b) with the distribution of Δ(x; q, a, b). Al-
though the relationship is “simple,” there is no elemen-
tary way to derive it, say by writing

π2(x; q, a) =
1
2

∑
p≤x

π

(
x

p
; q, ap−1 mod q

)
+

1
2

∑
p≤√

x

p2≡a (mod q)

1.

In particular, our result depends strongly on the assump-
tion that the zeros of the L-functions modulo q have only
simple zeros. Let N(q, a) be the number of x ∈ Aq with
x2 ≡ a (mod q), and let C(q) be the set of nonprincipal
Dirichlet characters modulo q.
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Δ2(x; 4, 3, 1).

Theorem 1.2. Assume ERHq and for each χ ∈ C(q),
L(1

2 , χ) �= 0 and the zeros of L(s, χ) are simple. Then

Δ2(x; q, a, b) log x√
x log log x

=
N(q, b) − N(q, a)

2φ(q)

− log x√
x

Δ(x; q, a, b) + Σ(x; q, a, b),

where 1
Y

∫ Y

1
|Σ(ey; q, a, b)|2 dy = o(1) as Y → ∞.

The expression for Δ2 given in Theorem 1.2 must be
modified if some L(s, χ) has multiple zeros; see Section 3
for

Figures 1, 2, and 3 show graphs corresponding to
(q, a, b) = (4, 3, 1), plotted on a logarithmic scale from
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FIGURE 3. Σ(x; 4, 3, 1).

x = 103 to x = 109. While Σ(x; 4, 3, 1) appears to be
oscillating around −0.2, this is caused by some terms in
Σ(x; 4, 3, 1) of order 1/ log log x, and log log 109 ≈ 3.03.
By Theorem 1.2, Σ(x; 4, 3, 1) will (assuming ERH4 and
GSH4) eventually settle down to oscillating about 0.

It is not immediate that Theorem 1.1 follows from
Theorem 1.2. One first needs more precise information
about the distribution of Δ(x; q, a, b) from [Rubinstein
and Sarnak 94].

Theorem 1.3. [Rubinstein and Sarnak 94, Section 1] As-
sume ERHq and GSHq. For any distinct a, b ∈ Aq, the
function

uΔ(eu; q, a, b)
eu/2

(1–3)

has a probabilistic distribution. This distribution (i) has
mean (N(q, b)−N(q, a))/φ(q), (ii) is symmetric with re-
spect to its mean, and (iii) has a continuous, positive
density function.

Assume that a is a quadratic nonresidue modulo q and
that b is a quadratic residue. Then N(q, b)−N(q, a) > 0.
Let f be the density function for the distribution of (1–3),
that is,

f(t) =
d

dt
lim

U→∞

meas
{
0 ≤ u ≤ U : uΔ(eu;q,a,b)

eu/2 ≤ t
}

U
.

We see from Theorem 1.3 that

δ(q, a, b) =
∫ ∞

0

f(t) dt >
1
2

and from Theorem 1.2 that

δ2(q, a, b) =
∫ N(q,b)−N(q,a)

2φ(q)

−∞
f(t) dt,

from which Theorem 1.1 follows.
Theorem 1.2 also determines the joint distribution of

any vector function

u

eu/2 log u

(
Δ2(eu; q, a1, b1), . . . , Δ2(eu; q, ar, br)

)
. (1–4)

Theorem 1.4. If f(x1, . . . , xr) is the density function of

u

eu/2

(
Δ(eu; q, a1, b1), . . . , Δ(eu; q, ar, br)

)
,

then the joint density function of (1–4) is

f

(
N(q,b1) − N(q,a1)

2φ(q)
− x1, . . . ,

N(q,br) − N(q,ar)
2φ(q)

− xr

)
.

1.3 Origin of Chebyshev’s Bias

From an analytic point of view (L-functions), the
weighted sum

Δ∗(x; q, a, b) =
∑
n≤x

n≡a mod q

Λ(n) −
∑
n≤x

n≡b mod q

Λ(n), (1–5)

where Λ is the von Mangoldt function, is more natural
than (1–2). Expressing Δ∗(x; q, a, b) in terms of sums
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over zeros of L-functions in the standard way [Daven-
port 00, Section 19], we obtain, on ERHq,

e−u/2φ(q)Δ∗(eu; q, a, b)

= −
∑

χ∈C(q)

(χ(a) − χ(b))
∑

γ

eiγu

1/2 + iγ
+ O(u2e−u/2),

where γ runs over the imaginary parts of the nontriv-
ial zeros of L(s, χ) (counted with multiplicity). Hypoth-
esis GSHq implies, in particular, that L(1/2, χ) �= 0.
Each summand eiγu/(1/2 + iγ) is thus a harmonic with
mean zero as u → ∞, and GSHq implies that the har-
monics behave independently. Hence, we expect that
e−u/2φ(q)Δ∗(eu; q, a, b) will behave like a mean-zero ran-
dom variable. On the other hand, the right side of (1–5)
contains not only terms corresponding to prime n but
terms corresponding to powers of primes. Applying the
prime number theorem for arithmetic progressions (1–1)
to the terms n = p2 in (1–5) gives

Δ∗(x; q, a, b) =
∑
p≤x

p≡a mod q

log p −
∑
p≤x

p≡b mod q

log p

+
x1/2

φ(q)
(N(q, a) − N(q, b)) + O(x1/3).

Hence, on ERHq and GSHq, we expect the expression

1√
x

( ∑
p≤x

p≡a mod q

log p −
∑
p≤x

p≡b mod q

log p

)
(1–6)

to behave like a random variable with mean (N(q, b) −
N(q, a))/φ(q). Finally, the distribution of Δ(x; q, a, b)
is obtained from the distribution of (1–6) and partial
summation.

1.4 Analyzing Δ2(x; q, a, b)

A natural analogue of Δ∗(x; q, a, b) is

∑
mn≤x

mn≡a mod q

Λ(m)Λ(n) −
∑

mn≤x
mn≡b mod q

Λ(m)Λ(n). (1–7)

As with Δ∗(x; q, a, b), the expression in (1–7) can be eas-
ily written as a sum over zeros of L-functions plus a small
error. The main problem now is that the principal sum-
mands, namely log p1 log p2 for primes p1, p2, are very
irregular as a function of p1p2, and thus estimates for
Δ2(x; q, a, b) cannot be recovered by partial summation.
We get around this problem using a double integration,

a method that goes back to [Landau 74, Section 88]. We
have

Δ2(x; q, a, b) (1–8)

=
1

φ(q)

∑
χ∈C(q)

(χ(a) − χ(b))
∑

n=p1p2≤x
p1≤p2

χ(n)

=
1

2φ(q)

∑
χ∈C(q)

(χ(a) − χ(b))
∫ ∞

0

∫ ∞

0

G(x, u, v; χ) du dv

+ O

( √
x

log x

)
,

where

G(x, u, v; χ) =
∑

p1p2≤x

χ(p1p2) log p1 log p2

pu
1pv

2

. (1–9)

The related functions

G∗(x, u, v; χ) =
∑

mn≤x

χ(mn)Λ(m)Λ(n)
munv

are more “natural” from an analytic point of view, be-
ing easily expressed in terms of zeros of Dirichlet L-
functions. By the reasoning of the previous subsec-
tion, each G∗(x, u, v; χ) is expected to be unbiased, the
bias in Δ2(x; q, a, b) originating from the summands in
G∗(x, u, v; χ) where m is not prime or n is not prime.

1.5 A Heuristic Argument for the Bias in
Δ2(x; q, a, b)

We conclude this introduction with a heuristic evaluation
of the bias in Δ2(x; q, a, b), which originates from the dif-
ference between functions G(x; u, v; χ) and G∗(x, u, v; χ).
For simplicity of exposition, we shall concentrate on
the special case (q, a, b) = (4, 3, 1). In this case, the
bias arises from terms p1p

2
2 and p2

1p
2
2 that appear in

G∗(x; u, v; χ) but not in G(x, u, v; χ). Let χ be the non-
principal character modulo 4, so that

1
2

∫ ∞

0

∫ ∞

0

(
G∗(x, u, v; χ) − G(x, u, v; χ)

)
du dv

=
1
2

∑
pa
1pb

2≤x
max(a,b)≥2

χ(pa
1p

b
2)

ab
.

There are O(x1/2/ logx) terms with min(a, b) ≥ 2 and
max(a, b) ≥ 3. By the prime number theorem and partial
summation,

1
2

∑
p2
1p2

2≤x

1
4

=
1
8

∑
p≤√

x

π
(√

x/p2
)
∼ x1/2 log log x

2 logx
.
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Thus,

Δ2(x; 4, 3, 1) = −1
2

∑
mn≤x

χ(mn)Λ(m)Λ(n)
log m logn

−
∞∑

k=2

1
k

∑
pk
1≤x

χ(pk
1)Δ(x/pk

1 ; 4, 3, 1)

+
(

1
2

+ o(1)
)

x1/2 log log x

log x
.

By Theorem 1.3, Δ(y; 4, 3, 1) = y1/2/ log y +E(y), where
E(y) oscillates with mean 0. Thus,

∞∑
k=2

1
k

∑
pk
1≤x

χ(pk
1)Δ(x/pk

1 ; 4, 3, 1)

=
∞∑

k=2

2
k

∑
pk
1≤x

χ(pk
1)

√
x/pk

1

log(x/pk
1)

+ E′(x),

where E′(x) is expected to oscillate with mean zero. The
k = 2 terms are

∑
p2
1≤x

√
x/p2

1

log(x/p2
1)

∼
√

x log log x

log x
,

while the terms corresponding to k ≥ 3 contribute

�
∞∑

k=3

1
k

∑
pk
1≤x

√
x/pk

1

log(x/pk
1)

�
√

x

log x
.

Thus, we find that

Δ2(x; 4, 3, 1) = −1
2

∑
mn≤x

χ(mn)Λ(m)Λ(n)
log m log n

−
(

1
2

+ o(1)
)

x1/2 log log x

log x
+ E′(x).

1.6 Further Problems

It is natural to consider the distribution, in arithmetic
progressions, of numbers composed of exactly k prime
factors, where k ≥ 3 is fixed. As with the cases k = 1 and
k = 2, we expect there to be no bias if we count all num-
bers pa1

1 pa2
2 · · · pak

k with weight (a1 · · · ak)−1. If, however,
we count terms that are the product of precisely k primes
(that is, numbers pa1

1 · · · paj

j with a1 + · · ·+aj = k), then
there will be a bias. Hudson has conjectured that the
bias will be in the same direction as for primes when k is
odd, and in the opposite direction for even k. We conjec-
ture that in addition, the bias becomes less pronounced
as k increases.

2. PRELIMINARIES

With χ fixed, the letter γ, with or without subscripts,
denotes the imaginary part of a zero of L(s, χ) inside the
critical strip. In sums over γ, each term appears with its
multiplicity m(γ) unless we specify that we sum over dis-
tinct γ. Constants implied by O and � symbols depend
only on χ (and hence on q) unless additional dependence
is indicated with a subscript. Let

A(χ) =

{
1 if χ2 = χ0,

0 otherwise,

where χ0 is the principal character modulo q. That is,
A(χ) = 1 if and only if χ is a real character. For χ ∈
C(q), define

F (s, χ) =
∑

p

χ(p) log p

ps
.

The following estimates are standard; see, for example,
[Davenport 00, Sections 15, 16].

Lemma 2.1. Let χ ∈ C(q), assume ERHq, and fix c > 1
3 .

Then F (s, χ) = −L′
L (s, χ) + A(χ) ζ′

ζ (2s) + H(s, χ), where
H(s, χ) is analytic and uniformly bounded in the half-
plane s ≥ c.

Lemma 2.2. Let χ be a Dirichlet character modulo q.
Let N(T, χ) denote the number of zeros of L(s, χ) with
0 < s < 1 and |�s| < T . Then

(1) N(T, χ) = O(T log(qT )) for T ≥ 1.

(2) N(T, χ) − N(T − 1, χ) = O(log(qT )) for T ≥ 1.

(3) Uniformly for s = σ + it and σ ≥ −1,

L′(s, χ)
L(s, χ)

=
∑

|γ−t|<1

1
s − ρ

+ O(log q(|t| + 2)).

(4) − ζ′

ζ (σ) = 1
σ−1 + O(1) uniformly for σ ≥ 1

2 , σ �= 1.

(5)
∣∣ ζ′

ζ (σ + iT )
∣∣ ≤ − ζ′

ζ (σ) for σ > 1.

For a suitably small fixed δ > 0, we say that a number
T ≥ 2 is admissible if for all χ ∈ C(q)∪{χ0} and all zeros
1
2 +iγ of L(s, χ), |γ−T | ≥ δ(log T )−1. By Lemma 2.2, we
can choose δ small enough, depending on q, that there
is an admissible T in [U, U + 1] for all U ≥ 2. From
Lemma 2.2 we obtain the following result.
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Lemma 2.3. Uniformly for σ ≥ 2
5 and admissible T ≥ 2,

|F (σ + iT, χ)| = O(log2 T ).

Lemma 2.4. Fix χ ∈ C(q) and assume L(1
2 , χ) �= 0. For

A ≥ 0 and real k ≥ 0,

∑
|γ1|,|γ2|≥A
|γ1−γ2|≥1

logk(|γ1| + 3)logk(|γ2| + 3)
|γ1||γ2||γ1 − γ2| �k

log2k+3(A + 3)
A + 1

.

Proof: The sum in question is at most twice the sum of
terms with |γ2| ≥ |γ1|, which is

�
∑

|γ2|≥A

log2k(|γ2| + 3)
|γ2|

×
(

1
|γ2|

∑
|γ1|< |γ2|

2

1
|γ1| +

1
|γ2|

∑
|γ2|
2 ≤|γ1|≤|γ2|
|γ2−γ1|≥1

1
|γ2 − γ1|

)
.

By Lemma 2.2(1), the two sums over γ1 are O(log2(|γ2|+
3)). A further application of Lemma 2.2(1) completes the
proof.

We conclude this section with a truncated version of
the Perron formula for G(x, u, v; χ).

Lemma 2.5. Uniformly for x ≤ T ≤ 2x2, x ≥ 2, u ≥ 0,
and v ≥ 0, we have

G(x, u, v; χ) =
1

2πi

∫ c+iT

c−iT

F (s + u, χ)F (s + v, χ)
xs

s
ds

+ O(log3 x), (2–1)

where c = 1 + 1
log x .

Proof: For s > 1, we have

F (s + u, χ)F (s + v, χ) =
∞∑

n=1

f(n)n−s,

f(n) =
∑

p1p2=n

χ(p1p2) log p1 log p2

pu
1pv

2

.

Using the trivial estimate |f(n)| ≤ log2 n and a standard
argument [Davenport 00, Section 17, (3) and (5)], we
obtain the desired bounds.

3. OUTLINE OF THE PROOF OF THEOREM 1.2

Throughout the remainder of this paper, fix q, and as-
sume ERHq and that L(1

2 , χ) �= 0 for each χ ∈ C(q).

Let
ε =

1
100

.

We next define a function T (x) as follows. For each posi-
tive integer n, let Tn be an admissible value of T satisfy-
ing exp(2n+1) ≤ Tn ≤ exp(2n+1) + 1 and set T (x) = Tn

for exp(2n) < x ≤ exp(2n+1). In particular, we have

x ≤ T (x) ≤ 2x2 (x ≥ e2).

Our first task is to express the double integrals in (1–8)
in terms of sums over zeros of L(s, χ). This is proved in
Section 4.

Lemma 3.1. Let χ ∈ C(q) and let T = T (x). Then

x−1/2

∫ ∞

0

∫ ∞

0

G(x, u, v; χ) du dv

= 2
∫ 2ε

0

∫ 2ε

0

∑
|γ|≤T

F (1
2 + u − v + iγ, χ)x−v+iγ

1
2 − v + iγ

du dv

+
A(χ) log log x + Σ1(x; χ) + O(1)

log x
,

where
∫ Y

1
|Σ1(ey; χ)|2dy = O(Y ).

The aggregate of terms A(χ) log log x/ log x accounts
for the bias for products of two primes. As with the
Chebyshev bias for primes, these terms arise from poles of
F (s) at s = 1

2 when A(χ) = 1 (see Lemma 2.1) and corre-
spond to the contribution to F (s) from squares of primes.
The double integral on the right side in Lemma 3.1 is
complicated to analyze. In Section 5 we prove the fol-
lowing.

Lemma 3.2. Let χ ∈ C(q). Let n be a positive integer,
2n < log x ≤ 2n+1, and T = T (x). Then

2
∫ 2ε

0

∫ 2ε

0

∑
|γ|≤T

F (1
2 + u − v + iγ, χ)x−v+iγ

1
2 − v + iγ

du dv

=
Σ2(x; χ)

log x
+ 2

∑
|γ|≤T

γ distinct

m2(γ)xiγ

(
1
2

+ iγ

)

×
∫ 2ε−2−n

0

x−v

1
2 − v + iγ

∫ 2ε

v+2−n

du dv

(u − v)(1
2 − u + iγ)

,

where
∫ Y

1 |Σ2(ey; χ)|2dy = o(Y log2 Y ) as Y → ∞.

The terms on the right in Lemma 3.2 with small |γ|
will give the main term, and terms with larger |γ| are
considered as error terms. The next lemma is proved in
Section 6.
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Lemma 3.3. Let χ ∈ C(q). Let n be a positive integer,
2n < log x ≤ 2n+1, T = T (x), and 2 ≤ T0 ≤ T . Then

2
∑
|γ|≤T

γ distinct

m2(γ)xiγ

(
1
2

+ iγ

)

×
∫ 2ε−2−n

0

x−v

1
2 − v + iγ

∫ 2ε

v+2−n

du

(u − v)(1
2 − u + iγ)

dv

=
2 log log x

log x

∑
|γ|≤T0

γ distinct

m2(γ)xiγ

1/2 + iγ
+ O

(
log3 T0

log x

)

+
Σ3(x, T0; χ)

log x
,

where

1
Y

∫ Y

1

|Σ3(ey, T0; χ)|2 dy � log5 T0

T0
log2 Y.

Combining Lemmas 3.1, 3.2, and 3.3 with (1–8) yields
(for fixed large T0)

Δ2(x; q, a, b) =
√

x

2φ(q)

∑
χ∈C(q)

(χ(a) − χ(b))

×
[

log log x

log x

(
A(χ) + 2

∑
|γ|≤T0,γ distinct

m2(γ)xiγ

1/2 + iγ

)

+
Σ1(x; χ) + Σ2(x; χ) + Σ3(x, T0; χ) + O(log3 T0)

log x

]
,

where

lim
T0→∞

(
lim sup
Y →∞

1
Y log2 Y

∑
χ∈C(q)

∫ Y

1

|Σ1(ey; χ) + Σ2(ey; χ)

+ Σ3(ey; T0; χ)|2 dy

)
= 0.

On the other hand, (cf. [Rubinstein and Sarnak 94]),

Δ(x; q, a, b) =
√

x

log x

(
N(q, b) − N(q, a)

φ(q)

−
∑

χ∈C(q)

(χ(a) − χ(b))
∑

|γ|≤T0

xiγ

1/2 + iγ
+ Σ4(x; T0)

)
,

where

lim
T0→∞

(
lim sup
Y →∞

Y −1

∫ Y

1

|Σ4(ey; T0)|2 dy

)
= 0.

Now assume that m(γ) = 1 for all γ, and note that∑
χ∈C(q)

(χ(a) − χ(b))A(χ) = N(q, a) − N(q, b).

Letting T0 → ∞ finishes the proof of Theorem 1.2.

4. PROOF OF LEMMA 3.1

Assume ERHq throughout. We first estimate G(x, u, v; χ)
for different ranges of u, v.

Lemma 4.1. Let χ ∈ C(q), χ �= χ0. For x ≥ 4, the
following hold:

(1) For u ≥ ε and v ≥ ε, G(x, u, v; χ) � x
1
2− ε

2 log5 x.

(2) For u ≥ 2ε, v ≤ ε and T = T (x),

G(x, u, v; χ)√
x

=
∑
|γ|≤T

F (1
2 + u − v + iγ, χ)x−v+iγ

1
2 − v + iγ

− A(χ)
F (1

2 + u − v, χ)x−v

1 − 2v
+ O(x−ε log5 x).

(3) For u ≤ 2ε, v ≤ 2ε, u �= v and T = T (x),

G(x, u, v; χ)√
x

=
∑
|γ|≤T

F (1
2 + u − v + iγ, χ)x−v+iγ

1
2 − v + iγ

+
F (1

2 − u + v + iγ, χ)x−u+iγ

1
2 − u + iγ

− A(χ)
(

F (1
2 + u − v, χ)x−v

1 − 2v

+
F (1

2 − u + v, χ)x−u

1 − 2u

)
+ O(x−3ε log5 x).

Proof: Assume u ≥ ε and v ≥ ε. Start with the approx-
imation of G(x, u, v; χ) given by Lemma 2.5, and then
deform the segment of integration to the contour consist-
ing of three straight segments connecting c − iT , b − iT ,
b + iT , and c + iT , where b = 1

2 − ε
2 and T = T (x).

The rectangle formed by the new and old contours does
not contain any poles of F (s + u, χ)F (s + v, χ)s−1. On
the three new segments, by Lemmas 2.1, 2.2, and 2.3, we
have |F (s+u, χ)F (s+v, χ)| � log4 T . Hence the integral
of F (s+u, χ)F (s+ v, χ)xss−1 over the three segments is

� (log4 x)
(∫ c

b

xσ

|σ + iT | dσ+
∫ T

−T

xb

|b + it| dt
)
� xb log5 x.

This proves (1).
We now consider the case v ≤ ε and u ≥ 2ε. We set

b = 1
2 − 3ε

2 and deform the contour of integration as in
the previous case. Since u + b ≥ 1

2 + ε
2 and v + b ≤

1
2 − ε

2 , we have by Lemma 2.3 that |F (s + u, χ)F (s +
v, χ)| � log4 T � log4 x on all three new segments. As
in the proof of (1), the integral over the new contour
is � xb log5 x. We pick up residue terms from poles of
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F (s+v, χ) inside the rectangle coming from the nontrivial
zeros of L(s, χ), plus a pole at s = 1

2 − v from the term
ζ′

ζ (2s + 2v) if χ2 = χ0. The sum of the residues is

∑
|γ|≤T

F (1
2 + u − v + iγ, χ)x

1
2−v+iγ

1
2 − v + iγ

− A(χ)
F (1

2 + u − v, χ)x
1
2−v

1 − 2v
,

and (2) follows.
Finally, consider the case 0 ≤ u, v ≤ 2ε. Let b = 1

2−3ε

and deform the contour as in the previous cases. As
before, the integral over the new contour is O(xb log5 x).
This time, we pick up residues from poles of both F (s +
u, χ) and F (s + v, χ) and (3) follows.

Proof of Lemma 3.1: Begin with∫ ∞

0

∫ ∞

0

G(x, u, v; χ) du dv = I1 + I2 + 2I3 + I4,

where I1 is the integral over max(u, v) ≥ log x; I2 is the
integral over 2ε ≤ max(u, v) ≤ log x and min(u, v) ≥ ε;
I3 is the integral over 0 ≤ v ≤ ε, 2ε ≤ u ≤ log x; and I4

is the integral over 0 ≤ u, v ≤ 2ε. For max(u, v) ≥ log x,

|G(x, u, v; χ)| ≤
∑
p≤x

log p

pu

∑
p≤x

log q

qv
� x

2max(u,v)
,

whence I1 � x1−log 2. By Lemma 4.1(1), I2 �
x1/2−ε/2 log7 x.

By Lemma 4.1(2),

I3 = x1/2

∫ ε

0

∫ log x

2ε

∑
|γ|≤T

F (1
2 + u − v + iγ, χ)x−v+iγ

1
2 − v + iγ

− A(χ)
F (1

2 + u − v, χ)x−v

1 − 2v
du dv

+ O(x1/2− 3ε
2 log6 x). (4–1)

By Lemmas 2.2 and 2.3,

∫ ε

0

∫ log x

2ε

F (1
2 + u − v, χ)x−v

1 − 2v
du dv � 1

log x
. (4–2)

Let

Σ1(x) = (log x)
∫ ε

0∫ log x

2ε

∑
|γ|≤T

F (1
2 + u − v + iγ, χ)x−v+iγ

1
2 − v + iγ

du dv.

Since σ := 1
2 + u− v ≥ 1

2 + ε for 0 ≤ v ≤ ε and 2ε ≤ u ≤
log x, by Lemmas 2.1, 2.2, and 2.3,

F (σ + iγ, χ) = −L′

L
(σ + iγ, χ) + O(1) � log(|γ| + 3).

We also have F (1/2 + u − v + iγ, χ) � 2−u for u ≥ 2.
Thus for positive integers n,∫ 2n+1

2n

|Σ1(ey)|2dy

� 22n
∑

|γ1|,|γ2|≤T

log(|γ1| + 3) log(|γ2| + 3)
|γ1γ2|

×
∫ ε

0

∫ ε

0

∣∣∣∣∣
∫ 2n+1

2n

ey(−v1+iγ1−v2−iγ2)dy

∣∣∣∣∣dv1dv2.

The triple integral is ≤ ∫ 2n+1

2n (
∫ ε

0
e−vydv)2dy � 2−n.

Hence, the summands with |γ1 − γ2| < 1 contribute, by
Lemma 2.2,

� 2n
∑
|γ|≤T

log3(|γ| + 3)
|γ|2 � 2n.

The summands with |γ1 − γ2| ≥ 1 contribute, by
Lemma 2.4,

�
∑

|γ1|,|γ2|<T
|γ1−γ2|≥1

22n log(|γ1| + 3) log(|γ2| + 3)
|γ1||γ2||γ1 − γ2|

(∫ ε

0

e−v2n

dv
)2

� 1.

Thus
∫ 2n+1

2n |Σ1(ey)|2dy = O(2n). Summing over

n ≤ log Y

log 2
+ 1

yields ∫ Y

1

|Σ1(ey)|2 dy = O(Y ).

Finally, use Lemma 4.1(3) for I4. It suffices to show,
for χ2 = χ0, that∫ 2ε

0

∫ 2ε

0

F (1
2 + u − v, χ)x−v

1 − 2v
+

F (1
2 − u + v, χ)x−u

1 − 2u
du dv

= − log log x + O(1)
log x

. (4–3)

Together with (4–1) and (4–2), this completes the proof
of Lemma 3.1.

Note that −F (1
2 + w) = 1

2w + O(1) by Lemmas 2.1
and 2.3. Replacing x with ey, the integrand is equal to

−1
2

(
e−yv

(u − v)(1 − 2v)
+

e−yu

(v − u)(1 − 2u)

)
+ O

(
e−yv

)
.
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The integral of the error term above is O(1/y). In
the main term, when |u − v| < 1/y, the integrand is
O(ye−vy) and the corresponding part of the double inte-
gral is O(1/y). When u ≥ v + 1/y, the main part of the
integrand is

− e−vy

2(u − v)
+ O

(
ve−vy + e−uy

u − v

)

and the corresponding part of the double integral is

−1
2

∫ 2ε

0

e−vylog
(

y

2ε − v

)
dv+O

(
1
y

)
=

− log y+O(1)
2y

.

The contribution from u ≤ v − 1/y is, by symmetry, also
− log y+O(1)

2y . The asymptotic (4–3) follows.

5. PROOF OF LEMMA 3.2

We begin with a lemma.

Lemma 5.1. Uniformly for y ≥ 1, 0 < |ξ| ≤ 1, |w| ≥ 1
2 ,

and a ≥ 0, we have∣∣∣∣
∫ 2ε

0

∫ 2ε

0

vae−vy du dv

(u − v + iξ)(w − v)

∣∣∣∣� (4ε)a log min(2y, 2
|ξ|)

y|w| .

Proof: Let I denote the double integral in the lemma. If
|ξ| ≥ 1

y , then

I � 1
|w|
∫ 2ε

0

vae−vy

∫ 2ε

0

min
(

1
|u − v| ,

1
|ξ|
)

du dv

� (2ε)a

|w|
(

1 + log
2
|ξ|
)∫ 2ε

0

e−vy dv �
(2ε)a log( 2

|ξ|)

y|w| .

If |ξ| < 1
y , let I = I1 + I2 + I3, where I1 is the part of I

coming from |u−v| ≤ |ξ|, I2 is the part of I coming from
|ξ| < |u − v| ≤ 1

y , and I3 is the part of I coming from
|u − v| > 1

y . We have

I1 � 1
|wξ|

∫∫
0≤u,v≤2ε
|u−v|≤|ξ|

vae−vydu dv � (2ε)a

y|w|

and

I3 � (2ε)a

|w|
∫∫

0≤u,v≤2ε
|u−v|≥ 1

y

e−vy

|u − v|du dv

� (2ε)a

|w|
∫ 2ε

0

e−vy(log y + 1)dv

� (2ε)a log(2y)
y|w| .

By symmetry,

I2 =
1
2

∫∫
|ξ|<|u−v|≤1/y

vae−vy

(u − v + iξ)(w − v)

+
uae−uy

(v − u + iξ)(w − u)
du dv.

Since, |ua − va| ≤ a|u − v|(2ε)a−1, we have

uae−uy − vae−vy (5–1)

= e−vyva
(
e(v−u)y − 1

)
+ e−vy(ua − va)e(v−u)y

� e−vyy|u − v|(4ε)a.

Writing X = uae−uy − vae−vy and Y = uae−uy(u − v)2,
we deduce that

I2=
∫∫

0≤u,v≤2ε
|ξ|<|u−v|≤1/y

(w−u)(u−v)X+Y +O(|ξw|(2ε)ae−vy)du dv

2(u − v + iξ)(v − u + iξ)(w − u)(w − v)

� (4ε)a

|w|
∫∫

0≤u,v≤2ε
|ξ|<|u−v|≤1/y

ye−vy +
|ξ|e−vy

|u − v|2 du dv � (4ε)a

y|w| .

Proof of Lemma 3.2: Let y = log x. By Lemmas 2.1
and 2.2

F

(
1
2

+ u − v + iγ, χ

)
=

m(γ)
u − v

+R(γ, u−v)+R′(γ, u−v),

where

R(γ, w) =
∑

0<|γ′−γ|≤1

1
w + i(γ − γ′)

,

R′(γ, w) = O(log(|γ| + 3)).

Then the double integral in Lemma 3.2 is equal to

4∑
i=1

Σ2,i(y) + 2
∑
|γ|≤T

γ distinct

m2(γ)eiyγ

(
1
2

+ iγ

)

∫ 2ε−2−n

0

e−yv

1
2 − v + iγ

∫ 2ε

v+2−n

du dv

(u − v)(1
2 − u + iγ)

,
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where

Σ2,1(y) = 2
∫ 2ε

0

∫ 2ε

0

∑
|γ|≤T

R(γ, u − v)ey(−v+iγ)

1
2 − v + iγ

du dv,

Σ2,2(y) = 2
∫ 2ε

0

∫ 2ε

0

R′(γ, u − v)ey(−v+iγ)

1
2 − v + iγ

du dv,

Σ2,3(y) =
∑
|γ|≤T

γ distinct

m2(γ)eiyγ

(
1
2

+ iγ

)

∫∫
0≤u,v≤2ε
|u−v|≤2−n

e−yv − e−uy

(u − v)(1
2 − v + iγ)(1

2 − u + iγ)
dv du,

Σ2,4(y) = 2
∑
|γ|≤T

γ distinct

m2(γ)eiyγ

(
1
2

+ iγ

)

∫ 2ε

2−n

∫ v−2−n

0

e−yv

(u − v)(1
2 − v + iγ)(1

2 − u + iγ)
du dv.

We show that
∑4

j=1 Σ2,j(y) is small in mean square. Note
that for 2n < y ≤ 2n+1, T = T (ey) is constant. Also, by
Lemma 2.2, we have

m(γ) � log(|γ| + 3). (5–2)

First, by Lemmas 2.2 and 2.4,

∫ 2n+1

2n

|Σ2,2(y)|2 dy (5–3)

= 4
∫∫∫∫
[0,2ε]4

∑
|γ1|≤T
|γ2|≤T

R′(γ1, u1 − v1)R′(γ2, u2 − v2)
(1
2 − v1 + iγ1)(1

2 − v2 − iγ2)

×
∫ 2n+1

2n

ey(−v1−v2+iγ1−iγ2) dy dujdvj

�
∑

|γ1−γ2|>1

log(|γ1| + 3) log(|γ2| + 3)
|γ1γ2| · |γ1 − γ2|∫∫∫∫

[0,2ε]4

e−2n(v1+v2) dujdvj

+
∑

|γ1−γ2|≤1

log(|γ1| + 3) log(|γ2| + 3)
|γ1γ2|

∫ 2n+1

2n∫∫∫∫
[0,2ε]4

e−y(v1+v2) dujdvjdy

� 2−n.

For the remaining sums, for brevity we define

ρ1 =
1
2

+ iγ1, ρ2 =
1
2
− iγ2.

Next,

∫ 2n+1

2n

|Σ2,3(y)|2dy

=
∫ 2n+1

2n

∑
|γ1|,|γ2|≤T

m(γ1)m(γ2)eiy(γ1−γ2)ρ1ρ2

×
∫∫∫∫
[0,2ε]4

|uj−vj |≤2−n

(e−v1y − e−u1y)(e−v2y − e−u2y)
2∏

j=1

(uj − vj)(ρj − vj)(ρj − uj)

dvjdvj dy.

By (5–1), the integrand in the quadruple integral is �
y2e−uy−u1y|ρ1ρ2|−2. By Lemma 2.2, for a given γ1, there
are � log(|γ1| + 3) zeros γ2 with |γ1 − γ2| < 1. Hence
the contribution from terms with |γ1 − γ2| < 1 is

� 2−n
∑

|γ1−γ2|<1

m(γ1)m(γ2)
|ρ1ρ2| � 2−n

∑
γ1

log3(|γ1| + 3)
|γ1|2

� 2−n.

Using integration by parts, we have

∫ 2n+1

2n

eiy(γ1−γ2)(e−v1y − e−u2y)(e−v1y − e−u2y) dy

� 23n|u1 − v1| |u2 − v2|e−2n(u1+u2)

|γ1 − γ2|

uniformly in u1, v1, u2, v2. Thus, by (5–2) and
Lemma 2.4, the contribution from terms with |γ1−γ2| ≥
1 is

� 2−n
∑

|γ1−γ2|≥1

m(γ1)m(γ2)
|ρ1ρ2| · |γ1 − γ2| � 2−n.

Combining these estimates, we have

∫ 2n+1

2n

|Σ2,3(y)|2dy � 2−n. (5–4)

In the same manner, we have

∫ 2n+1

2n

|Σ2,4(y)|2dy =
∑

|γ1|≤T
|γ2|≤T

m(γ1)m(γ2)ρ1ρ2

×
∫ 2n+1

2n

∫∫∫∫
[0,2ε]4

uj≤vj−2−n

ey(−v1−v2+i(γ1−γ2))dujdvj

2∏
j=1

(uj − vj)(ρj − vj)(ρj − uj)

dy.
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The contribution to the right side from terms with
|γ1 − γ2|< 1 is

�
∑

|γ1−γ2|<1

m(γ1)m(γ2)
|γ1γ2|

×
∫ 2n+1

2n

(∫ 2ε

2−n

∫ v−2−n

0

e−yv

(v − u)
du dv

)2

�
∑
γ1

log3(|γ1| + 3)
|γ1|2

∫ 2n+1

2n

(∫ ∞

1/y

e−yv log(yv) dv

)2

� 2−n.

The terms with |γ1 − γ2| > 1 contribute

�
∑

|γ1|,|γ2|<T
|γ1−γ2|>1

m(γ1)m(γ2)
|γ1γ2| · |γ1 − γ2|

(∫ 2ε

2−n

∫ v−2−n

0

e−2nv

v − u
du dv

)2

�
∑

|γ1−γ2|>1

log(|γ1| + 3) log(|γ2| + 3)
|γ1γ2| · |γ1 − γ2|

(
1
2n

)2

� 1
22n

.

Therefore,

∫ 2n+1

2n

|Σ2,4(y)|2dy � 2−n. (5–5)

Estimating an average of Σ2,1(y) is more complicated,
since R(γ, w) could be very large if |w| is small and there
is another γ′ very close to γ. We get around the problem
by noticing that R(γ, w)+R(γ,−w) is always small. We
first have, by (5–1) and Lemma 2.2,

∫ 2n+1

2n

|Σ2,1(y)|2dy �
∑
γ1,γ2

log2(|γ1| + 3) log2(|γ2| + 3)

× max
0<|γ1−γ′

1|≤1

0<|γ2−γ′
2|≤1

∫ 2n+1

2n

eiy(γ1−γ2) (5–6)

×
∫∫∫∫

[0,2ε]4

e−y(v1+v2)duj dvj dy
2∏

j=1

(uj − vj + iξj)(ρj − vj)

,

where ξ1 = γ1 − γ′
1 and ξ2 = −(γ2 − γ′

2). Let

M(γ) = max
|γ−γ1|≤1

0<|γ1−γ′
1|<1

2
|γ1 − γ′

1|
.

By Lemmas 2.3 and 5.1, the terms with |γ1 − γ2| < 1
contribute

�
∑

|γ1−γ2|<1

log2(|γ1| + 3) log2(|γ2| + 3)
|γ1γ2|

×
∫ 2n+1

2n

1
y2

2∏
j=1

log

(
min

(
2y,

2
|γj − γ′

j |

))
dy

� 1
2n

∑
γ1

log5(|γ1| + 3)
|γ1|2 log2

(
min(2n+2, M(γ))

)

= o

(
n2

2n

)
(n → ∞).

Now suppose |γ1−γ2| > 1. With γ1, γ2, γ
′
1, γ

′
2 all fixed,

let Δ = γ1 − γ2. Fixing u1, v1, u2, v2, we integrate over y

first. The quintuple integral in (5–6) is J(2n+1)− J(2n),
where

J(y) = eiyΔ

×
∫∫∫∫
[0,2ε]4

e−y(v1+v2)duj dvj

(iΔ − v1 − v2)
2∏

j=1

(uj − vj + iξj)(ρj − vj)

.

Using

1
iΔ − v1 − v2

=
1

iΔ

∞∑
k=0

(
v1 + v2

iΔ

)k

=
∑

a,b≥0

(
a + b

a

)
va
1vb

2

(iΔ)a+b

together with Lemma 5.1 yields

|J(y)| � log2 y

|ρ1ρ2Δ|y2

∑
a,b≥0

(
a + b

a

)(
4ε

|Δ|
)a+b

� log2 y

|ρ1ρ2Δ|y2
.

Therefore, by Lemma 2.4,∑
γ1,γ2

log2(|γ1| + 3) log2(|γ2| + 3)

× max
0<|γ1−γ′

1|≤1

0<|γ2−γ′
2|≤1

|J(2n+1) − J(2n)| � n2

22n
,

and hence ∫ 2n+1

2n

|Σ2,1(y)|2 = o(n22−n). (5–7)
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Define

Σ2(x; χ) = (log x)
4∑

j=1

Σ2,j(log x).

By (5–3), (5–4), (5–5), and (5–7),

∫ Y

2

|Σ2(ey; χ)|2 dy �
4∑

j=1

∑
n≤ log Y

log 2 +1

22n

∫ 2n+1

2n

|Σ2,j(y)|2 dy

= o(Y log2 Y ) (Y → ∞).

This completes the proof of Theorem 3.2.

6. PROOF OF LEMMA 3.3

Proof: Put y = log x. For any γ we have

∫ 2ε−2−n

0

e−yv

1
2 − v + iγ

∫ 2ε

v+2−n

du

(u − v)(1
2 − u + iγ)

dv

=
∫ 2ε−2−n

0

e−yv

(
1

1
2 + iγ

+ O

(
v

1
4 + γ2

))

×
∫ 2ε

v+2−n

(
1

1
2 + iγ

+ O

(
u

1
4 + γ2

))
du

u − v
dv

=
M + E

(1/2 + iγ)2
,

where

M =
∫ 2ε−2−n

0

e−yv (log(2ε − v) + log 2n) dv

=
log y + O(1)

y

and

E �
∫ 2ε−2−n

0

e−yv

∫ 2ε

v+2−n

u

u − v
du dv

�
∫ 2ε−2−n

0

e−yv (1 + v log 2n + v log(2ε − v)) dv

� 1
y
.

Hence, the zeros with |γ| ≤ T0 contribute

2 log log x

log x

∑
|γ|≤T0

γ distinct

m2(γ)xiγ

1/2 + iγ
+ O

(
log3 T0

log x

)
.

Next, let Σ3(x; T0) be the sum over zeros with T0 <

|γ| ≤ T . We have

∫ 2n+1

2n

|Σ3(ey, T0)|2dy

≤
∑

T0≤|γ1|,|γ2|≤T

22n+2m(γ1)m(γ2)
(

1
2

+ iγ1

)

×
(

1
2
− iγ2

)∫ 2n+1

2n

eyi(γ1−γ2) (6–1)

×
∫∫∫∫

uj≥vj+2−n

e−yv1−yv2dujdvj dy
2∏

j=1

(uj − vj)(
1
2
− vj + iγj)(

1
2
− uj + iγj)

.

The sum over |γ1 − γ2| < 1 on the right side of (6–1) is

�
∑

T0≤|γ1|,|γ2|≤T

|γ1−γ2|<1

22nm(γ1)m(γ2)
|γ1||γ2|

×
∫ 2n+1

2n

∫∫∫∫
uj≥vj+2−n

e−yv1−yv2

(u1 − v1)(u2 − v2)
dujdvj dy

�
∑

T0≤|γ1|,|γ2|≤T

|γ1−γ2|<1

n22nm(γ1)m(γ2)
|γ1||γ2|

� n22n
∑

|γ|≥T0

log3(|γ| + 3)
|γ| � n22n log5 T0

T0
,

applying Lemma 2.2.
The terms where |γ1 − γ2| ≥ 1 on the right-hand side

of (6–1) total

�
∑

T0≤|γ1|,|γ2|≤T

|γ1−γ2|>1

22nm(γ1)m(γ2)
|γ1||γ2||γ1 − γ2|

×
∫∫∫∫

uj≥vj+2−n

e−2nv1−2nv2

(u1 − v1)(u2 − v2)
dujdvj

�
∑

T0≤|γ1|,|γ2|
|γ1−γ2|>1

n2 log(|γ1| + 3) log(|γ2| + 3)
|γ1||γ2||γ1 − γ2| � n2 log5 T0

T0

by Lemma 2.4. Summing over n proves the lemma.
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