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The model of a bicycle is a unit segment AB that can move
in the plane so that it remains tangent to the trajectory of the
point A (the rear wheel is fixed to the bicycle frame). The same
model describes the hatchet planimeter. The trajectory of the
front wheel and the initial position of the bicycle uniquely de-
termine its motion and its terminal position; the monodromy
map sending the initial position to the final position arises in
this context.

According to a theorem of R. Foote, this mapping of a circle to
a circle is a Möbius transformation. We extend this result to the
multidimensional setting. Möbius transformations belong to one
of three types: elliptic, parabolic, and hyperbolic. We prove
the century-old Menzin conjecture: if the front wheel track is an
oval with area at least π, then the respective monodromy is hy-
perbolic. We also study bicycle motions introduced by D. Finn
in which the rear wheel follows the track of the front wheel.
Such a “unicycle” track becomes more and more oscillatory in
the forward direction. We prove that it cannot be infinitely ex-
tended backward and relate the problem to the geometry of the
space of forward semi-infinite equilateral linkages.

1. INTRODUCTION

The geometry of bicycle tracks is a rich and fascinating
subject. Here is a sample of questions that arise:

1. Given the tracks of the rear and front wheel, can you
tell which way the bicycle has traveled?

2. The track of the front wheel is a smooth simple
closed curve. Can one ride the bicycle so that the
rear wheel’s track is also a closed curve?

3. Can one ride a bicycle in such a way that the tracks
of the rear and front wheels coincide (other than
along a straight line)?
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Our model of a bicycle is an oriented segment, say AB,
of length � that can move in the plane in such a way that
the trajectory of point A always remains tangent to the
segment. Point A represents the rear wheel, point B the
front wheel; the rear wheel is fixed to the bicycle frame,
whereas the front wheel can turn, and this explains the
law of motion. (Usually we set � = 1, which can always
be assumed by making a dilation, but sometimes we shall
consider � as a parameter and allow it to take very small
or very large values.) Thus the endpoint of the oriented
segment tangent to the trajectory of the rear wheel traces
the trajectory of the front wheel; see [Finn 02, Konhauser
et al. 96].

The same mathematical model describes another me-
chanical device, the Prytz or hatchet planimeter; see
[Barnes 57, Crathorne 08, Foote 98]. Various kinds of
planimeters were popular objects of study in the late
nineteenth and early twentieth centuries.

The first of the above questions has the following an-
swer: generically, one can determine the direction; but
in some special cases one cannot, for example, for con-
centric circles of radii r and R satisfying r2 + �2 = R2.
Surprisingly, the problem of describing such “ambiguous”
pairs of closed tracks is equivalent to Ulam’s problem of
describing (two-dimensional) bodies that float in equi-
librium in all positions. See [Tabachnikov 06, Wegner
03, Wegner 06, Wegner 07] for a variety of results and
references.

The content of the present paper has to do with the
other two questions. In Section 2 we place the problem
in the framework of contact geometry. We allow the tra-
jectory of the rear wheel to be a wave front, that is, to
have cusp singularities, but we show that the trajectory
of the front wheel remains smooth. We deduce a useful
differential equation relating the motions of the rear and
front wheels.

Fixing a path Γ of the front wheel gives rise to a circle
map: the initial direction of the segment, characterized
by a point on the circle, determines its final direction; see
Figure 1. We will refer to this map of the circle to itself
(the two circles are identified by parallel translation) as
the monodromy map.1 It is a beautiful theorem of R.
Foote [Foote 98] (see also [Levi and Weckesser 02]) that
for every trajectory of the front wheel, the monodromy
map is a Möbius transformation. In Section 3 we provide
another proof of this theorem and extend it to bicycle
motion in Euclidean space of any dimension.

1T. Tokieda has suggested the term “opisthodromy.”

Γ

FIGURE 1. The circle mapping generated by the curve Γ.
According to Foote’s theorem, this mapping is a Möbius
transformation.

A (nontrivial) Möbius transformation is of one of three
types: elliptic, parabolic, and hyperbolic. The first of
these have no fixed points, while the last two have ex-
actly two fixed points, one attracting and one repelling
(parabolic transformations have a single neutral fixed
point). Suppose the trajectory of the front wheel is a
closed curve. Then up to conjugation, the respective
monodromy, and therefore its type, does not depend on
the initial point. In Section 3 we give a necessary and
sufficient condition for the monodromy to be parabolic,
namely that the trajectory of the rear wheel be a closed
wave front with the total algebraic arc length equal to
zero (the sign of the arc length changes in passing a cusp).

Still assuming that the trajectory of the front wheel is
closed, a fixed point of the monodromy map corresponds
to a closed trajectory of the rear wheel. Thus, in the
hyperbolic case, for a given closed trajectory of the front
wheel, there are exactly two bicycle motions such that
the trajectory of the rear wheel is closed; each of these
motions is hyperbolically attracting for one of the choices
of the direction of motion; examples are shown in Figure
2, examples 1 and 4. In contrast, in the elliptic case, no
trajectory of the rear wheel closes after one cycle. It is
worth mentioning that for some trajectories of the front
wheel, the monodromy is the identity: for every bicycle
motion the trajectory of the rear wheel closes up.

A century-old conjecture by Menzin [Menzin 06]
states, in our terminology, that if the trajectory of the
front wheel is a closed convex curve bounding an area
greater than π�2, then the respective monodromy is of
the hyperbolic type. In Menzin’s words:

[T]he tractrix will approach, asymptotically, a lim-
iting closed curve. From purely empirical observa-
tions, it seems that this effect can be obtained so
long as the length of arm does not exceed the ra-
dius of a circle of area equal to the area of the base
curve.
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FIGURE 2. Examples 1 and 4 are hyperbolic; 2 and 3 are elliptic. The areas bounded by the two curves in 1 differ by π�2.

In Section 4 we prove this conjecture. The main tool is
the classical Wirtinger inequality. Earlier, Foote [Foote
98] proved Menzin’s conjecture for parallelograms.

Section 5 concerns Finn’s construction of bicycle mo-
tion leaving a single track [Finn 02]. Consider a “seed”
curve, tangent to the x-axis at points 0 and 1 with all
derivatives and oriented to the right; see Figure 3 (the
seed curve is also the “fat” curve in Figure 4). This
curve is the initial trajectory of the rear wheel; drawing
the tangent segments of length 1 to it yields the next
curve, which is tangent to the x-axis at points 1 and 2
with all derivatives. Iterating this process, one obtains a
bicycle motion that leaves a unicycle track, i.e., a curve
that both wheels follow.

Numerical study shows that unless the seed curve is
horizontal, the resulting unicycle track becomes more and
more oscillatory; see Figures 3 and 4. We prove that the
number of intersections with the x-axis and the number
of extrema of the height function increase at least by one
with every iteration of this construction. As a conse-
quence, the seed curve with finitely many intersections
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FIGURE 3. The figure shows first four iterates of the
initial seed curve y = 46x6(1 − x)6. Since this curve
has only a finite order of contact with the x-axis, only
finitely many iterations are defined.

with the x-axis (or a finite number of extrema) has at
most finitely many preimages under Finn’s construction.
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FIGURE 4. The rear wheel follows the track of the front wheel. The “seed” curve is shown in a heavier stroke. Several
consecutive positions of the associated moving linkage are shown. The shape of the linkage is very sensitive to the position
of the starting point on the seed curve.

This means that the corresponding unicycle track can-
not extend back indefinitely. We also make a number of
conjectures on the Finn construction that are strongly
supported by numerical evidence.

A unicycle track can be viewed as an integral curve of
a direction field in a certain infinite-dimensional space.
Specifically, we consider the configuration space of equi-
lateral forward infinite linkages in the plane. We con-
strain the velocity of the ith vertex to the direction of
the ith link (heuristically, the ith link is the position of
the bike on the (i−1)st step of Finn’s construction). This
constraint defines a field of directions. Now, a forward
bicycle motion generating a single track corresponds to a
particular integral curve of this field of directions. This
field does not satisfy the uniqueness property: through
every point there pass infinitely many smooth integral
curves. We also generalize Finn’s construction for an ar-
bitrary initial equilateral forward infinite linkage in which
the adjacent links are not perpendicular (the Finn con-
struction corresponds to a linkage aligned along a line).

2. PRELIMINARIES: CONTACT GEOMETRIC
POINT OF VIEW

We use the notation from Section 1. Denote the tra-
jectory of the rear wheel A by γ and that of the front
wheel B by Γ. We allow γ to have cusp singularities as
in Figure 5. A proper perspective is provided by contact
geometry; see [Arnold and Givental 90] or [Geiges 06].

Γ

γ

FIGURE 5. Cusp of the curve γ.
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The position of the segment AB is determined by its
foot point A(x, y) and by the angle θ between the x-
axis and the segment. The infinitesimal motions in the
configuration space {(x, y, θ)} are restricted by the non-
skidding condition (ẋ, ẏ) ‖ (cos θ, sin θ). This condition
defines a field of tangent 2-planes in the configuration
space. This field of planes is nonintegrable and is defined
by the contact 1-form λ = sin θ dx − cos θ dy.

A smooth curve in a contact manifold is called Leg-
endrian if its tangent line at every point lies in the con-
tact plane. Denote by M the space of contact elements,
that is, the configuration space of the segment. Let
p : M → R

2 be the projection taking a contact element
to its foot point. The image of a Legendrian curve is
called a wave front ; generically, it is a piecewise smooth
curve with semicubical cusp singularities. The singular-
ities occur at the points where the Legendrian curve is
tangent to the fibers of the projection p. A wave front
has a well-defined tangent line at every point and can
be uniquely lifted to a Legendrian curve in the space of
contact elements.

In this paper we consider the bicycle motions corre-
sponding to smooth Legendrian curves in the space of
contact elements. We shall see that the trajectory of
the front wheel, unlike that of the rear one, is always a
smooth curve.

The trajectory of the rear wheel uniquely determines
the trajectory of the front wheel. Denote by T the cor-
respondence γ → Γ that assigns to the point x ∈ γ the
endpoint of the unit tangent segment to γ at x. We
assume that a continuous choice is made between the
two orientations of the unit tangent segments at a point.
This amounts to choosing a coorientation of γ: the frame
formed by the coorienting vector and the chosen tangent
vector is positive (recall that coorientation is a continu-
ous choice of a normal direction to a curve). When the
bicycle segment is not of unit length and has length �, we
denote by T� the respective transformation and by Γ� its
image. Let us emphasize that T and T� are defined for a
cooriented front γ.

The following two lemmas address the smoothness is-
sue.

Lemma 2.1. If γ is a regular Ck curve, k ≥ 1, then Γ� is
a regular Ck−1 curve for all � > 0.

Proof: Let γ be parameterized by its arc length s. By
definition, Γ(s) = γ(s) + �γ′(s), and it remains only to
make sure that Γ′ = γ′ + �γ′′ �= 0. But the last two
vectors are orthogonal, and the first has unit length.

Lemma 2.2. Even if γ has cusps, the curve Γ� is smooth
for all � > 0.

Proof: Recall that a wave front is the plane projection
of a smooth Legendrian curve in the space of contact
elements. Let p1 : M → R

2 take the segment AB to the
point B. The correspondence T� is the composition of the
Legendrian lifting of a wave front γ and the projection p1.
We claim that the fibers of p1 are everywhere transverse
to the contact distribution on M . This would imply the
statement of the lemma, since the fibers of the projection
are transverse to the Legendrian curve p−1(γ).

In terms of the coordinates in M , one has p1(x, y, θ) =
(x+� cos θ, y+� sin θ). The vector field v = ∂θ+� sin θ ∂x−
� cos θ ∂y is tangent to the fibers of p1. One has λ(v) = �,
and therefore v is everywhere transverse to the contact
planes, and we are done.

Let γ be an oriented and cooriented closed wave front.
The Maslov index μ(γ) is the algebraic number of cusps
of γ; a cusp is positive if one traverses it along the coori-
entation and negative otherwise.

Let γ be an oriented and cooriented closed wave front.
Denote by ρ(γ) the rotation number, that is, the total
(algebraic) number of turns made by its tangent direc-
tion. Let Γ = T (γ).

Lemma 2.3. One has ρ(Γ) = ρ(γ) + 1
2μ(γ).

Proof: Consider the one-parameter family of curves Γ�.
By Lemma 2.2, this is a continuous family of smooth
curves; hence the rotation number is the same for all �.
Consider the case of very small �.

Along smooth arcs of γ, the curve Γ� is C1-close to γ.
At the cusps, smoothing occurs, and the rotation of Γ�

differs from that of γ by ±π. There are four cases, de-
pending on the orientation and coorientation, depicted in
Figure 6. When one traverses a cusp along the coorien-
tation, the total rotation of Γ� gains π, and when a cusp
is traversed against the coorientation, the total rotation
of Γ� loses π. This implies the result.

We introduce the following notation. Let x be the arc-
length parameter along the curve Γ. The position of the
segment AB with B = Γ(x) is determined by the angle
made by the tangent vector Γ′(x) and the vector BA.
Let this angle be π − α(x). The function α(x) uniquely
determines the curve γ, the locus of points A. Let κ(x)
be the curvature of Γ(x). Denote by t the arc-length
parameter on γ and by k the curvature of γ. Note that
at cusps, k = ∞.
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FIGURE 6. Cusps of the curve γ and their smoothings Γ�.
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FIGURE 7. Notation for Proposition 2.4.

The next result is borrowed from [Tabachnikov 06];
see also [Finn 02].

Proposition 2.4. With the notation depicted in Figure 7,
the condition T�(γ) = Γ is equivalent to the differential
equation on the function α(x):

dα(x)
dx

+
sinα(x)

�
= κ(x). (2–1)

One has ∣∣∣∣ dt

dx

∣∣∣∣ = | cosα|, k =
tanα

�
.

In particular, the cusps of γ correspond to the in-
stances of α = ±π/2.

Proof: Let J denote the rotation of the plane through the
angle π/2. Then the endpoint of the segment of length �

making the angle π − α(x) with Γ′(x) is

γ(x) = Γ(x)−�Γ′(x) cos α(x)+�J(Γ′(x)) sin α(x). (2–2)

For T�(γ) = Γ to hold, the tangent direction γ′(x) should
be collinear with the respective segment, that is, be par-
allel to the vector

v(x) := −Γ′(x) cos α(x) + J(Γ′(x)) sin α(x).

Differentiate (2–2), taking into account that Γ′′(x) =
κ(x)J(Γ′(x)), and equate the cross product with v(x)
to zero to obtain (2–1).

It is straightforward to calculate that |dγ/dx| =
| cosα|, hence |dt/dx| = | cosα|. The computation of
the curvature k is also straightforward.

It is natural to adopt the following convention: the
sign of the length element dt on γ changes at each cusp.
This is consistent with Proposition 2.4, since cusps corre-
spond to α = π/2, that is, to sign changes of cosα. With
this convention, we have dt = cosα(x) dx. In particular,
the signed perimeter of γ is

∫
Γ cosα(x) dx.

3. BICYCLE MONODROMY MAP

If γ(t) is the arc-length parameterized trajectory of the
rear bicycle wheel, then the trajectory of the front wheel
is Γ(t) = γ(t) ± γ′(t) (the sign depends on the coorien-
tation of γ and changes at its cusps). We extend this
definition to bicycle rides in multidimensional space R

n.
On the other hand, if Γ is given, then one can recover γ

once the initial position of the bicycle is chosen. The set
of all possible positions of the bicycle with a fixed position
of the front wheel is a unit sphere Sn−1. Thus there arises
the time-x monodromy map Mx, which assigns the time-
x position of the bicycle with a prescribed front wheel
trajectory to its initial position: Mx : Sn−1 → Sn−1.

Consider the hyperbolic space Hn realized as the pseu-
dosphere x2

1+ · · ·+x2
n−x2

0 = −1 in the pseudo-Euclidean
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space R
n,1 with the metric dx2

0 − dx2
1 − · · · − dx2

n. The
Möbius group O(n, 1) consists of linear transformations
preserving the metric and acts on Hn by isometries. This
action extends to the null cone x2

1 + · · · + x2
n = x2

0 and
to its spherization Sn−1, the sphere at infinity of the hy-
perbolic space. In particular, we obtain an action of the
Lie algebra o(n, 1) on Sn−1.

The following result is a multidimensional generaliza-
tion of Foote’s theorem [Foote 98].2 We identify all unit
spheres Sn−1 along a curve Γ(x) by parallel translations.

Theorem 3.1. For all x, one has Mx ∈ O(n, 1).

Proof: Note first that the rear wheel’s velocity is
projr v = (r ·v)r, where r = AB. Since Mx is the map of
the sphere centered at the front wheel, we consider the
moving frame with the origin at the front wheel. This
frame undergoes parallel translation as the wheel moves
with speed v. In the moving frame, the rear wheel’s ve-
locity is ω(v) = (−v + (r · v)r) ⊥ r. We thus have a
time-dependent vector field on the sphere, and our map
Mx is the time-x map of this vector field. It suffices
therefore to show that this vector field corresponds to an
element of the Lie algebra o(n, 1).

The Lie algebra o(n, 1) consists of the matrices

C(M, v) =
(

M v
v∗ 0

)
,

where M ∈ o(n) is an n× n skew-symmetric matrix and
v is an n-dimensional vector; it includes matrices of the
special form C(0, v) = C(v). We will show that these
special matrices generate the vector field ω(v) mentioned
above. (As a side remark, the Lie algebra o(n, 1) is gen-
erated by its n-dimensional subspace C(0, Rn).)

Let us compute the action of C(v) on the unit sphere
Sn−1. For a unit n-dimensional vector r, consider the
point (r, 1) of the null cone at height 1. Then

(E + εC(v))
(

r
1

)
=

(
r + εv

1 + εr · v

)

= k

(
r − εω(v)

1

)
+ O(ε2),

where k = (1 + εr · v). Thus C(v) corresponds to the
vector field ω(v) on the sphere, and the result follows.

Remark 3.2. It is quite likely that an analogue of The-
orem 3.1 holds if R

n is replaced by either spherical or
hyperbolic space. We do not dwell on it here.3

2Foote studies the Prytz planimeter.
3See [Howe et al. 09] where this is proved, along with versions

of Menzin’s conjecture in the elliptic and hyperbolic planes.

Remark 3.3. It is interesting to point out possible connec-
tion with the so-called snake-charmer algorithm [Haus-
mann and Rodriguez 07], in which the monodromy also
takes values in the Möbius group.

Remark 3.4. In dimension 2, the monodromy is a pro-
jective transformation of S1 identified with RP

1 by the
(stereographic) projection from a point of the circle. If α

is an angular coordinate on the circle, then y = tan(α/2)
is a projective coordinate. Equation (2–1) can be rewrit-
ten as a Riccati equation:

y′(x) = −y(x) +
1
2

(
y2(x) + 1

)
κ(x).

The infinitesimal monodromy of the Riccati equation
y′ = f(x)+g(x)y+h(x)y2 is generated by the vector fields
d/dy, yd/dy, y2d/dy, which generate sl(2, R) = o(2, 1).

Now we consider corollaries of Theorem 3.1 in the case
n = 2. Recall the classification of orientation-preserving
isometries of the hyperbolic plane: an elliptic isometry
is a rotation about a point of H2, and the correspond-
ing map of the circle at infinity is conjugate to a rota-
tion; a hyperbolic isometry has two fixed points at infin-
ity, one exponentially attracting and another repelling;
a parabolic isometry has a unique fixed point at infinity
with derivative 1; see, e.g., [Beardon 83].

Let Γ, the trajectory of the front wheel, be closed.
Then the monodromy map M along Γ is well defined, up
to conjugation (that is, changing the starting point on Γ
amounts to replacing M by a conjugate transformation);
in particular, its type—elliptic, parabolic, hyperbolic—
does not depend on the starting point.

The first corollary concerns the case of M hyperbolic.

Corollary 3.5. Let the trajectory γ of the rear wheel be
a generic closed cooriented wave front. Then the trajec-
tory Γ of the front wheel is also closed, and there exists
a unique additional closed trajectory of the rear wheel γ∗

with the same front wheel trajectory Γ. The correspon-
dence γ ↔ γ∗ is an involution on the space of cooriented
closed plane wave fronts. For a fixed orientation of Γ,
one of the curves γ and γ∗ is exponentially stable and
the other exponentially unstable. The unstable curve γ is
the closed path of the bike ridden backward.

Proof: Since γ is closed, the monodromy M has a fixed
point, and since γ is generic, M is hyperbolic. Then
M has another fixed point, corresponding to the closed
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Γ

γ γ∗

FIGURE 8. The unstable curve is on the right. If the direction of traversal of the figure eight is reversed, the two curves
exchange stability.

Γ Γ
γ γ ∗

FIGURE 9. The stable and the unstable rear trajectories for the shamrock, just before the bifurcation when γ and γ∗

coalesce. The shamrock is given by x = r(t) cos t, y = r(t) cos t with r = 0.94(1 − 0.5 sin 3t).

trajectory γ∗. One of these fixed points is exponentially
stable and the other unstable.

Corollary 3.5 is illustrated by Figures 8 and 9.
We precede the next observation with a remark: for

any Möbius map with two fixed points, the derivatives at
the two fixed points are reciprocal to each other. This,
according to the next theorem, implies that γ and γ∗

have the same length (up to sign).
Let γ be a closed cooriented wave front (the rear wheel

track) and let Γ = T (γ) be the front wheel track. Let
M be the monodromy of the curve Γ and let L be the
perimeter of Γ.

Theorem 3.6. Let M be hyperbolic or parabolic, and let
γ be the closed path of the rear wheel corresponding to a
fixed point θ0 of the Möbius circle map θ 
→ M(θ). Then

M ′(θ0) = e−length(γ). (3–1)

Corollary 3.7. If M is hyperbolic and γ and γ∗ are the
rear tracks corresponding to the two fixed points, then the
curves γ and γ∗ have equal lengths.

Proof of the corollary.: For the fixed points θ0, θ∗0 of
any Möbius map one has M ′(θ0)M ′(θ∗0) = 1, and the
statement follows from Theorem 3.6.

Remark 3.8. The case γ = γ∗ is quite interesting: in this
case, one cannot tell which way the bicycle went from
the closed tire tracks of the front and rear wheels; see
Section 1.

Proof of Theorem 3.6.: Using the notation of Section 2,
consider equation (2–1) (with � = 1). This equation has
an L-periodic solution α(x). Consider an infinitesimal
perturbation α(x) + εβ(x); the derivative of the mon-
odromy map is given by M ′(θ0) = β(L)/β(0). But β

satisfies the linearized equation β′ + β cosα = 0, from
which we obtain

M ′(θ0) =
β(L)
β(0)

= e−
∫ L
0 cos α(x)dx.

Recall that cosα(x) is the speed of the rear wheel, and
thus

∫ L

0 cosα(x)dx = length(γ).

Remark 3.9. It is interesting that the monodromy may
be the identity; that is, there exist closed trajectories
of the front wheel for which every trajectory of the rear
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Γ Γ

γ

γ

FIGURE 10. A saddle-node bifurcation: the ellipse on the left is (slightly) larger than the one on the right. The length
of the coalesced curve on the right is zero, in accordance with Theorem 3.10. In this particular case this is seen directly:
the four arcs are congruent by symmetry, and their signs alternate.

wheel is closed. To construct such an example, let Γ be
a small simple closed curve. Then the monodromy M is
elliptic; see the analysis in [Foote 98]. (This also follows
from equation (2–1): in the limit � → ∞, the equation
becomes α′(x) = κ(x), and since

∫
κ(x) dx = 2π, the

function α(x) cannot be periodic.) Slightly deforming
Γ if necessary one may assume that M has a rational
rotation number. Since an elliptic isometry is a rotation
of the hyperbolic plane, M is actually a periodic map.
Then, traversing Γ an appropriate number of times, the
monodromy becomes the identity.

In contrast, if Γ is a closed immersed curve (not neces-
sarily simple) and � is sufficiently small, one has a hyper-
bolic monodromy. Indeed, in the limit � → 0, equation
(2–1) becomes sin α = 0 and has two solutions α(x) = 0
and α(x) = π, corresponding to the forward and back-
ward tangent vectors to Γ. The two exponentially stable
and unstable solutions survive for � small enough.

As a limiting case of Theorem 3.6 for the parabolic
monodromy, we have the following.

Theorem 3.10. The monodromy M is parabolic if and
only if the total algebraic length of γ is zero.

γ

FIGURE 11. Curve with turning number π.

Proof: At the fixed point θ0 we have M ′(θ0) = 1; com-
parison with (3–1) shows that length(γ) = 0.

Corollary 3.11. In the parabolic case, the curve γ has
cusps.

An example of a wave front γ yielding parabolic mon-
odromy is depicted in Figure 11. The curve γ has total
turning number π, so for Γ to close up, one traverses γ

twice. This “doubled” front γ obviously has zero total
length.

An example of the saddle-node bifurcation from the
hyperbolic to the elliptic case, as the size of Γ decreases,
is shown in Figure 10.

Remark 3.12. Computation of the monodromy amounts
to multiplying infinitely many 2×2 matrices correspond-
ing to infinitesimal arcs of the curve Γ (if Γ is a poly-
gon, one has a finite product of hyperbolic elements in
SL(2, R)). A similar problem concerning the group of
isometries of the sphere SO(3) is treated in [Levi 96, Levi
93]; we plan to extend this work to the group of isome-
tries of the hyperbolic plane.

4. PROOF OF THE MENZIN CONJECTURE

Theorem 4.1. If Γ is a closed convex curve bounding a
region with area greater than π, then the respective mon-
odromy is hyperbolic.

Proof: By approximation, we may assume that Γ is an
oval, that is, a smooth closed strictly convex curve. We
need to prove that if the monodromy M is elliptic or
parabolic, then area(Γ) ≤ π. As we already mentioned,
if Γ is large enough, the monodromy M is hyperbolic.
Hence, if M is elliptic, we can make Γ larger (say, by
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FIGURE 12. Birth and death of a pair of cusps.

homothety) and render M parabolic. Therefore it suffices
to prove that if M is parabolic, then area(Γ) ≤ π.

The proof is based on two observations:

• area(Γ) = area(γ) + π, so that area(Γ) ≤ π is equiv-
alent to area(γ) ≤ 0.

• If length(γ) = 0 then area(γ) ≤ 0.

We proceed with the detailed proof. Include Γ in
a one-parameter family of homothetic nested ovals Γs,
starting with a very large oval Γ0 and ending with the
given oval Γ. Let s = 1 be the first value of the param-
eter for which the monodromy is parabolic. Since the
monodromy for Γ is elliptic or parabolic, Γ lies inside Γ1

and bounds a smaller area than Γ1. We want to show
that the latter does not exceed π.

Since the monodromies Ms for s ∈ [0, 1) are hyper-
bolic, one has a family of wave fronts γs (the closed tra-
jectories of the rear wheel). Since Γ0 is large enough, γ0

is also an oval. The Legendrian liftings of the fronts γs

form a continuous family of immersed Legendrian curves
in the space of contact elements. Therefore, the Maslov
index of γ1 equals that of γ0, that is, zero. Likewise, the
rotation number ρ(γ1) equals one. The number of cusps
may change in the family γs; see Figure 12.

The following holds due to the convexity of Γ.

Lemma 4.2. The wave front γ1 has no inflections.

Proof: Assume that γ1 has an inflection point. Note that
γ0 is convex. Let τ be the first value of the parameter
s for which the curvature of γs vanishes. Then, for s

slightly greater than τ , the curve γs has a “dimple,” and
Γs is not convex; see Figure 13.

Γ

γ

FIGURE 13. Inflections of γ.

Thus γ1 is a wave front made of an even number of
convex smooth arcs; the adjacent arcs form cusps. The
total turning of the tangent direction to γ1 is 2π. The
arcs are marked by ±; the sign changes at each cusp.
By Theorem 3.10, the algebraic length of γ1 vanishes:
length(γ1) = 0.

Consider a smooth arc of γ1 in the arc-length param-
eterization; abusing notation, call this arc γ1(t). The re-
spective arc of Γ1 is Γ1(t) = γ1(t) + σγ′

1(t), where σ = ±
is the sign of the arc γ1. Therefore Γ′

1 = γ′
1 + σγ′′

1 , and
hence

Γ1 × Γ′
1 = γ1 × γ′

1 + σγ1 × γ′′
1 + σ2γ′

1 × γ′′
1 .

Note that γ1 × γ′′
1 = (γ1 × γ′

1)′ and that γ′
1 × γ′′

1 = k, the
curvature of γ1.

For a closed parametric curve Γ(t), twice the area
bounded by Γ is given by the integral

∫
(Γ × Γ′) dt. Ap-

plying this to Γ1, we get

2 area(Γ1) =
∑

i

(∫
γ1,i(x) × γ′

1,i(x) dx (4–1)

+ σiΔi(γ1,i × γ′
1,i) + θi

)
,

where the sum is taken over the smooth arcs of γ1,i, where
σi is the sign of the ith arc, Δi is the difference of the
momenta γ1 × γ′

1 at the endpoints of the ith arc, and θi

is the turning angle of the ith arc.
Note that the sum of integrals in (4–1) is 2 area(γ1).

Note also that
∑

θi = 2π. Finally note that the terms Δ
cancel out:

∑
σiΔi(γ1 × γ′

1) = 0. Therefore the inequal-
ity area(Γ1) ≤ π is equivalent to area(γ1) ≤ 0.

To prove the latter inequality, let p(ϕ) be the support
function of the front γ1 (the signed distance from the ori-
gin to the tangent line to γ1 as a function of the direction
of this line; see, e.g., [Santalo 04] for the theory of sup-
port functions). The support function exists because γ1

is free from inflections and makes one full turn. One has
the following formulas:

length(γ1) =
∫ 2π

0

p(ϕ) dϕ,

area(γ1) =
1
2

∫ 2π

0

(p2(ϕ) − p′2(ϕ) dϕ.
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Thus we need to show that if∫ 2π

0

p(ϕ) dϕ = 0,

then ∫ 2π

0

p2(ϕ) dϕ ≤
∫ 2π

0

p′2(ϕ) dϕ.

But this is the well-known Wirtinger inequality, which
concludes the proof.

Remark 4.3. The Wirtinger inequality is intimately re-
lated to the isoperimetric inequality. Consider an oval
γ with area A and perimeter L. Consider the one-
parameter family of equidistant fronts γt inside the oval
(that is, consider γ as a source of light propagating in-
ward). The support function of γt is that of γ minus t.
One has

length(γt) = L − 2πt, area(γt) = A − Lt + πt2.

By the Wirtinger inequality, when length(γt) = 0, one
has area(γt) ≤ 0. Therefore, if t = L/2π, then A − Lt +
πt2 ≤ 0, that is, A ≤ L2/4π, which is the isoperimetric
inequality.

Remark 4.4. One has two involutions on the space of
cooriented wave fronts: one γ ↔ γ∗ described in Corol-
lary 3.5, and a second that is coorientation-reversing.
The composition of these involutions is an interesting
mapping of the space of cooriented wave fronts. This
mapping has (at least) two integrals: signed area and
length. Are there more?

5. OSCILLATION OF UNICYCLE TRACKS

Recall Finn’s construction described in Section 1. Let
γ(t), t ∈ [0, L], be an arc-length parameterized smooth
curve in R

2 such that the ∞-jets of γ(t) coincide, for t = 0
and t = L, with the ∞-jets of the x-axis at points (0, 0)
and (1, 0), respectively. We use γ as a “seed” trajectory
of the rear wheel of a bicycle. Then Γ = T (γ) = γ + γ′

is also tangent to the horizontal axis with all derivatives
at its endpoints (1, 0) and (2, 0). Iterating this procedure
yields a smooth infinite forward bicycle trajectory T such
that the tracks of the rear and the front wheels coincide.
We shall study oscillation properties of T . For starters,
we note that the length of each new arc of T increases
compared to the previous one.

Lemma 5.1. The length of Γ equals∫ L

0

√
1 + k2(t) dt > L,

where k(t) = |γ′′(t)| is the curvature of γ.

Proof: One has

Γ′(t) = γ′(t) + γ′′(t), |Γ′(t)|2 = 1 + |γ′′(t)|2;

therefore the length of Γ is

∫ L

0

|Γ′(t)| dt =
∫ L

0

√
1 + k2(t) dt.

Denote by Z(γ) the number of intersection points of
the curve γ(t), t ∈ (0, L), with the x-axis (we exclude the
endpoints); assume that Z(γ) is finite.

Proposition 5.2. One has Z(Γ) > Z(γ).

Proof: Note that

e−t
(
etγ(t)

)′ = Γ(t). (5–1)

Let Z(γ) = n and let t0 = 0 < t1 < · · · < tn < tn+1 = L

be the consecutive moments of intersection of γ(t) with
the x-axis. Then ti are also the consecutive moments of
intersection of the curve Δ(t) := etγ(t) with the x-axis.
By a version of Rolle’s theorem, see Figure 14, for each
i = 0, 1, . . . , n, there is t ∈ (ti, ti+1) for which the curve
Δ(t) has a horizontal tangent, i.e., the vector Δ′(t) is
horizontal. It follows from (5–1) that Γ(t) lies on the x-
axis, and we are done.

Consider the problem of extending the curve T back-
ward, that is, inverting the operator T . It turns out
that usually T can be inverted only finitely many times.
Namely, one has the following corollary of Proposi-
tion 5.2.

Corollary 5.3. Let Γ be a curve whose endpoints are unit
distance apart and that is tangent to the x-axis at the
endpoints to all orders. Let Z(Γ) = n. Then for no
curve γ whose endpoints are unit distance apart and that

Δ
Δ

FIGURE 14. Rolle’s theorem for curves.
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γ

γ

ΓΓ

ΓΓ

FIGURE 15. Height extrema of the curve γ.

is tangent to the x-axis at the endpoints to all orders does
one have T n+1(γ) = Γ.

Here is another oscillation property of the curve T .
Let E(γ) be the (finite) number of locally highest and
lowest points of the curve γ. As before, Γ = T (γ).

Proposition 5.4. One has E(Γ) > E(γ).

Proof: At a locally highest point of γ, the curve Γ has
the downward direction, and at a locally lowest point, it
has the upward direction; see Figure 15. It follows that
between consecutive locally highest and lowest points of
γ, one has a locally lowest point of Γ, and between con-
secutive locally lowest and highest points of γ, one has
a locally highest point of Γ. Considering the endpoints
of γ as local extrema of the height function yields the
result.

Conjecture 5.5. It follows from Figure 15 that the maxi-
mum height of Γ is greater than that of γ, and likewise for
the minimum height. We conjecture that the amplitude
of the curve T is unbounded; in other words, unless γ is a
segment, T is not contained in any horizontal strip. We
also conjecture that unless γ is a segment, T is not the
graph of a function (i.e., one of the curves T n(γ) has a
vertical tangent line) and further, fails to be an embedded
curve. One more conjecture: unless T is the horizontal
axis, the curvature of T is unbounded.

5.1 Configuration Space of Equilateral Forward
Infinite Linkages

The construction of bicycle motion generating a single
track can be interpreted as follows. Let M be the space of
semi-infinite equilateral linkages {X = (x0, x1, x2, . . . )},
where each xi is a point in the plane and |xi − xi+1| = 1
for all i. Denote by vi the unit vector xixi+1 and by
αi the angle between vi−1 and vi. Let M0 be an open
subset of M given by the condition αi �= ±π/2 for all i.

Consider the constraint on M defined by the condition
that the velocity of point xi be proportional to vi. If ti is
the speed of xi, then the condition that all links remain

of unit length is

ti = ti+1 cosαi+1 (5–2)

for all i. On M0, where cosαi �= 0, all the velocities are
uniquely defined, up to a common factor, and one has a
well-defined field of directions ξ, which can be normalized
to a vector field by setting t0 = 1. If αi = π/2 for some
i, then the speeds of all xj with j < i must vanish; in
particular, if αi = π/2 for infinitely many values of i, then
such a configuration has no infinitesimal motions at all.
See [Montgomery and Zhitomirskii 01, Montgomery and
Zhitomirskii 09] for this nonholonomic system in relation
to “monster tower” and Goursat flags.

A forward bicycle motion generating a single track
corresponds to a solution to our system. The above-
described curve T yields an integral curve of the field
ξ in M0. Indeed, αi = π/2 corresponds to a cusp of the
trajectory of point xi−1, whereas T is a smooth curve, as
follows from Lemma 2.1.

The starting configuration X of the Finn construction
consists of nonnegative integers on the horizontal axis,
xi = (i, 0), and one has a variety of integral curves of
ξ through X ∈ M0 (of which the simplest one is uni-
form motion along the horizontal axis). Thus one has
nonuniqueness of solutions of the differential equation de-
scribing the field ξ.

Finn’s construction can be easily generalized as fol-
lows. Let δ be an infinite jet of a curve at the point x0.
Consider the infinite jet T (δ) at the point x1 = T (x0),

x iαi

FIGURE 16. Note the change of direction when α > π/2.
Only the direction of motion, and not the speeds, is indi-
cated; the latter becomes large for large values of i.
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and let γ be a curve smoothly interpolating between δ

and T (δ). Then the concatenation of the curves γ, T (γ),
T 2(γ), etc., is a smooth unicycle track left by the bicycle
motion with the seed curve γ.

The above construction provides a mapping Φ :
J∞(x0) → M0 from the space of infinite jets of
curves at the point x0 to unit forward infinite linkages
{(x0, x1, . . . )}.

Proposition 5.6. The mapping Φ is a bijection.

Proof: We construct the inverse map Ψ : M0 → J∞(x0).
Let X = (x0, x1, . . . ) ∈ M0 and set Ci = cosαi �= 0.
Then, according to (5–2),

t0 = 1, tk =
1

Πk
i=1Ci

;

hence the speeds of all points are determined.
We claim that for each r ≥ 1, one has x

(r)
j =

Fj,r(xi, Ci), where F is a polynomial in xi and a Lau-
rent polynomial in Ci for i = 0, 1, . . . . This is proved by
induction on r. For r = 1, one has x′

j = tj(xj+1 − xj). If

x
(r)
j = Fj,r(xi, Ci), then

x
(r+1)
j =

∑
i

∂Fj,r

∂xi
x′

i +
∂Fj,r

∂Ci
C′

i.

The induction step will be completed if we show that C′
i

is also a polynomial in xi and Ci. Indeed, Ci = (xi −
xi−1) · (xi+1 − xi), and hence

C′
i =

(
ti(xi+1 − xi) − ti−1(xi − xi−1)

)
· (xi+1 − xi)

+ (xi − xi−1) ·
(
ti+1(xi+2 − xi+1) − ti(xi+1 − xi)

)
,

as required.
In particular, X determines all the derivatives x

(r)
0 ,

that is, the infinite jet of a curve at x0. This is Ψ(X).

We finish with another question: Is a straight line the
only real analytic “unicycle” trajectory?
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