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We describe the theoretical background for a computer pro-

gram that recognizes all closed orientable three-manifolds up

to complexity 8. The program can treat also nonclosed three-

manifolds and manifolds of greater complexity, but without

necessarily succeeding in recognizing them.

INTRODUCTIONLet M be an orientable three-manifold such that@M is either empty or consists of tori. Then, ifwe assume Thurston's geometrization conjecture[Scott 1983], M can be decomposed in a uniqueway into graph-manifolds and hyperbolic pieces.A graph-manifold is a three-manifold that can beobtained by pasting together copies of D2�S1 andN 2 � S1, where N 2 is a disc with two holes, alonghomeomorphisms of their boundaries. In particu-lar, all Seifert manifolds and solv-manifolds can beobtained in this way.The classi�cation of graph-manifolds is known[Waldhausen 1967a; 1967b], and a list of cuspedhyperbolic manifolds up to complexity 7 is con-tained in [Weeks 1985]. If we possess informationon how the pieces are glued together, we can getan explicit description of M as a sum of geometricpieces. Such a presentation is usually su�cient forunderstanding the intrinsic structure of M ; it al-lows one to labelM with a name that distinguishesit from all other manifolds.We describe the theoretical background and out-line of a computer algorithm that recognizes three-manifolds, in the following sense: given (by meansof combinatorial description, say) a three-manifoldM whose boundary is empty or consists of tori, thealgorithm attempts to decompose M into geomet-ric pieces and identify those pieces. The algorithm
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154 Experimental Mathematics, Vol. 7 (1998), No. 2always succeeds if M is closed, orientable and hascomplexity at most 8 (all such manifolds are graph-manifolds; see [Matveev 1990]).
1. SPECIAL AND ALMOST SPECIAL SPINES

Definition. A compact polyhedron P is simple ifthe link of each of its points is homeomorphic toeither a circle, a circle with a diameter, or theone-skeleton of a three-simplex (a circle with threeradii). Points whose link is not a circle are calledsingular. (See Figure 1.)The set of singular points of a simple polyhedronP is called the singular graph of P . Each con-nected component of the complement of the singu-lar graph of P is a two-manifold without boundary,and is called a two-component of P .
Definition. A compact polyhedron P is called al-most special if it can be embedded in a simple poly-hedron.There is a close relation between simple and al-most special polyhedra. For example, the wedge ofany simple polyhedron and any graph is an almostspecial polyhedron. The example is very typical,since any almost special polyhedron can be col-lapsed onto a polyhedron of the form P [G, whereP is a collection of disjoint simple polyhedra, G isa graph, and P \G is a �nite set of nonvertices inP .
Definition. A simple polyhedron P is special if itcontains at least one vertex and if all its two-com-ponents are two-cells.Note that there are �nitely many special polyhedrawith a given number of vertices.
Definition. A subpolyhedron P � �M of a compactthree-manifoldM with nonempty boundary is saidto be its spine if M collapses to P or, equivalently,if M n P is homeomorphic to @M � (0; 1].The spine is called almost special or special if it isa polyhedron of the corresponding type.

We will always assume that an almost specialspine cannot be collapsed onto a proper subpoly-hedron.By a spine of a closed manifold M we mean aspine of M n �D3, where D3 is an embedded closedball in M . It is known that any compact three-manifold possesses an almost special (even a spe-cial) spine. Moreover, one can easily construct aspecial spine of M starting from practically anypresentation of M [Matveev 1990]. Special spinespossess an important property that favorably dis-tinguishes them from simple and almost specialspines: a three-manifold can be uniquely recoveredfrom its special spine. Note that special spines canbe considered as combinatorial objects and admitpresentations in computer's memory as strings ofintegers that show how two-cells are attached tosingular graphs of spines. To present a manifoldby its almost special spine, additional informationis needed on the way the spine should be thickenedto become the three-manifold.
2. SIMPLIFYING MOVES ON SPINESIn what follows we will consider compact orientablethree-manifolds whose boundaries are either emptyor consist of spheres and tori.We introduce six types of moves on almost spe-cial spines, each of which does not increase thenumber of vertices of the spine, and quite oftendecreases it. We call them simplifying moves. Themoves transform not only spines, but may alsotransform the corresponding manifolds. Therefore,one should keep in memory additional informationsu�cient for recovering the original manifolds fromthe new ones.Let P be an almost special spine of a three-man-ifold M .
Move 1 (Admissible disc replacement). Let P be a sim-ple polyhedron. Suppose D2 is a disc in M suchthat D2 \ P = @D2 and that the curve @D2 is ingeneral position in P . Then D2 cuts o� M n P aball B3. Let � 6= D2 be a two-component of thesimple polyhedron P[D2 such that � separates B3
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FIGURE 1. Each point in a simple polyhedron has a neighborhood that is topologically the cone over a circle(left), a circle with a diameter (middle), or a circle with three radii (right).from M n B3. Removing from � an open two-discand collapsing the resulting polyhedron as long aspossible, we get another almost special spine P1 ofM . (See Figure 2.) We say that P1 is obtainedfrom P by a disc replacement move.

�D2
FIGURE 2. A disc replacement move.A disc replacement move is called admissible if thefollowing conditions hold:

(1) The move does not increase the number v(P ) ofvertices of P ; that is, v(P1) � v(P ).
(2) v(P [D2)� v(P ) � 4.An admissible disc replacement move is monotoneif v(P1) < v(P ), and horizontal if v(P1) = v(P ).
Remark 2.1. It is easy to see that, applying to a spe-cial spine admissible disc replacement moves, onecan get only �nitely many di�erent special spines.
Remark 2.2. Here is an important particular caseof Move 1. Suppose a two-component � � Pcontains a nontrivial orientation-preserving simpleclosed curve l. Then there is a proper annulusA � M such that A \ P = l. Suppose that at

least one of the boundary circles of A bounds adisc in @M . Then there is a disc D2 in M suchthat D2 \ P = @D2 = l, and we can simplify P byMove 1.
Move 2 (Cutting of a two-component along a nontriv-

ial circle). Suppose that a two-component � � Pcontains a nontrivial orientation-preserving simpleclosed curve l, and let A �M , with A\P = l, be atransverse proper annulus. Assume the boundarycircles of A are nontrivial in @M . Cutting P alongl and collapsing the resulting polyhedron as longas possible, we get an almost special polyhedronP1 �M .Denote by L the connected component of A[@Mcontaining A. Let Y 3 be a regular neighborhoodof L in M such that P1 is a spine of M1 =M n Y 3.Then M = M1 [ Y 3 and M1 \ Y 3 consists of oneor two tori. Note that, since the boundary circlesof A are nontrivial in @M , L �bers onto circles. Itfollows that Y 3 is a circle bundle over a surface F .It is easy to see that �(F ) = �1 and @F consistsof two or three circles. Therefore F is homeomor-phic either to a twice punctured disc N 2 or to aonce punctured M�obius band B2 (the latter hap-pens when the coherently oriented boundary cir-cles of A lie on the same boundary torus of M andhave opposite orientations there). We may con-clude that Y 3 = N 2 � S1 or Y 3 = B2 ~� S1.Moves 1 and 2 are basic ones. Applying them,we destroy two-components that contain nontriv-ial simple closed curves. As a byproduct, we mayobtain almost special spines with one-dimensional
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FIGURE 3. Cutting free arcs.parts as well as spines of three-manifolds with sev-eral spherical boundary components. To simplifythem, we use additional moves.
Move 3 (Cutting free arcs). Suppose that P containsan arc l such that no two-dimensional sheets are at-tached to l. Removing the interior of l from P andcollapsing the resulting polyhedron as long as pos-sible, we get an almost special polyhedron P1 � P .To describe the corresponding transformation ofM , denote by D2 a proper disc in M such that D2intersects l transversely at exactly one point. ThenP1 is an almost special spine of a manifoldM1 thatis obtained from M by cutting along D2. In otherwords, M can be obtained from the new manifoldM1 by attaching handle of index 1; see Figure 3.There are three cases.
(A) M = (M1 +D3) # (D2 � S1), if @D2 does notseparate @M (here \+D3" means that we �ll upa spherical component of the boundary with athree-dimensional ball).
(B) M = (M1 + D3) # (S2 � S1), if D2 does notseparate M but @D2 separates @M .
(C) M =M 01#(M 001 +D3), if D2 separatesM , whereM 01; M 001 are the connected components of M1.
Move 4 (Delicate piercing). Suppose that @M con-sists of at least two components, and at least oneof them is spherical. Then one can �nd a properarc l � M such that A = l \ P is a nonsingularpoint of P and l joints a spherical component of@M with another one. Removing from P an opendisc neighborhood of A and collapsing the resulting

polyhedron as long as possible, we get an almostspecial spine P1 of M1 = M + D3. We call thepiercing delicate since it induces a very mild mod-i�cation of M .
Move 5 (Removing isolated points). If P contains iso-lated points, remove them.
Move 6 (Rough piercing). Let P be a special spineof a closed manifold M . Choose a two-component� of P such that after removing �� from P andcollapsing the resulting polyhedron, we get an al-most special polyhedron P1 �M with the smallestpossible number of vertices. Then P1 is an almostspecial spine of a new manifoldM1 �M such that@M1 is a torus. Clearly, M n �M1 is a solid torus;that is, M is obtained from M1 by a Dehn �lling.
3. EXPERIMENTAL RESULTS AND CONJECTURESWe recall the following notion, which is naturallyrelated to practically all the known methods ofpresenting manifolds and captures well the infor-mal idea of complexity of three-manifolds [Matveev1990].
Definition. A compact three-manifold M has com-plexity c(M) = k if M possesses an almost specialspine with k vertices and admits no almost specialspines with a smaller number of vertices.The complexity possesses the following properties:
(1) For any integer k, there exist only �nitely manydistinct closed irreducible orientable three-man-ifolds of complexity k.
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(2) The complexity of the connected sum of three-manifolds is equal to the sum of their complex-ities, and the same is true for boundary con-nected sums.
(3) Let MF be obtained from a three-manifold Mby cutting along a proper incompressible surfaceF �M . Then c(MF ) � c(M).
Remark 3.1. Using Moves 1, 3, 4, and 5, one caneasily prove that any minimal almost special spineof a closed orientable irreducible three-manifoldM with c(M) > 0 is a special one. There areexactly three closed orientable irreducible three-manifolds of complexity 0: S3, RP 3, and the lensspace L(3; 1). Their minimal almost special spines(a point, RP 2, and a simple polyhedron withoutvertices with exactly one two-component, which ishomeomorphic to the disc) are not special.
Theorem 3.2. All closed orientable three-manifoldsof complexity at most 8 are graph-manifolds.This was initially proved by computer; later, apurely theoretical proof was found [Matveev 1990].We describe the main steps of the computer pro-gram used in the original proof.
Step 1. The program enumerates all the �nitelymany special polyhedra with at most 8 vertices.
Step 2. The program selects spines of closed ori-entable three-manifolds. (It is easy to decide if aspecial polyhedron is a spine of a three-manifold,and if it is, then the three-manifold is unique.)
Step 3. Then it tries to apply to each spine admissi-ble disc replacement moves that decrease the num-ber of vertices. If such a move is possible, then thecorresponding three-manifold M is not interestingfor either it has a smaller complexity (and we havemet it earlier), or it is a connected sum of closedmanifolds of smaller complexities. Otherwise, wego to the next step.
Step 4. The program applies Move 6 (rough pierc-ing) and simpli�es the new spine by Moves 1{5.Note that Move 6 is allowed only if the manifold is

closed or has a spherical boundary, and it producesa manifold with a torus boundary.The main observation resulting from the computerexperiment is that if we start with a special spineof a closed orientable manifold M with at most8 vertices, then after Moves 1{6 we always get theempty set. This means thatM is a graph-manifold.Theorem 3.2 is sharp in the sense that there existclosed orientable three-manifolds of complexity 9that are hyperbolic and therefore are not graph-manifolds. One of them has volume 0.94. . . ; this isthe smallest known value for the volume of a closedorientable hyperbolic three-manifold [Weeks 1985;Matveev and Fomenko 1988].We say that an almost special spine of a three-manifold M is minimal if it has the smallest pos-sible number of vertices.
Theorem 3.3. If a special spine of a closed orientablethree-manifold M contains less than 8 vertices andis not minimal , then it can be simpli�ed by a mono-tone admissible disc replacement move. Any twominimal special spines of M are related by hori-zontal admissible disc replacement moves.This theorem is an experimental fact; it has beenveri�ed by a computer program.The following conjectures have been motivatedby the experimental results stated above, as wellas by other observations.
Conjecture 3.4. If a special spine of a compact three-manifold is not minimal , then the number of itsvertices can be decreased by admissible disc replace-ment moves.If the conjecture is true, one can get a simple al-gorithm for recognition of the unknot, as follows.Apply to a spine of the knot complement admissi-ble disc replacement moves as long as possible. Theknot is trivial if and only if one eventually gets acircle. In the same way one would have a simplealgorithm for recognition of the three-sphere.Conjecture 3.4 may be too strong to be true,although vast computer experiments to �nd outa counterexample have been unsuccessful. This



158 Experimental Mathematics, Vol. 7 (1998), No. 2shows that, if exceptions exist, they are rare, andthe above algorithms should give the circle or thepoint for a typical spine of the solid torus or theball, respectively. Therefore, we have good prac-tical partial procedures for recognizing the unknotand the sphere.
Conjecture 3.5. If a special spine of a closed graph-manifold is minimal , then any rough piercing move(Move 6) transforms it into an almost special spineof a graph-manifold .The conjecture is true for all graph-manifolds upto complexity 8. It allows one to reduce the recog-nition problem for closed graph-manifolds to thatfor manifolds with boundaries.
4. SPINES OF MANIFOLDS WITH ESSENTIAL ANNULIIt is known [Matveev 1990] that if a three-manifoldis reducible or boundary reducible, then its mini-mal almost special spine is not special. It turnsout that the same is true for manifolds contain-ing essential (that is, incompressible and bound-ary incompressible) annuli. This observation is es-pecially important for the investigation of graph-manifolds with nonempty boundary, since all ofthem are reducible or boundary reducible or con-tain essential annuli.
Theorem 4.1. If a compact three-manifold M con-tains an essential annulus, no minimal almost spe-cial spine of M is special .
Remark 4.2. If an almost special spine is not specialand has at least one vertex, it contains either atwo-component not homeomorphic to the disc orone-dimensional part. Hence we can apply eitherMoves 1 and 2 or Move 3.Before proving Theorem 4.1, we recall some no-tions of normal surface theory [Haken 1961]. Let� be a handle decomposition of a three-manifoldM with nonempty boundary. It consists of han-dles of index 0, 1, and 2, called balls, beams, andplates, respectively. Connected components in theintersection of balls and beams are called islands;

connected components in the intersection of ballsand plates are called bridges. The boundaries ofballs meet @M along lakes. Any normal surfaceF � M should intersect balls, beams and platesin a very speci�c way [Haken 1961]. In particular,the intersection of F with balls should consist ofelementary discs. The boundary curve @E of eachelementary disc E should satisfy these conditions:
(1) The intersection of @E with any bridge and anylake consists of no more than one segment.
(2) If l is an arc in the intersection of @E with a lakeL then the end points of l should lie in di�erentconnected components of the intersection of Lwith islands.
(3) If a lake and a bridge are adjacent then @E in-tersects no more than one of them.We say that an elementary disc E has type (m;n)if the circle @E intersects m bridges and n lakes.Any special spine P of M generates a handledecomposition �P of M . Balls, beams, and platesof the decomposition correspond respectively tovertices, edges, and two-components of P . Theboundary of each ball contains exactly four islands,and any two of them are joined by exactly onebridge. See Figure 4.

FIGURE 4. Boundary of a ball in a handle decom-position �P .It is not hard to see that any elementary discfor �P has one of the following types: (4; 0), (3; 0),(2; 1), (1; 2), (0; 2), (0; 3), (0; 4). Each type de-termines the corresponding elementary disc in a



Matveev: Computer Recognition of Three-Manifolds 159unique way (up to homeomorphisms of the balltaking islands to islands, bridges to bridges, andlakes to lakes), except the type (0; 3), which deter-mines two elementary discs.For any beamD2�I (withD2�f0g andD2�f1gbeing islands), the disc D2 � f1=2g is called thetransverse disc of the beam.
Definition. Let A be a proper annulus in a three-manifold M with a special spine P such that A isnormal with respect to �P . We say that A has atail if the intersection of A with the transverse discof a beam contains a proper arc l such that the endpoints of l lie in the same circle of @A. The arc lcuts o� A a disc Dl. We call Dl a tail of A.
Lemma 4.3. If the handle decomposition �P gener-ated by a special spine P of a three-manifold Mcontains a normal annulus A with a tail Dl, thenP is not minimal .
Proof. Denote by MDl the three-manifold obtainedfrom M by cutting along Dl. Evidently, MDl ishomeomorphic with M . The tail decomposes theballs of �P into balls, plates into plates, and beamsinto beams except the beam B0 containing l. Co-herently collapsing new balls, beams, and platesonto two-dimensional subsets, we get an almostspecial spine P 0 of MDl . Since each ball of �Pcontains no more than one vertex of P 0, we havev(P 0) � v(P ), where v(P ) denotes the number ofvertices. Note that P 0 has a free edge arising fromcutting and collapsing the beam B0; see Figure 5.After collapsing P 0 through this free edge, we getan almost special spine ofMDl with a smaller num-ber of vertices. �
Proof of Theorem 4.1. Let P be a special spine of athree-manifoldM with an essential annulus. Sincethe annulus is incompressible and boundary incom-pressible, one can replace it by an annulus A thatis normal with respect to the handle decomposi-tion �P of M generated by P . If A has a tail, thenwe apply Lemma 4.3 to �nd a simpler spine of M .Assume that A has no tails. Since each elementarydisc of type (0; 3) or (0; 4) in A would determine at

FIGURE 5. Result of cutting and collapsing of beam(see proof of Lemma 4.3).least one tail, only types (4; 0), (3; 0), (2; 1), (1; 2),(0; 2) for elementary discs in A are possible. More-over, if E is an elementary disc of type (1; 2) or(0; 2), then two arcs in @E \ @M must lie in di�er-ent components of @A.Now cut M along A so that one component S of@A is preserved. In other words, we remove fromM the subset S1� (0; 1]��I, where A = S1� [0; 1]and A � I is a thin regular neighborhood of A inM . As above, coherently collapsing the new balls,beams, and plates onto 2-dimensional subsets, weget an almost special spine P 0 of M with v(P 0) �v(P ). Moreover, if at least one elementary disc oftype (1; 2) is present, then v(P 0) < v(P ). Thisis because each type (1; 2) elementary disc in theintersection of A with a ball of �P annihilates thecorresponding vertex of P ; see Figure 6.We conclude the proof with the following re-mark: if there are no type (1; 2) elementary discs inA, then all elementary discs in A have type (0; 2).In this case the core circle of A can be shifted intoa two-component of P . Since all two-componentsof P are two-cells, it implies that the core circleis contractible, which contradicts the assumptionthat A is incompressible. �
5. THE ALGORITHMLet M be a compact three-manifold such that @Mis either empty or consists of tori. Our goal is todecompose M into geometric pieces: in particular,to determine whether M is a graph-manifold.
Step 1. Construct a special spine P of M .
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FIGURE 6. If an elementary disc of type (1; 2) ispresent, the number of vertices decreases (see proofof Theorem 4.1).
Step 2. Apply Moves 1{5 to P as long as possible.In the case of Move 2 when N 2 � S1 or B2 ~� S1 iscut o� we store the information on how this pieceis attached to the remaining part of M . This canbe done by selecting meridian-longitude pairs onboundary tori and controlling their behavior underfurther moves.
Step 3. In general, we get a collection of specialspines. Then apply Move 6 to those of them thatare spines of closed manifolds.
Step 4. Iterate Steps 2{3 as long as possible.We get a collection C of special spines of mani-folds such that the boundary of every manifold isnonempty and consists of tori.
Case 1: C is empty. This means thatM is a graph-manifold. We use the stored information to �ndout the canonical presentation of M as a unionof Seifert manifolds with explicitly given parame-ters and gluing matrices. The presentation distin-

guishes the manifold from all other manifolds andcan be considered as its name.
Case 2: C is a nonempty set of special spines.Then we get a decomposition of M onto Seifertmanifolds and unknown pieces that correspond tospines. Other methods should then be used to in-vestigate the unknown manifolds; this is the reasonwhy our algorithm is only a partial one. For exam-ple, one may test the manifolds for hyperbolicityby comparing with Je� Weeks' table.

Remark 5.1. Recall that ifM is closed and its specialspine P contains at most 8 vertices, we always getCase 1.
Remark 5.2. If Conjectures 3.4 and 3.5 are true,then by Theorem 4.1 we get Case 1 if and only ifM is a graph-manifold.
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