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Following a 70-year old suggestion of Paul Lévy, a condition is
formulated for the regularity of growth of real functions. The
condition, which is quite explicit, makes use of the iterates of
the function and solutions of Abel’s functional equation, and is
well adapted to a computer testing.

Numerous computer experiments reveal interesting properties
of the proposed regularity criterion.

1. INTRODUCTION

Abel’s functional equation,
A(F(z)) = A(x) + 1, (1-1)

plays a central role in the theory of continuous or
fractional interaction. It appeared first in a brief
note of Abel [1881], which was among his left-over
papers rescued by Holmboe for posterity. He ob-
served that if A is a strictly increasing continuous
solution of (1-1), which for brevity we shall call an
Abel function of F', then the functions

Fo(x) = A YA(x) +0), foroceR, (1-2)

form a family of fractional iterates of F' with the
property that F° =id, F'! = F, and

FCoF =F oF° =F°t forallo,7€R.

Clearly, if A is an Abel function of F' then so
is A 4 ¢ for any constant ¢ and, from the point of
view of iteration, not essentially different from A,
as it supplies the same family of iterates. There are
of course many other solutions of (1-1) and Abel
wrote down their general form:
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Lemma 1.1 [Abel 1881]. If A, A* are strictly increas-
ing C* solutions of (1-1) then

A (z) = A(z) + p(A(2)) (1-3)

for some periodic ¢ with period 1 and such that
¢ (x) > =1 for all z. Conversely, any A* of the
form (1-3) is an invertible solution of (1-1).

Abel never mentions the condition ¢'(z) > —1
(for that matter he mentions no conditions what-
ever about his functions) but it must be satisfied if
A*'(z) = A'(z) (1 + ¢'(A(x))) is to be positive. It
is now natural to ask whether it is possible to sin-
gle out one particular solution of (1-1) (of course
modulo an additive constant), and hence one par-
ticular family of fractional iterates, that in some
sense can be regarded as the “best” solution of the
iteration problem. A typical well-known instance
is the problem of the half-iterate of the exponential
function, that is, an F satisfying F'(F(x)) = e® for
any x > 0, say. Such an F' is certainly not an ele-
mentary function, since its growth cannot be fitted
into Hardy’s logarithmico-exponential scale [Hardy
1910]. Our problem is just a particular instance of
a far more general question, namely whether it is
possible to give an objective meaning to the con-
cept of “regular growth” of real functions. What
we propose here is to formulate an intrinsic prop-
erty of real functions that can be interpreted as a
criterion of regular growth, and has at least the
potentiality to become the source of a universal
comparison scale. Unfortunately at present there
is no way of deciding whether the suggested, quite
explicit, criterion can in fact fulfil such an ambi-
tious program (there is no a priori guarantee that
such a property exists at all) and the evidence so
far is largely computational.

Following the frustrations of last century there
was one serious attempt in the present century to
formulate a criterion of “croissance réguliere”: that
of Paul Lévy [1928], based on Abel’s functional
equation. The present attempt grew out of Lévy’s
work and is essentially a recasting of his proposal

in a more workable and computationally more ac-
cessible form.

The program is briefly this: with every convex
analytic F : R”® — R”° satisfying F(0) = 0,
F'(0) > 1, and F"(z) > 0 for « > 0 we shall
associate, through a construction which involves
both the local (at z = 0) and global behaviour of
the function, a continuous ¢ : R”° — R with the
property that ¢(F(z)) = ¢(x) for all x > 0. Once
we have such a function it can be converted, again
with the help of Abel’s equation, into a periodic v
with period 1. By taking the Fourier coefficients
z/A)m, we transform the problem of regular growth
of F' into one concerning the “regularity” of real
sequences. Details of the construction and the en-
suing regularity criterion will be discussed in Sec-
tion 2. The rest of the paper is taken up by the
presentation of some of the computational evidence
in support of the criterion and the description of
the link between our criterion and Lévy’s original
suggestion.

The precursor of the present work was a similar
but rather perfunctory attempt that I made some
years ago [Szekeres 1984] without coming to a def-
inite formulation of a criterion. The main stum-
bling block was the very limited computational ac-
curacy (standard 16 decimal figures) available to
me at the time—mnot nearly sufficient to extract
any useful information from the numerical data
obtained. The experimental evidence presented
in Section 3 relies on 180 decimal figures, using
Richard Brent’s multiple precision package. This
was quite adequate for all examples discussed here.

2. THE CRITERION OF REGULAR GROWTH

For ¢ > 1, let C. denote the set of strictly con-
vex analytic functions F : RZ° — R=° satisfying
F(0)=0, F'(0) = ¢, and

F'(z) >0 forz>0.

The regularity criterion will refer to members of

€=U, Ce
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For F' € C there is always a uniquely determined
Abel function that has a best local behaviour at
x = 0; we call it the principal Abel function of F.
It is distinguished by the property that, if

x) = i b’
j=1

is the Taylor series of F', with b, = ¢ > 1, then the
principal Abel function has an expansion

log j
2-1
logc+z a;x (2-1)

at e =0 if F € €. with ¢ > 1, and

1
A(x)z—b——l—aologa;—l—z:ajx] as ¢ — 0"
7j>1 (2 2)

if F' € @y, the coefficients of expansion being ob-
tained by formal substitution into (1-1). The se-
ries (2-1) converges, by a century-old theorem of
Konigs [1884]; see [Kuczma 1968, Chapters VI and
VII] for results of this kind. The series (2-2) is
not necessarily convergent; nevertheless there is a
unique analytic solution of (1-1) having (2-2) as an
asymptotic expansion at x = 07 [Szekeres 1958].
Although the principal Abel function is the one
that behaves best near 0, there is no reason to as-
sume that it is also the solution that has the most
“regular” manner of growth at x — oo.

Let D(x) = 1/A'(z) denote the reciprocal of the
derivative of the principal Abel function. If ¢ > 1
it has an expansion

x) =Y da, (2-3)

j>1
with
bs log c
1 og ¢, 2 C(C — 1)7 )

if F' € C; the expansion is

x) ~ Z d;x’ (2-4)

Jj22

with

d2 == bz, d3 - bg—bi, d4 - b4+%bz(3l)§ —5[]3),

In a sense, D(x) is more basic than A(z), being the
infinitesimal generator of the iteration group (1-2).
Unlike the Abel function, which has the charac-
ter of an indefinite integral (it admits an arbitrary
additive constant), D(z) is a proper function. It
satisfies

D(F(z)) = F'(x)D(x),

F"(z) (2-5)
Fiz)

D'(F(x)) = D'(x) + D(x)

We shall refer to D(x) as the principal iteration
generator of F.
Another function that we shall need is E(x), sat-
isfying
E(F(z)) = F'(z)(E(z) + D'(z))  (2-6)
when ¢ > 1 and
E(F(z)) = F'(x)E(z) + D'(F(z)) (2-7)

when F' € €, and having an expansion

E(x) = Zeja:j, (2-8)

Jj=>0
where
clogc
€y = —
c—1

ife>1,and eg = —1, ¢, = by if FF € C;. It is
a kind of inhomogeneous iteration generator of F'.
The coefficients e; are obtained by formal substitu-
tion into (2-6) and (2-7) respectively, except for e,
in the first case and e, in the second case, for which
the defining equation for the coefficients becomes
an identity, given the values d;, d» and d», d3, d, re-
spectively in (2-3) and (2-4). The reason of course
is that, if E(x) is a solution of (2-6) or (2-7), then
E(z)+ pD(z) is also a solution for any constant .
The missing coefficients will be fixed later.
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The last auxiliary function we will need is

=1
ta) =Y ——, fora>0, (2-9)
k=0 Fk (x)

where F¥ = F o FF~1, F° =id, and

FV'(a) = F'(2)F'(F(2)) - - F'(F* (x))
= [[#@ " @),

It satisfies

t(F(x)) = F'(x)(t(x) = 1),

tx) =1+ t(ﬁféi)))

(2-10)

The convergence of (2-9) is obvious because of the
strict convexity of F. We also note that

FI/ (I
F'(x)

~—

t'(F(zx)) =t(x) + (t(x) —1). (2-11)
We now give the definition of ¢ envisaged in the
introduction.

Theorem 2.1. For F' € C., with ¢ > 1, let D, E,t be
defined by (2-5), (2-6), and (2-9). Then

o) = 55

(t(x)D'(z) — t'(z)D(z) + E(z))

(2-12)
satisfies

p(F () = p(z)

Theorem 2.2. For F € Cy, let D, E,t be defined by
(2-5), (2-7) and (2-9) respectively. Then

for all x > 0.

((t(2) = 1)D'(2) - t'(2)D(z) + E())
(2-13)

for all x > 0.

Proof of Theorems 2.1 and 2.2. Let F' € C,, with ¢ > 1.
From (2-5), (2-6), (2-10), (2-11), and (2-12) we
have

= ().

This proves Theorem 2.1. The proof of Theorem
2.2 is similar, involving (2-7) and (2-13) instead of
(2-6) and (2-12). O

Note that in the definition of ¢(x) the functions
D(z) and E(x) are determined by the local expan-
sion coefficients of F(x) at © = 0, whereas t(z)
uses the full global behaviour of F(x) through-
out (0,00). Note also that the arbitrary multiple
puD(x) of D(x) that can be added to E(x) appears
here as an arbitrary constant p that can be added
to ¢(x).

We can transform ¢(x) into a periodic function
by making yet another use of Abel’s functional
equation. Consider ¥ (o) = @(A™*(0)), where, as
before, A is the principal Abel function of F'. Then
1 is periodic with period 1, by (1-1). Since A is
only determined up to an arbitrary additive con-
stant, ¢ is only determined up to an arbitrary
phase constant (plus a free additive constant). We
can take care of both these constants by consider-
ing the Fourier coefficients

b= [ erevi)do
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of 1, which we write as

@Bn — Ont2miBn (2-14)

with a,, 3, real and 0 < 3, < 1, for n > 1. In par-
ticular, the sequence o = {«,, };° is independent of
the phase constant of 1. The free additive constant
of 1 is fixed by the normalizing condition

27rz/;0 = / Y(o)do = 0. (2-15)
0

This is achieved by setting in (2-8) the values

o 2b, 1_clogc
YT ele—1) c—1

if¢c>1, and

(2-16)

ex = 2by — 203 (2-17)

2

if ¢ = 1; an indirect proof will be supplied later.

In writing ¢, in the form (2-14) we have as-
sumed of course that no Fourier coefficient apart
from 1/30 is 0, an assumption that will not cause us
any problem. We mention here that in the triv-
ial linear case F'(z) = czx for ¢ > 1, which is not
strictly convex and hence is not in €, the function
1 is identically 0. Indeed, D(z) = (logc)z and
t(z) = ¢/(c — 1) by (2-9); hence t'(z) = 0,

_cloge
c—1

by (2-8), and so ¢(z) = 0 for all x > 0, by (2-12).

With the normalization (2-16), (2-17) we have
now a perfectly well defined mapping I' from € to
the set of real sequences I'F' = a = {«,, }. We shall
call « the sequence of Lévy-Fourier (LF) coeffi-
cients associated with F'. As we have noted ear-
lier, the construction of ¥ and hence of the LF
coefficients involves the entire global behaviour of
F(z) at large values of z. It is therefore reason-
able to expect that regularity of growth properties
of F' will translate somehow in a suitable regular-
ity property of the LF coefficients. We shall find
in complete monotonity the principal ingredient of
such a property, but before formulating precisely

B(z) =

our regularity condition, we examine in some de-
tail the main invariance properties of the iteration
wave 1.

Theorem 2.3. For F' € C and b > 0, let F*(z) =
(1/b)F(bz). Let o and a* be the LF coefficients of
F and F*. Then

a, =a, +logb forn>1.

Proof. Suppose F' € €. for ¢ > 1. Denote by
D*, E* t* the various iteration functions pertain-
ing to F* in Theorem 2.1. Then F*'(z) = F'(bz),
F**" = F*'(bx), and D*(z) = (1/b)D(bz) by (2-3)
and (2-5); D*'(z) = D'(bx), E*(z) = E(bx) as
seen from (2-6) and (2-8); t*(x) = t(bx) as seen
from (2-9); and t*'(z) = bt'(bx). Hence

= bp(bx).
Also A*(z) = A(bx) for the principal Abel function
of F'*,

P (0) = ¢ (A7 (o)) = bp(A7(0)) = b(0),

apart from a phase constant. Hence o) = «,,+logb
for each n.

With minor modifications the proof is the same
if F' e C;. O

Theorem 2.4. Let F' € C and set F* = F? for some
positive integer p. Then

an, = ay,, + logp.

The theorem will follow from an auxiliary result:

Lemma 2.5. Let F* = F? for some positive integer
p. Then, apart from an additive constant, which
does not matter,

(2-18)

pla) =3¢ (F (@)
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Proof. First assume that F' € C., with ¢ > 1. We
show that

p—1

1 ) .
Z —t*(F'x) = tx.
Fix

Jj=0

(2-19)

(We omit the parentheses around z for economy of
notation.) To verify (2-19), write

k=0
- AZ_; Fkoti g
and
oo p—1 00
1 1
D) PIEI S
k=0 j—=0 T o z
Now (1-1) implies A(F*z) = A(FPz) = Az + p;

hence A*x = (1/p)Az and D*z = pDzx. Further-
more, D*(Fig) = F/'x D*x = pF7 'z Dx; hence

p—1
D* Fi
SULEEE

D+(Fiz)

p—1 § . 1!
t*(FY FJ

= M(D':C%-D.r ,,:E)

o Fi'zDx Fi'g
D'z 2L opi'y

=t “(FY

"o T 2 G )

by (2-19). But, from (2-19),

Zt (Fiz

p—1

t'szt*' (Fiz

=0

1’)

hence

p—1 L ;
- D*(Fix) r o D'x
(Flg)———= —t" (I ): —t'x.
E (t( x) D (Fiz) t* (F'x) me t'x

j=0
(2-20)

Therefore in order to prove (2-18) we only have
to show, by Theorem 2.1, that

‘”i E*(Fiz) Ex

~—~ D*(Fiz) Dz
7=0
or
p—1
E*(Fiz
(_, ) =pEx (2-21)
, Fig
7=0
But, by definition, E*(FPz) = F?'x(E*x + pD'z).
Hence, setting
p—1
Ex(FY
(_, z) =pE"z, (2-22)
, Fig
7=0
we get
E™(Fx)
p—1 i
E*(F7t!
_pp S BT
, Fitl g
7=0
p—1 i
E*(F'z) E*(F”x))
=F'x _ +
(; Fi'y Fr'g
=1 oo i
E*(F'z)
o * * i
j:
= F'z(pE"z + pD'x).

This shows that E**x satisfies the same equation as
FEx. Thus the two functions are the same, modulo
a constant multiple of Dz which does not matter,
proving (2-21).

Now suppose instead that F' € C;. The proof is
similar but details are more involved. Instead of
(2-20) we have

(e Fa) - ) S ((5] ,];)) )

D'z D2l 1 L opivy
= (tr—1)=" — g — _
(e =1y — 1 D:c;Fj’x ;(Fj’x)f
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and we have to show that
”i E*(Fix)
o Fi'y

p—1 1 p—1 Fj”l’
—p(Fr+ DY D2y L),
Jj=1 Fi'y J=1 (£ ’x)z

Set
1 & E*(F
By =Ly 2
o Fi'g
p—1 p—1 1
1 Fig
— ! — _—
Dad gy = Dr2 (Fi'z)?
Jj=1 7j=1
Using the equalities
) 1 )
F''(Fz) = —F' '
( I) F’l’ x?
L, Fitl " ., F"
F'(Fx) = 711‘ — Ft! 71‘7
(Fit ) ()
and
v Fp "
E*(F*z) = F?'x E*x 4 pD's + pDx ,I
Frx
we get, after some cancellations,
E*(Fz) = Ex F'z + D'z + Da F:‘: = E(Fz)
according to (2-7) and (2-5). Hence E** = E and
the lemma is proved. O

Proof of Theorem 2.4. Write

1
o= EA(QI)

Now A*(Fiz) = (1/p)A(F'z) = (1/p)(Az + j), so
Flg =AY o+ j/p) and ¢ (Fx) =" (0 + j/p),
and Lemma 2.5 gives

Y(po) = Z:jz/) (++2).

The theorem is proved by observing that

@n — /01 z/)(T)e27Ti’nT dr

p—1 1 + 4

_ Z/ wx (T J>627Tin('r+j) dr
=070 p
p—1

1 .
— Zp/ ¢* (0_ + l)e27rin(p0'+j) dU
0 p

7=0
= p¢:p' D
The importance of Theorem 2.4 is that it allows an

extension of the LF coefficients «, from positive
integral A to any real A > 0. Define «, for rational

A =n/p by

a\ = Qp/p = a, +logp (2-23)

where o) is the n-th LF coefficient of F* = FP;
the definition is independent of the representation
n/p of . For if A = (kn)/(kp) then a) = o} +
logp + log k, where a;* is the n-th LF coefficient
of F** = F*? hence o = aj} + logk.

We can express (2-23) in a slightly different form.
Still with F* = F?, and setting F** = F*/n—Fv/n,
we have

Qy/p = O%I + 10gp7
Qp/p = @, +logp = a;" + log p —log n.

Redefining F* = F'/*, this gives
a, = aj —log A\

This was only shown to be true for rational A, but
we can now define the function

LX) =Lp(\) =a] —logA

for all A > 0, where F** is the principal 1/\-iterate
of F. We call Lp(A) the LF function of F; it is the
continuous generalization of the LF coefficients.

Clearly,
Lyvr(N) = Lp(r)) +logr (2-24)

for any r > 0. Thus the LF function has the pleas-
ant property that it is the same (apart from scaling
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of its variable A and an irrelevant additive con-
stant) for all principal iterates of F'.

The ground is now prepared for the formulation
of our criterion of regular growth. The property
that presents itself most naturally (partly from nu-
merical evidence) is complete monotonity, that is,
the condition

(=) 'L™(A) >0 foralln>1and X > 0.

It is a property that is not affected by an addi-
tive constant or a change of scale of the variable
in (2-24) hence is preserved for all principal iter-
ates of F'. Numerical evidence suggests that com-
plete monotonity is somewhat too strong; a more
reasonable condition is that L'(\) should be the
difference of two completely monotonic functions.
This is the same as saying that L’(\) is a Laplace-
Stieltjes transform,

L) = / ey (),

where v is of bounded variation [Widder 1941, p.
160]. Let us call a function with this property L-
regular. Our criterion of regular growth can then
be stated as follows:

Criterion 2.6 (regular growth). F' € C s said to be
reqularly growing if the LF function Lr(\) of F is
L-regular.

Clear-cut as it is, the criterion in this form is not
very suitable for numerical experimentation. Ulti-
mately one is compelled to examine the complete
monotonity and L-regularity of the LF coefficients
themselves. A nonnegative sequence A = {\,}°°
is called completely monotonic if all higher-order
backward differences

(AO)‘)n = Ans
(A"A), = (AN, = (A*TN)

k
=3 (-1y (’;)Anﬂ-, for k> 1, n >0,
j=0

are nonnegative. The sequence o = {a,}>2, will

be called L-regular if its first difference sequence

Hn = (Ala)n+l = Qpq1 — Upy2, for n Z 07

can be expressed as the difference of two com-
pletely monotonic bounded sequences. By a theo-
rem of Hausdorff, this is equivalent to saying that
= {p,} is a moment sequence, that is,

1
0

where x(t) is bounded and of bounded variation
[Widder 1941, Chapter III]. It is now natural to
postulate:

Criterion 2.7 (regular growth, discrete form). I is said
to be reqularly growing if the LF sequence of F' is
L-regular.

Strictly speaking, the condition ought to be satis-
fied for all natural iterates F? of F' according to
Theorem 2.4 if we want the two forms of the crite-
rion to be equivalent, but we shall be content with
this seemingly weaker form.

From the identity

i:(lf-)(Ak_jﬂ)j = 1o

=0 -/

[Hardy 1949, p. 252] we see that

Eok _

> ()@ ] = o

j=0
vanishes for all £ > 0 if and only if  is completely
monotonic, and is bounded if and only if y is a
moment sequence. Consequently « is L-regular if
and only if the sequence A = {A;} defined by

k
Ax = Z(l;:i)‘(“_ja)j\ —oy, fork>1,
(2-25)

j=1

is bounded. Here we have a sensitive test for the
L-regularity of «; if the LF sequence of F' is not
L-regular A tends to blow up. The A-test will be
used extensively in the experiments described in
the next section.
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3. NUMERICAL EVIDENCE

Two things have to be remembered when we calcu-
late the LF coefficients of various functions. One is
that, however many coefficients we evaluate, they
can never prove L-regularity. The other is that be-
ing in unexplored territory we cannot really predict
(or even make reliable guesses of) what functions
will turn out to be regularly growing. If we have
preconceived ideas (as people did in early last cen-
tury about the great inland sea of Australia) we
must be prepared for surprises.

Our examples will mostly, but not exclusively,
be taken from C* = (J ., C, largely for practical
reasons; the computational demands are consider-
ably higher when F' € C;. For instance, if ¢ = 2
and z is taken in the neighbourhood of 107, then
30 expansion coefficients will be amply sufficient
to calculate E(z), D(z) and D'(x) from (2-3) and
(2-8) with an error less than 107'7" say, and at
most 30 terms will be needed in the series (2-9)—
or rather the recursion’s (2-10) and (2-11)—for
t(z) and t'(x). In contrast, if F € €, then x can-
not be taken less than say 1073 if we want to keep
the number of terms in (2-9) under 500 and then at
least 80 expansion terms may be needed for E(z)
and D(x). For some functions such an increase
in computational effort by a factor of 10 or more
could be prohibitive, given that up to 2000 function
values of ¥(z) need to be computed if we want to
determine 200 to 300 Fourier coefficients. Exam-
ples will show that no essentially new information
comes from the study of functions in €;, and we
may just as well stick to F' € €, for ¢ > 2, say.

We begin with some simple elementary functions
in €, such as

20+ 2° = (14 2)° — 1.

Intuitively one would like this function (together
with its iterates) to be regularly growing, partic-
ularly since its principal iterates F7(z) = (1 +
7)?" —1 have such a simple explicit form. Actually
the functions that we have examined were F'(z) =
(1 + )¢ — 1 for various values of b > 0. Taking

b = 1, the Fourier coefficients of 1(z) went down
very rapidly from |4, | = exp(—9.88211180139) to

|s5| = exp(—248.3695682035),

the limit of reliability with 1000 (z) values and
180 decimal figures accuracy. The test quantity Ay
given by (2-25) was found to be 0 for k = 1,-- -, 25,
showing that the LF coefficients were not only L-
regular but completely monotonic, at least for the
first 25 coefficients. The same behaviour was of
course registered for b = log2, corresponding to
the polynomial 2x + 2.

Taking b = 2, about twice as many LF coeffi-
cients could be determined as with b = 1 (by The-
orem 2.4), and the outcome was quite revealing.
The first 19 values A, were again 0, but there-
after A, increased slowly to Ay = 0.00259959015,
a good indication of L-regularity. The difference
in behaviour is understandable if the LF function
itself is L-regular but not completely monotonic,
since we are now testing the higher derivatives of
the LF function by taking the points of evaluation
twice as densely as before. It was this example that
suggested L-regularity (instead of complete mono-
tonity) as the correct indicator of regular growth.
Of course, there is no guarantee that A, will stay
bounded past A4y, but the observed behaviour up
to Ays strongly suggests that the LF function of
(14 )¢ —1is indeed L-regular and (by Theorems
2.3 and 2.4) so is every

Fa) = {1+ 80" ~1)
with 8 > 0 and ¢ > 0. We have thus produced a
(presumably) regularly growing family of functions
with asymptotics yz” (where 7 = ¢ and v = 37 1)
for every 7 > 1 and § > 0. In particular, the family
of polynomials

1
—((1 4+ Bx)" —1),
Loy -
is regularly growing.

Passing on to polynomials not of the form (3-1),
we took as a first example F(x) = 3z + z?. Here

for 3> 0, (3-1)
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the outcome was quite “unexpected”: in sharp con-
trast to 2z + 22, the A-sequence grew dramatically
from A; > 0, A, = 0.938 to Ay = 3733.2, show-
ing unmistakably that the LF coefficients were not
L-regular, hence F(z) not regularly growing ac-
cording to our criterion. The same behaviour was
registered by, for example, F(z) = 3z + 322 + 22°,
with Ay = 1.2185, Ay, = 4228931.0. Indeed no
polynomial different from those of the form (3-1)
was found to be regularly growing. Looking for a
reason the following conjecture has emerged from
numerous experiments.

Conjecture 3.1. If F(z) has an L-regular LF func-
tion and f(x) = O((F(x))°) for some 0 < § < 1,
the LF function of F(x) + f(x) is not L-regular.

If this conjecture is true, the strange behaviour of
polynomials is of course perfectly understandable.
Examples such as these show indeed the remark-
able sensitivity of the A-test; they also suggest
that “regularly growing” functions form a highly
selective class of functions, which could conceiv-
ably serve as an appropriate scale for functional
growth.

As a next example we took F(x) = e® — 1, for
various values ¢ > 1. With such fairly fast-growing
functions the decrease of the Fourier coefficients
(hence LF coefficients) is not nearly as rapid as for
2% + 2z; in consequence we could compute many
more LF coefficients with comparable accuracy and
computational effort. Taking ¢ = 2 the LF coef-
ficients decreased from o; = —5.96067633273 to
Q50 = —197.6143012223, and A, was found to be
0 for all £ < 150: quite a remarkable outcome
hinting at some strong analytic reason. A similar
outcome was registered for other values of ¢, in-
cluding ¢ = 1, making it very plausible that e** —1
satisfies the regularity criterion for all ¢ > 1. In-
deed the case ¢ = 1 was in no way different (except
for greatly increased computing time) from those
with ¢ > 1, and e* — 1 had at least 180 completely
monotonic LF coefficients, with

oy = —6.66486681079445

and
oz = —227.21602223.

On the other hand the functions e* + = — 1,
e +x—1, %e“" — %eﬂ, and so on all showed violent
increases of A, with A5 reaching values of order
10%° or more, in accordance with Conjecture 3.1.
The last example shows that f(z) in the conjecture
can even tend to 0 fairly rapidly. In contrast, func-
tions such as 2ze”, (2z+2)e” —2, and (2z+z?)e” all
seemed to have L-regular (not always completely
monotonic) LF coefficients; this indicates that the
growth of f(z) relative to F(«) in Conjecture 3.1
cannot be too close to F'(z) itself.

Examples such as these can be produced at will,
without adding anything new to what we have al-
ready displayed. There is more interest in exam-
ining functions with nonelementary growth, which
therefore do not fit into Hardy’s scale. To pro-
duce hopeful examples once again Abel’s functional
equation comes to our rescue. A simple case is pro-
vided by the inverse B = A~ of the principal Abel
function of 22 + bz, for various values of b > 1. The
special interest of this example arises from the fact
that there are two particular values of b for which
the principal Abel function happens to be an ele-
mentary function (no others are known and proba-
bly do not exist). One is b = 2; the principal Abel
function of x? + 2z is

1
Ale) = log 2

log log(1 + ),

with inverse B(z) = exp(e®'°¢?) — 1. The other
value is b = 4; the principal Abel function and its
inverse are

1
A(rx) = 10g2loglog%(\/:f—l—\/ac+4),

B(z) = (exp(e®'°5?) — exp(—e®1%6?))7,

as seen by substitution into (1-1).

We know already what to expect: the first clearly
ought to be regularly growing, the second not ac-
cording to Conjecture 3.1, since

B(x) = exp(2e”'°8?) + exp(—2e”'°82) — 2.
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Computation does indeed confirm both expecta-
tions; in the first case A, was found to be 0 for
1 < k < 150, in the second case A, grew to Ajgy =
1.02 x 10?°. For no other values of b did we find
L-regular LF coefficients. For b = 2.1 the LF coef-
ficients of

F(z) = B,i(o)(Bcc) ~ B(0))

gave Ajgy = 1.8 x 10'° and for b = 3, for example,
we obtained A,y of order 1033, These results can
be understood if we remember that b = 2 was the
only value of b for which z? + bz was regularly
growing. This suggests another conjecture:

Conjecture 3.2. The inverse of the principal Abel
function of F(x) (suitably normalised) is reqularly
growing if and only if F(x) is reqularly growing.

By “suitably normalized” we understand here

— B(a)) fora€eR, ¢>1.

Abel’s equation also supplies “nice” examples
of functions which transcend Hardy’s scale in the
sense that they grow faster than any finite iterate
of e”. Hardy himself mentions such an example
closely related to an Abel function in [Hardy 1910,
p. 35], without making any reference to Abel. To
produce such an example in € we took the inverse
B(xz) of the principal Abel function of e*+¢%*—2 for
various values of b # 0. If Conjectures 3.1 and 3.2
are valid for such very fast-growing functions, we
should expect

C

F(x) = G55 (B@) = BO)),

for c > 1,

to be regularly growing when b = 1, and nonreg-
ularly growing when b # 1. This turns out to be
the case: experimenting with ¢ =1 or ¢ =2 it was
found that A, = 0 for 1 < k < 250 if b = 1 but
Aaso is of order 10! for b = 2, and of order 10°
for b = 0.5. A number of other such examples sup-
port without exception the hypothesis that Conjec-
tures 3.1 and 3.2 hold for arbitrarily fast growing
functions.

We remark here that the practical computation
of B(x) for given G € C* presents no difficulties
(G € €, is more awkward). For large negative z—
say © < —10—B(z) has an expansion

00
B(ﬂ)) — Ejajejavlogb7
j=1

where a; = 1 and the remaining expansion coeffi-
cients aj, for j > 1, are calculated from B(z+1) =
G(B(z)). From this series B(z) and its derivatives
are easily computed and so are the Taylor coeffi-
cients of B(x) at x = 0.

The experimental results presented in this sec-
tion clearly support two additional conjectures:

Conjecture 3.3. The set R of reqularly growing func-
tions, that s, functions with L-regular LF coeffi-
cients, 1S nonempty.

Conjecture 3.4. R contains arbitrarily fast-growing
functions.

We conclude this paper with a somewhat sketchy
account of the link between our Theorems 2.1 and
2.2 and Lévy’s original criterion.

4. THE LEVY-FOURIER COEFFICIENTS

Lévy’s original suggestion [1928] for “croissance ré-
guliere” amounted to this: Given F' € Gy, take any
a > 0 and define

1
F,(z) = =——(F —F 4-1
() F,(a)( (z +a) = F(a)) (4-1)
so that F}, € €;. Let D, D, be the respective prin-
cipal iteration generators of F' and F,. Then we
can define a second iteration generator D] for F,
by demanding that
lim D;(z)/D(x) = 1. (4-2)
Tr—r 00
Lévy actually stated his condition in terms of the
Abel functions A, A,, but essentially it amounts to
(4-2). Now Lévy proposed that for regularly grow-
ing functions D} should be identical with D, for
all @ > 0. Of course in those pre-computer times
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Lévy had no means of checking on his criterion
experimentally; otherwise he would have realised
that the criterion as it stands is too restrictive and
possibly cannot be satisfied for any F' except the
trivial e* — 1, for which F, = F for all a > 0.

We shall modify Lévy’s condition in several ways
(apart from the trivial modification (4-2)), so as
to make it workable and more accessible to experi-
mentation. First, instead of demanding the equal-
ity of D, and D; we shall examine the discrepancy
between the two iteration generators and formu-
late a criterion that refers to this discrepancy. Sec-
ondly, we do not insist on the condition F’(0) =1,
which can place uncomfortable demands on com-
puting time, without offering much in return. We
can then replace F,, in (4-1) by the simpler

F,(x) = F(x + a) — F(a).

Finally, we carry out the comparison of D, and
D; for infinitesimal a = ¢, thereby linearizing the
problem. This makes the examination of the dis-
crepancy much simpler and hence more accessible.

So let’s assume first that F' € €. with ¢ > 1, so

that
x) = Z bja:j,

Jj21
with by = ¢ > 1. Set, for infinitesimal ¢,

F.(x) = F(a+e)—F(e) ~ F(x)+eF' (x)—ce. (4-3)

Here ~ means mod &?; that is, we neglect higher
powers of . The factor F'(x) — ¢ of € is of course

(5:),.;

To determine D, start from a fixed (appropri-
ately small) zo > 0 and define sequences z, =
F(x,_1),n>1and D, = D(z,) determined by

Dy =D(zy), D,=F(x,_1)D,_y, forn>1,

according to (2- 5) To determine the correspond-
ing sequences z&) and D®) = D_(2(®)) pertaining
to F., set

2 ~ g, —ey, forn>0,

n

where the initial value y, will be determined later,
from the behaviour of y, at n — oo.

Then
57,6-1)—1 = Fs(xn - 5yn) = FE($n) - 5ynFl(xn)
~ F(x,) +c(F'(z,) —c—y,F'(z,))
= Tpt1 — EYn+1,
giving

Ynr1 = (Yo — D F'(z5) +c.
Or, setting t,, = 1 — y,,,

tnyr =t F'(2,) — (¢ — 1),

tn+1 + (C - ].)

t o=
! Fr(z,)

Hence, with the “initial value” of the sequence y,
chosen appropriately, namely y,, = 1, the recur-
sion is satisfied by

=0 (et Fr )

Using the notation (2-9) for t(x) we see that

—yn=(c—D(t(x

With the sequence 2 ~ x, — ey, we can now de-
termine D) = D_(x®)), where D, is the principal

iteration generator of F.. Set

t, =1 n) —1). (4-4)

DY) ~ (1 +¢eS,)D,;
then, since F/(z) ~ F'(z) + ¢F" (x),

(1 + 65n+1)Dn+1
~ F!(x, — ey,)(1 +&S,)D
~ (1+2S,) (F'(x,) +e(F" (2) = yoF"(2,))) Dy

F .
~ (]_ =+ SSn)<1 +5F,((i ))tn>-Dn+17

giving

FI/ (xn)

Sn+1:Sn+(C—1)FI(I )

(t(zn) = 1)
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by (4-4). With the notation (2-11) it results in

S = T}Lrgo S, =80+ (c—1) Z 1;,,((;::)) (t(x,)—1)
= So— (¢ —1)t'(z0). (4-5)

Setting D} asymptotically equal to D according
to the modified Lévy matching process (4-2), we
see that S, represents the discrepancy between the
two iteration generators D, and D? of F., that is,
the quantity that we wish to identify. We still need
to know Sy, and this is determined from the as-
sumption (which we haven’t exploited so far) that
D. is the principal iteration generator of F.. This
means that D, has the appropriate behaviour at
x = 0, that is we can set

D.(z) ~ D(z) +e(cD'(z) + (c — 1)E(z)), (4-6)

where of course D(z) is the principal iteration gen-
erator of F'. The form of the e-term on the right
hand side is for convenience.

Substituting for F.(x) from (4-3) and for D, (x)
from (4-6) we get, using (2-5),
D.(F.x)

~ D(F.z) +¢(cD'(Fz) + (c — 1)E(Fz))

~ D(Fx)+e(F'z —c¢)D'(Fx)

+e(cD'(Fz) + (c — 1)E(Fz))

~ F'x Dz + e(F"x D+ F'x D'x+(c—1)E(Fx)),
and
FlzD.x

~ (F'z+cF"z)(Dx+¢e(cD'z+(c—1)Ex))

~ F'vDx+e(F"w Dr+cF v D'v4(c—1)F'z Ex).

Equating these two expressions we get
E(F(r)) = F'(z)E(z) + F'(x) D' (z)

that is equation (2-6) for the inhomogeneous iter-
ation generator E(x). All we have to observe now
is that

Ds(ﬂ’?o - 5y0)

~ D.(x0) — eyoD' (o)
~ D(zo) + e(eD'(zo) + (¢ — 1) E(x) — yoD' (o))
by (4-6) and so

(¢ —yo)D'(xg) + (¢ — 1) E(x0)
D(zo)
c—1

~ D(xo) (£(x0) D' (o) + E(0))-

SOZ

Combining this with (4-5) and using the notation
of Theorem 2.1 we get

Seo = (¢ = (o)

This establishes the link between Theorem 2.1 and
Lévy’s matching process (in the modified form).

Our final remark concerns the value of e; in
(2-16). We saw earlier that the LF coefficients are
independent of e;, nevertheless it is important to
verify that with the value (2-16) of e; the control
equation

/ Y(o)do =0 (4-7)

is indeed satisfied. This is important not only for
its own interest but because we have used (4-7)
repeatedly as a check for the accuracy of the com-
putations in Section 3.

First note that d; = logc in (2-3); therefore
d\¥ = log c®), where

D.(z) = Z dgvs)a;j,
Jj21

F.(z) =9z + Z b§5)xj.

Jj>2
But

Fs(l’) ~ Z bjxj + 5Zjbjl’j_1,

Jjz1 Jj=2
by (4-2); hence b = ¢©) ~ ¢ + 2¢b, and
2
d'? =log ¥ ~logc+ ;bz.
On the other hand,
D.(z) ~ D(x) + ecD'(x) + e(c — 1)E(x)
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from (4-6); hence, by (2-3),

2b, 1
dt® :d1+5( 2 Ofc—i-(c—l)el).
c—

Equating these two expressions for d(E) we obtain

(c—1)e

which immediately gives (2-16).

Now both D. and D! are iteration generators
of F., and so Lemma 1.1 tells us that D.(z) =
D:(z)(1+e®'(A(z))) for some periodic ® with pe-
riod 1. Hence ¢ (o) = ®'(0) and

/zp@ 2(0) =0,

which is (4-7). This derivation leans heavily on
the fact that 1 is the discrepancy between two
iteration generators whereas Theorem 2.1 makes
no reference to this interpretation. A more direct
derivation would no doubt be of some interest.

The argument that leads to Theorem 2.1 breaks
down if by = F'(0) = 1, essentially because of the
different form (2-4) of D(z). There are two dif-
ferent approaches to this problem: we may either
“infinitesimalize” Lévy’s original process, or regard
F € C; as a limiting case of functions €., ¢ > 1.
The second approach leads to the formulation of
Theorem 2.2 and we omit details. The first ap-
proach is more interesting, not only because of
its closer links with Lévy’s process but because it
shows that the construction of a i with the re-
quired property is by no means unique and there
are alternative forms which do not necessarily lead
to a useful criterion. We sketch the steps that re-
sult in a second form of Theorem 2.2.

We want to compare the principal iteration gen-

erator of
r)=x+ Z bz’

j22

2 1
2y, e
C 1’

with that of
F(z+a)— F(a)
F'(a) '

Taking an infinitesimal ¢ = ¢, we have now
Fu(z) = F(zx+¢)— Fl(e) ~ F(x) +elF'(z) —
F'(e) 1+ be
~ F(z) +¢(F'(z) — 1 — bF (2)), (4-8)

where b = 2b,.
The sequence :ng) ~ x, — €y, satisfies

) = Fe(w,—2y,)
~ F(x,)+e(F'(x,)—1=bF(x,) -y, F'(x,)),
giving
Ynt1 = (Yo — D)F'(2n) + 1+ 0F (zy).
Hence t, = 1 — y,, satisfies
tor1 =t F'(x,) — bF (z,),
tor1 + OF(z,)

T ()
([ F@,) F(z,)
= b(Ff(:nn) T F @) (Fn) )
Or, defining

we get

For S,, we obtain

(14eS,11) Dyt
~ F!(z,—cy,)(1+S,)D
~ (14&S,)
X (F'(wn) +e(F" (20) =bF" (20) =y F" () D,
giving
F'(zy)

Sn1 = Sp — m

b+1,

Defining now

- (53

n>0

(4-10)
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we obtain
Soo = So + bs(xg).

We have assumed the convergence of (4-9) and
(4-10), which is not true for all F' € €;. But con-
vergence is assured if F' = exp F* — 1 with F* €
C; (just note that F/F' = 1/(log F)’.) Therefore
whatever regularity criterion we might be able to
formulate for F* € €; following Lévy’s original pro-
cess, we would have to exponentiate the function
to be tested before subjecting it to the criterion.

Now for D_(z) we set

D.(z) ~ D(z) + e(D'(z) + bE*(z)). (4-11)

Then, as before,

D.(F.x)
~ D(F.z) +¢(D'(Fz) + bE*(Fz))
~ D(F > ((F's — bF2)D'(Fz) + bE" (Fx)
~ F'zDz + s(( F’a;) (F"zDx + F'zD'z)
+bE" (Fa:))
and
FlaD.x

~ (F'z +e(F'z — bF'z)) (Dz + ¢(D'z + bE 2)).

Equating these two expressions we get, after some
cancellations, the equation

FIF”

E(Fz)=F'zE'z—F'zDx+FxD'z+ Dz
=F'zsE‘x—F'xDx+FxD'(Fz) (4-12)
for E*x. Since
D.(xo — £yo)
~ D(x0) + £(D' (o) + bE"(x0) — yoD'(20)),
we derive as before
Sy = (1 — yo)D'(wo) + bE"(20) bS (o),

D ()

where

R (a;)D’l(;c()x ;r E*(x)

This leads to the next result:

Theorem 4.1. Let F(x) = exp(F*(z)) — 1 with F* €
Cy, and let D, E* t*, s be defined by (2-5), (4-12),
(4-9), and (4-10). Set

1
D(x)

Then ¢*(x) = S(x) + s(x) has the property that
©*(F(x)) = ¢*(x) for all x > 0.

This is the alternative form of Theorem 2.2; its
proof is analogous to that of Theorem 2.1 and is
omitted. The value of the missing coefficient e, is
found to be

S(z) = (t* (x)D'(x) + E* (x))

— 17 .
62—552;

its derivation is similar to the derivation of (2-16).

We could derive now LF coefficients of a second
kind based on the ¢*-function of Theorem 4.1. It
is easy to see that the ¢*-function of F(z) = e* —
1 (corresponding to F* the identity function) is
identically 0. In fact if F/(z) = e —1 then t(x) =1
identically in (4-9) and s(z) = 0. Hence E*(x) =
—D'(x) by (4-12) and (2-5), S(z) = 0, hence ¢*(x)
is identically O in Theorem 4.1. This is as it should
be since in this case F. is identical with F’ and the
Lévy matching is trivial.

Taking the second iterate exp(e*—1)—1 of e* —1
the even Fourier coefficients are of course 0, but the
odd ones are not. This alone makes it unlikely that
a useful regularity criterion based on L-regularity
could be obtained from Theorem 4.1.
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