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We describe numerical experiments that suggest the existence
of certain new compact surfaces of constant mean curvature.
They come in three dihedrally symmetric families, with genus
ranging from 3 to 5, 7 to 10, and 3 to 9, respectively; there are
further surfaces with the symmetry of the Platonic polyhedra
and genera 6, 12, and 30. We use the algorithm of Oberknapp
and Polthier, which defines a discrete version of Lawson’s con-
jugate surface method.

INTRODUCTION

Surfaces with constant mean curvature have been
studied for a long time. Until recently most known
boundaryless or complete surfaces were minimal,
that is, had mean curvature H = 0; the only sur-
faces with nonzero constant H were Delaunay’s
surfaces of revolution [1841]. Compact surfaces
have attracted particular attention. The maxi-
mum principle rules out the existence of compact
minimal surfaces, but for H # 0 the case is al-
tered, and some constructions are now known. As
we describe below, the resulting compact surfaces
are rather complicated and also not quite as ex-
plicit as one might hope. In the present work
we compute surfaces that are geometrically sim-
pler: they are small and have a large symmetry
group.

Assume H is a nonzero constant and normalize
it to 1 by a scaling; we use the shorthand nota-
tion ¢MC for this case. The simplest compact ¢CMC
surface is the unit sphere. The sphere is known
as the unique embedded cmcC surface [Aleksandrov
1958], and also the unique immersed CMC sphere
[Hopf 1983]. Both results focused much attention
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on the existence problem for further compact cmMcC
surfaces. It is also interesting that the sphere is
the only complete cMC surface that is a minimum
for the variational problem for constant mean cur-
vature [Barbosa and do Carmo 1984]: find critical
levels of area for a given enclosed volume. The
partial differential equation H = constant can be
considered the Euler equation to the variational
problem.

Wente’s existence proof for cMC tori [1986] was
a surprising event and triggered further discover-
ies. Pinkall and Sterling [1989] characterize all im-
mersions that cover cMC tori, and Bobenko [1991]
gives explicit formulae for their induced metrics in
terms of theta functions. These immersions lead to
compact CMC tori only if all periods vanish, other-
wise to noncompact periodic surfaces. It is known
that the period condition is in fact satisfied in some
cases [Ercolani et al. 1993]. In his numerical work
Heil [1995] evaluates the theta functions and stud-
ies the period problem.

Kapouleas [1991] constructs a large class of com-
pact cMc surfaces for every genus g > 3. He glues
pieces of Delaunay surfaces onto spheres and proves
existence of nearby smooth cMC surfaces by an im-
plicit function theorem argument. The Delaunay
pieces must be long, and all neck sizes tiny—how
long and how thin precisely is the result of delicate
estimates and hence practically not accessible. In
[Kapouleas 1995] surfaces of every genus g > 2
are constructed using g Wente tori that are glued
together at a single lobe. Similar to the case of
Kapouleas’ Delaunay-like surfaces the fused Wente
tori are almost degenerate: they have a large num-
ber of almost spherical lobes joined by necks of
large Gauf} curvature.

We use the algorithm of Oberknapp and Polthier
[1997] to construct compact surfaces numerically.
This algorithm gives a discrete version of the con-
jugate surface construction introduced by Lawson
[1970]. Lawson constructed two doubly periodic
cMc surfaces with his method. Many other com-
plete surfaces, both periodic and of finite topol-
ogy, have been constructed by Karcher [1989] and

Grofle-Brauckmann [1993] using extensions of the
conjugate surface method.

The conjugate surface method of Lawson gener-
ates symmetric surfaces by planar reflection from
a simply connected fundamental domain. For all
our surfaces this domain is bounded by five planar
arcs and depends on two parameters. On the other
hand there are two period conditions to satisfy. To
solve these two period problems rigorously is a se-
rious problem for our domains (see 2), and this is
the main reason why we must rely on a numerical
method. All other steps in our existence program
can be theoretically proved similar to the noncom-
pact examples constructed in [Grofle-Brauckmann
1993].

Here we complete the studies begun with the
three examples of [Grofle-Brauckmann and Polthier
1996] in the sense that we determine maximal fam-
ilies of similar surfaces; the surfaces are isolated
and the families are finite. Our three previous sur-
faces were chosen rather close to the degenerate
spherical situation, i.e., with thin necks, so that
existence could be expected from Kapouleas’ work
[1991] but not predicted. Most surfaces we present
now have large necks. Thus they are further away
from Kapouleas’ class of surfaces, and they are also
numerically easier to deal with.

In a way made precise in Section 4B our sur-
faces can be characterized by an underlying graph
consisting of edges and vertices. Spheres or k-fold
necks are located at the vertices, and one Delaunay
neck on each edge of the graph. Our cMmc surfaces
have the symmetry of the underlying graph. These
symmetries are given by discrete subgroups of O(3)
generated by reflections: we have examples with di-
hedral symmetry and with the symmetry group of
the Platonic polyhedra.

What considerations guided our search for cMcC
surfaces, and what further surfaces can be expected
to exist? There are necessary conditions to sat-
isfy: most important is Kusner’s balancing formula
discussed in Section 4. We view this condition
as a condition on the edge length of the under-
lying graph. Furthermore, the Delaunay surfaces
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FIGURE 1. Top: A dihedrally symmetric noidal surface of genus 9. We call the central 9-fold junction noidal
because it is related to the minimal 9-noid. We find similar surfaces for all genera from 3 to 9. Bottom: Part
of the same surface with a view of the nodoidal necks connecting adjacent outer bubbles. The boundary is

thickened with small tubes.
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FIGURE 2. A surface of genus 6 with the symmetry
of a tetrahedron. One bubble is removed. Six un-
duloidal necks join the four outer bubbles pairwise.
The central bubble looks like a shell punctured in
four points to connect it nodoidally to each outer
bubble.

and their k-end dihedrally symmetric generaliza-
tions (Section 5) indicate that further constraints
beyond those given by the balancing formula are
present. In particular a comparison with these sur-
faces leads to an explanation why our families only
range over finitely many genera.

The numerical algorithm of Oberknapp and Pol-
thier generalizes an algorithm for discrete harmonic
maps and minimal surfaces by Pinkall and Polthier
[1993]. There are two steps: minimizing area (in
fact discrete Dirichlet energy) in S* and conju-
gating the discrete surface to a cMC surface in R3.
The algorithm is implemented as part of the graph-
ical environment GRAPE developed by the Sonder-
forschungsbereich 256 at the University of Bonn.
The algorithm works with discrete data, and we
cannot estimate how close the resulting polyhedral
surfaces are to smooth cMC surfaces. Although
we are confident that we correctly determined the

range of genera for which our types of surfaces ex-
ist, some care is appropriate with regard to the
exact shape of our surfaces. We hope future proofs
will support our experimental results.

1. EXPERIMENTAL RESULTS

1A. Dihedrally Symmetric Surfaces

In Table 1 we summarize the class of surfaces with
genus g and dihedral symmetry group D, X Z,.
Slightly abusing notation we let this be the sym-
metry group of a planar regular g-gon considered
as a subset of R?; the Z,-factor stands for reflec-
tion in the plane of the g-gon. 4¢ copies of a fun-
damental domain like the one shown in Figure 5
on page 19 combine to the entire compact surface.
The symmetry groups also admit 4¢g fundamental
cells in R?, shaped like cake slices; as will be clear
from by Figure 5, such a cell does not contain an
entire fundamental domain of the surface.

The soul of the surfaces is a planar graph G, con-
sisting of a regular g-gon with ¢ additional edges
(spokes) joining the midpoint to each vertex; see
Figure 3. By the balancing formula (see Section 4A
below) g must be at least 3. The graph G, has only
two independent lengths and we let its length quo-
tient q, = 2sin(7w/g) be the quotient of the polyg-
onal edge length over the length of the spokes.

For certain genera we obtain two different sur-
faces. These pairs are most clearly distinguished
by the geometry of their centre in a way that is

FIGURE 3. The underlying graph Gs for the two
genus 8 surfaces depicted in Figure 15. Vertices
represent bubbles and edges necks.
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genus centre necks on ler'lgth p9lyg0nal neck Figure
g spokes polygon quotient g, circumference
3 1+0.73 0.66 12
4 nodoidal unduloidal 14041 0.36 13
5 1+0.18 0.16 [GP1996]
(6) (degenerate 7 spheres) 1 (0)
7 spheroidal 1-0.13 not studied
8 1-0.23 0.23 15, top
9 unduloidal nodoidal 1-0.32 0.41 —
10 1-0.38 0.63 —

(> 11) surfaces do not exist
3 2(1-0.13) 0.07 [GP1996]
4 2(1-10.29) 0.21 14
5 2(1-0.41) 0.31 —
6 . . . 2(1-0.5) not studied
. noidal unduloidal nodoidal 2(1 - 0.57) ot studied
8 2(1-0.62) 0.65 15, bottom
9 2(1—-0.66) 0.71 1

(> 10) surfaces do not exist

TABLE 1. Surfaces with dihedral symmetry D, x Z2, graph G, and at most one neck per edge of the graph.

[GP1996] stands for our previous paper [1996].

apparent from Figure 15. Furthermore, the type
we call spheroidal has two different neck distribu-
tions that depend on the genus, in fact on the sign
of g, — 1. In the following sections we will make
the terminology used in Table 1 more precise and
explain this fact.

By their symmetry the dihedrally symmetric sur-
faces have umbilics on the two points contained
in the vertical axis of rotation. Using the Gauf}-
Bonnet formula it can be shown there are no fur-
ther umbilics.

In the following sections we will explain why the
experimental existence of certain surfaces implies
the existence of others. Hence it was not necessary
to carry out experiments for all surface candidates,
and we marked surfaces we could skip with “not
studied” in our tables. In Table 1 we also include a
degenerate CMC surface consisting of seven spheres
with symmetry Dy X Z,. Since g = 1 these spheres
match in the sense that they touch tangentially on
points of Gg.

Experimental Result 1.1. All of the fourteen dihe-
drally symmetric complete compact cMC surfaces
listed in Table 1 exist. These are all the cMC sur-
faces with graph G, and at most one neck per edge
of the graph.

We would like to remark that the graphs G, ad-
mit further surfaces with more than one neck per
edge; in particular Kapouleas’ construction [1991]
applies to some large number of bubbles. Also, in
Section 7 we suggest further graphs that could lead
to dihedrally symmetric surfaces.

1B. Surfaces with Platonic symmetry

There are three singular discrete subgroups of O(3),
given by the symmetry groups of the Platonic poly-
hedra. These groups are generated by reflections
and we call them Platonic symmetry groups. The
graph consists of the edge graph of a Platonic poly-
hedron with further edges (spokes) joining the ver-
tices to the centre of the polyhedron. We obtain
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genus graph centre necks on length polyhedral neck
g contains spokes polyhedron quotient circumference Figure
6 tetrahedron 140.63 0.48 2
12 cube . . 140.15 0.38 17
12 octahedron spheroidal nodoidal unduloidal 1+0.14 0.33 —
30 icosahedron 140.05 0.2 [GP1996]
30 dodecahedron unduloidal nodoidal 1-0.29 not studied
6 tetrahedron 2(1-0.18) not studied
12 cube 2(1-0.42) 0.25 16
12 octahedron noidal unduloidal nodoidal 2(1-0.43) not studied
30 icosahedron 2(1-0.53) 0.15 —
(30) dodecahedron 2(1-0.64) surface does not exist

TABLE 2. Surfaces with Platonic symmetry. The edges of the Platonic polyhedra with spokes to their centre
form the graphs; the surfaces have at most one neck per edge.

surfaces whose geometry is similar to the dihedrally
symmetric surfaces.

Experimental Result 1.2. The nine complete compact
cMc surfaces with Platonic symmetry listed in Ta-
ble 2 exist. The surface with noidal centre and
graph derived from the dodecahedron does not ex-
ist with one neck per edge.

As in the planar case we let the length quotient
be the edge length of the polyhedron inscribed to
the unit sphere. It is not the length quotient alone
but also the combinatorics of the polyhedron that
influence the polyhedral neck size listed in Table 2.

The genus of the surfaces with Platonic sym-
metry is the number of handles attached to the
central sphere, that is the number of edges of the
polyhedron. The outermost point of each polyhe-
dral bubble is umbilic, as well as further points on
the central bubble.

2. THE CONJUGATE SURFACE CONSTRUCTION

The conjugate surface construction for cMC sur-
faces generalizes a similar construction for mini-
mal surfaces. Lawson established a local relation
of cMmc surfaces in R® and spherical minimal sur-
faces in S3:

Theorem 2.1 [Lawson 1970, p. 364]. (i) For a simply
connected minimal surface M C S® there exists an
isometric CMC surface M C R and vice versa.
(ii) Furthermore, M is bounded by a polygon T of
great circle arcs in S? if and only if M is bounded
by geodesic curvature lines.

Suppose that a fundamental domain of a cMC sur-
face with respect to a group of reflections is simply
connected, and its boundary consists of piecewise
planar geodesic curvature arcs. Then by (ii) the
Plateau solution to a suitable great circle polygon
in S? can produce such a fundamental cmc do-
main, and this domain can then be reflected to a
complete cMC surface. Which spherical polygon do
we have to take? The angles 7/(k+1) (with k € N)
at the vertices of the fundamental domain and the
position of the normal at the vertices are needed to
prescribe all angles of the spherical polygon. These
data are immediate from the symmetry type of
the fundamental cMC domain and determine the
spherical polygon up to its lengths. In general a
polygon with fixed angles and n edges has n — 3
free parameters for the lengths. Not all lengths
can be prescribed to any given value though. The
set of lengths attained for a given set of angles can
be determined using spherical trigonometry. The
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Y4

FIGURE 4. Fundamental domain for the spheroidal
surface of genus 8 (see Figure 15). A polygon of five
great circle arcs in S® bounds the minimal surface
patch. The patch is close to a great sphere S% C S3,
or, in the chosen stereographic projection, close to
a plane. There are two helicoidal regions, one con-
necting the triangle to the two-gon, the other in a
neighbourhood of ;.

construction is explained in more detail in [Lawson
1970; Karcher 1989; Grofe-Brauckmann 1993].

For two reasons the conjugate surface construc-
tion will only lead to sufficiently symmetric cMC
surfaces: first, the fundamental domain must be
simply connected; second, the theoretical or nu-
merical Plateau solution we take is a stable mini-
mizer, and thus the fundamental domain must be
small enough to be stable [Grofie-Brauckmann and
Polthier 1996, Section 4.2].

The period problem. The spherical boundary poly-
gons we consider in the present work are pentagons.
Thus our fundamental cCMC domains are bounded
by five planar arcs contained in five planes. Two
pairs of planes are parallel by construction, and
only if they coincide the surface generated by re-
flection is compact—otherwise the surface will be
doubly periodic. We solve this period problem by
adjusting the 5 — 3 = 2 free parameters of the pen-
tagon until the two pairs of planes coincide. Con-
sequently our cMC surfaces are experimentally iso-
lated.

In a more general sense all generators of the fun-
damental group give rise to periods. For our sym-
metric surfaces many of these periods agree; others,

FIGURE 5. The isometric conjugate CMC patch. Its
five boundary arcs are contained in three differ-
ent planes that meet pairwise in the lines shown.
Thirty-two reflected copies generate the compact
surface depicted in Figure 15. The almost-planar
regions of the previous figure give spherical regions
whilst the helicoidal regions result in necks. These
can be nodoidal (at 72), or unduloidal (in between
v3 and 75) depending on the sense of rotation of
the helicoids.

like the period of the unduloidal neck in Figure 6,
are closed by symmetry. Thus the symmetry as-
sumption reduces the number of different periods
to two, regardless of the genus. Besides tori we
do not know any compact surfaces that give rise
to one period problem only. This makes two peri-
ods the simplest case to consider, while there are
certainly many surfaces that pose three or more
period problems.

To close the periods in a rigorous way one would
have to give a loop in the parameter space so that
the periods (viewed as a map to R?) can be es-
timated to have nonzero winding number about
the origin. Then continuity of the family in its
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FIGURE 6. Period problem. The two-parameter
family of patches gives rise to two periods: one is
given by the distance between the vertical planes
containing v, and <4, the other between the hor-
izontal planes containing ; and 7. Unlike the
previous figure the patch shown has nonzero peri-
ods so that repeated reflection results in a doubly
periodic ¢MC surface.

parameters would imply the existence of a surface
with 0 periods. Continuity of the surfaces is exper-
imentally observed, however, it is difficult to prove.
The standard proof is to recover a surface as graph;
it fails in the example of the spherical domain de-
picted in Figure 4, since the two helicoidal regions
are not graph with respect to any one direction.

3. THE ALGORITHM

Fundamental pieces of CMC surfaces are rarely sta-
ble if they are considered as a solution to a free
boundary value problem, see [Groie-Brauckmann
and Polthier 1996] for a discussion. Hence only
sufficiently small fundamental domains can be ob-
tained by minimization of area under a volume
constraint. A more general approach suggested by
R. Kusner is to minimize the energy [(H — 1)%
this can be done [Grofe-Brauckmann 1997] with
the Surface Evolver [Brakke 1992]. At present the

compact surfaces of this paper seem out of reach
for that approach.

Generalizing the algorithm of Pinkall and Pol-
thier [1993] for discrete (or polyhedral) harmonic
maps and minimal surfaces, Oberknapp and the
second author developed an algorithm that defines
a discrete version of Lawson’s conjugate surface
construction. We refer to [Oberknapp and Polthier
1997] and only point out two main ideas here.

Instead of minimizing the area functional the al-
gorithm iterates the minimization of Dirichlet en-
ergy for discrete maps between discrete surfaces
in S? and produces a sequence of harmonic maps.
Their images converge rapidly to a discrete mini-
mal surface in S® provided no triangles degenerate.
In a second step the algorithm defines a conjuga-
tion method for discrete harmonic maps similar to
the conjugation of smooth harmonic maps. Ap-
plying the conjugation to the above sequence of
discrete harmonic maps produces a sequence of so-
called “conjugate” harmonic maps that map dis-
crete surfaces in S? to discrete surfaces in R®. The
conjugation is exact on the discrete level. This fact
is especially remarkable since in the smooth case
the conjugation process uses C'' information of the
spherical minimal surface, which is of course not
directly available for polyhedral surfaces. The im-
ages of the discrete conjugate harmonic maps con-
verge to a discrete cMC surface in R®. An amaz-
ing result of the algorithm is that the boundary
behaviour of the smooth case (Theorem 2.1(ii)) is
fulfilled exactly by the discrete surfaces.

The resulting polyhedral surface is polygonal and
not triangular. An interesting open problem is to
give a discrete variational definition of “discrete
cMmc” for the above polygonal surfaces. We point
out just one problem: a nonflat polygon can be
filled in with surfaces in many ways, and thus the
volume of a polygonal complex is not immediate.
Since a variational characterization requires the
notion of area and volume, it depends on the choice
of surface. However, the characterizing property
of the discrete surfaces the algorithm produces is
that their spherical conjugates are discrete minimal
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surfaces in the sense that any variations of the ver-
tices in S® do not decrease area; this means Law-
son’s Theorem 2.1 can be taken as the definition of
the discrete constant mean curvature, as could be
done in the smooth case as well.

To apply the algorithm amounts to the following
steps.

e Determine the angular information of the de-
sired ¢cMC patch with n planar geodesic bound-
ary arcs. Guess n edge lengths and fix n — 3
of these. Taking the remaining three lengths as
an initial condition, a root finder then finds a
closed spherical polygon I' with n great circle
arcs as boundary.

e Solve the Plateau problem for I'. In our ex-
amples the Gaufl curvature varies considerably
within a patch. Therefore interactive local re-
finement of the triangulation is necessary in re-
gions of high curvature.

e The conjugation algorithm transforms a discrete
minimal surface in S? into a euclidean cMC sur-
face.

e Check periods of the resulting cMmc surface. If
necessary repeat the previous steps with a dif-
ferent set of n — 3 fixed initial lengths.

The algorithm can also give information on nonex-
istence: when we try to adjust the n — 3 lengths
to obtain a surface with vanishing periods it can
happen that we leave the range of existence for the
boundary polygons.

The periods depend on the triangulation. Exper-
iments have shown this dependence to be surpris-
ingly weak [Oberknapp and Polthier 1997]. Even
so, we took care to adaptively triangulate those
surfaces for which the period problem leads to poly-
gons close to the boundary of existence.

4. FORCES AND BALANCED GRAPHS

4A. Balancing of Forces

Kusner’s balancing formula gives a necessary con-
dition on cMC surfaces derived from the first varia-
tion formula for a cMmC surface; see [Korevaar et al.

1992], for example. The formula applies in general
to 1-cycles « contained in a cMcC surface M and
their bounding 2-chains D. Here, we have in mind
that ~ is a curve running once around a neck and
D is a disk capping the neck. Considering all necks
attached to a bubble then gives a condition at each
bubble of a cMC surface.

To state the formula, assume that a set B C R?
(we think of a bubble) is bounded by an embedded
subset Q of the cMmcC surface M as well as a finite
number of disjoint disks D; C R®. Each disk D; is
in turn bounded by a circle y; C 9Q2. We choose
exterior normals v; to D; and exterior conormals n;
to v;, i.e., m; is a normal to ; tangent to 2. Then
the force associated to the neck is the vector

Vi D;

The force can be shown to depend only on the ho-
mology class of ;. The balancing formula for B
now states that the forces of the adjacent necks
are in equilibrium,

ZWi =0. 4.1)

If a disk D is contained in a plane then its normal
is constant and [, v = area(D) v. Moreover, if the
plane is a symmetry plane for the surface then the

FIGURE 7. Notation for the balancing formula. For
the bubble B the pull arising from the two lateral
unduloidal necks is balanced by the force of the
bottom nodoidal neck pushing the bubble upwards.
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conormal is also constant and fwn = length(y)n
where = +v. Thus we can express W in the
form

W = (£ length(y) — 2 area(D)) v. (4.2)

4B. Balanced Graphs

An edge graph can be associated to our surfaces
and more general to a class of (not necessarily com-
pact) cMC surfaces [Kusner 1991]. This class in-
cludes surfaces arising from special constructions,
namely the symmetric Delaunay-like surfaces of
Kapouleas or the first author, but excludes tori for
instance. The picture to keep in mind is that each
vertex of the graph represents a bubble, and each
edge a single neck or a piece of a Delaunay surface
comprising several necks. The graph is a topolog-
ical retract of the surface and finite for compact
cMc surfaces. Figure 3 gives an example.

Each edge of the graph associated to a neck is
taken to be parallel to its force vector. Kusner
[1991] chooses the line extending the edge as fol-
lows (Kapouleas’ choice is different unless the sur-
face is sufficiently symmetric). The homology class
of a neck is assigned a torque Ri(a) = [ n X
(z—a) =2 [, v x (z—a) € R, which for given
coordinates x depends on a € R®. Then it can be
checked that |R;(a)| attains its minimum on a line
{aop+sW;|s € R}; this is the line we want to define.

In general the set of these lines need not match
in vertices, but in our case they do so by symme-
try. Restricting the lines to the portion in between
these intersection points gives a closed graph. Note
that there is only one property of our graphs that
is not immediate from symmetry: the length of the
radial edges of our graphs. Thus scaling describes
the only degree of freedom, and the minimization
of torque in the above definition determines it.

For a closed graph there is an elegant way to ex-
press the balancing property. Label each edge of
the graph associated to a cMC surface by a weight
w; € R of the corresponding neck. We define w;
by |w;| = |W;| and let its sign be positive if the
force is outward (when calculated for the bubble

at a bounding vertex), or negative, if it is inward.
Note that viewed from the opposite vertex the nor-
mals 1 and v change sign, so that inward and out-
ward are well-defined. We will see below that by
this definition unduloidal necks are assigned posi-
tive and nodoidal necks negative weights. Then for
a given vertex the emanating edges e; considered
as outward directed vectors can be used to state
the balancing formula in the form ) w;e;/|e;| = 0.
A weighted graph with this property is called bal-
anced.

From balancing many geometric properties of
the graph follow. For instance if only two edges
emanate from a vertex they must form a straight
line, and we can omit the vertex. Thus the valence
of each vertex can be assumed to be at least 3.

5. COMPARISON CMC SURFACES AND PRINCIPLES
FOR EXISTENCE

We discuss two classes of noncompact surfaces that
serve for us as comparison surfaces. We present
these surfaces first and then draw conclusions in
the form of heuristic principles for existence.

5A. Delaunay Surfaces

The Delaunay surfaces are the noncompact CMC
surfaces of revolution. A meridian is generated by
the trace made by the focus of an ellipse or hyper-
bola when these conical sections are rolled along a
line. There are embedded unduloids and immersed
nodoids. When normalized to mean curvature 1
each of them forms a one-parameter family of sim-
ply periodic surfaces.

The unduloid family ranges between the cylinder
and a degenerate CMC surface, a string of spheres.
One choice of parameter is the extreme radius of
the meridian: the minimum is r and the maxi-
mum 1 — 7 for the unduloids, with r running from
0 (string of spheres) to 1/2 (cylinder). A different
choice of parameter is the weight. For a neck of an
unduloid (4.2) gives the weight

wy = length(y) — 2area(D) = 27r(1 — r) > 0,



Grolde-Brauckmann and Polthier: Compact Constant Mean Curvature Surfaces with Low Genus 23

FIGURE 8. Necks of two Delaunay unduloids. As the unduloids deform from a chain of spheres to a cylinder,

their period increases from 2 to .

FIGURE 9. Necks of two Delaunay nodoids, partly cut open for clarity. As the nodoids increase in diameter the

period decreases from 2 to 0.

where r is the radius of the circle vy = 0D. Hence
wy decreases from 7/2 for a cylinder to 0 for the
spheres.

The family of nodoids can also be parameter-
ized with the extreme radii: these are r and 1+ r
with r € R,. When r — oo the nodoids leave
every fixed cylinder. The weights of nodoid necks

wy = — length(y) — 2 area(D)
=2mr(l+7r)<0 (5.1)
range from 0 (string of spheres) to —oo. The period

decreases from 2 for the sphere limit to 0 when r
tends to infinity.

Figure 10 gives the one-to-one correspondence of
Delaunay periods and weights. The period can be
considered the edge length of the balanced graph of
a Delaunay surface (with vertices located at each
bubble).

5B. Dihedrally Symmetric k-Unduloids

These surfaces with symmetry group Dy, X Zs have
k ends whose asymptotic axes are contained in a
plane and make an equal angle with one another.
The dihedrally symmetric k-unduloids provide an
example that not all weights satisfying the balanc-
ing formula do actually occur.
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_10 _3 ~6 ! ) 0

FIGURE 10. Period of the Delaunay surfaces as a function of the weight. The immersed nodoids have negative
weights —oo < w < 0 and periods tending to 0 with w — —oco. The embedded unduloids have positive weights
0 < w < 7/2, and periods ranging from 2 to 7. The maximal weight 7/2 is attained by the cylinder. Weight 0
can be attributed to a degenerate Delaunay surface, a chain of unit spheres. Figure courtesy of M. Heil.

FIGURE 11. Noncompact dihedrally symmetric 8-unduloids of genus 0. The 8 ends are asymptotic to unduloids
and their first bubbles intersect. The central bubble is spheroidal for the surface on the left and noidal for the
one on the right. Existence of these surfaces is proved in [Grofe-Brauckmann 1993]. Bottom: Side view of the
first bubbles of one end, including an eighth of the central bubble.
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Theorem 5.1 [Grofle-Brauckmann 1993]. There is a
continuous one-parameter family of dihedrally sym-
metric k-unduloids for k > 3. Theiwr ends are
asymptotic to Delaunay unduloids. The family has
one dihedrally symmetric k-unduloid with ends of
weight Wy (k) = 2n(k — 1)/k* and two for each
weight w with 0 < W < Wiay (k).

How do the surfaces look like as we run through
the entire one-parameter family? The ends de-
form from rays of spheres (weight 0) to unduloids
with some maximal neck size (given by wp..(k))
and again back to spheres (weight 0). The central
sphere of the surface at one end of the family, which
shown on the left in Figure 11, shrinks away over
the family. Thus, at the other end of the family the
k chains of spheres touch with their first sphere at
the origin (the surface depicted on the right in Fig-
ure 11 is still somewhat away from this situation).
To distinguish the two surfaces of the same weight
we call the former part of the family spheroidal
and the latter noidal. The term noidal is justified
by a blow up of the surfaces close to the degener-
ate limit. If this blow up is done at the right rate
the centre of the surfaces converges to a dihedrally
symmetric minimal surface with & catenoid ends,
the k-noid. This also holds for £ = 2 when the limit
of small unduloid necks is a standard catenoid.

The maximal weight w,,.,(k) corresponds to a
maximal asymptotic neck radius 1/k. Note that
its decay in k leaves enough room to attach the
first necks of the ends at the central sphere; for a
slower growth the necks would interfere and new
neck shapes would have to develop for large k.

5C. Construction Principles

The following heuristic principles guide our search
for balanced graphs and their cMC surfaces.

(i) Weights and lengths are related similar to the
Delaunay case (Figure 10).

(i) An edge longer than 2 (but shorter than ~ ) is
represented by an unduloid neck. If the length
is larger than 4 we can take two unduloid necks
enclosing an unduloid bubble, etc.

(iii) Edges of length less than 2 are represented by
nodoidal necks. Again additional bubbles could
be inserted for lengths less than integer multi-
ples of 2.

(iv) The weights resulting from the lengths must be
compatible with the balancing formula (4.1).

We note that (ii) and (iii) are a consequence of (i).
We will also see that these two principles must be
relaxed somewhat: in Section 6B we will represent
edges longer than 1 by an unduloid neck. At each
vertex the balancing condition (iv) imposes effec-
tively one constraint on the weights and therefore
on the lengths of the emanating edges.

Similar to the Delaunay comparison principle (i)
we want to include a comparison for dihedrally
symmetric necks to our list.

(v) The radial weight of a dihedrally symmetric k-
fold neck is at most = wy,ay (k).

Without the symmetry assumption it is unclear
which range of weights one should expect. For
somewhat less symmetric situations this problem
is studied in [Grofle-Brauckmann and Kusner 1996;
Grofle-Brauckmann and Polthier 1997].

We draw an important conclusion. Suppose all
edges at a vertex point into a half-space. This
holds, for example, on the exterior vertices of a
finite graph. Then (iii) implies that both undu-
loidal and nodoidal necks should be present. By
(i) and (ii) edges of lengths both smaller and larger
than 2 should emanate from the vertex. Similar
conditions could be formulated if we have in mind
to place k necks enclosing k—1 bubbles on an edge.

6. FAMILIES OF COMPACT SURFACES

We now want to apply the five guiding principles
of the preceding section to the graphs of our com-
pact surfaces. No further constraints are present.
Principle (iv), the balancing formula, implies that
the valence of each vertex is at least 3, so that the
graph G, (see Section 1) does not arise from our
construction.
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We first consider the dihedrally symmetric case.
For the midpoint of G, the balancing formula (4.1)
is satisfied by symmetry. Indeed g radial edges em-
anate from the central vertex and they all have the
same (positive or negative) weight. For the outer
vertices all edges point into a half-space and, as
pointed out in Section 5C, the balancing formula
implies that unduloidal and nodoidal necks should
be present on the adjoining edges. Which distri-
bution is appropriate depends on the length quo-
tient g,. The radial and polygonal edges enclose an
angle 7/g, so that by the balancing formula (4.1)
the two polygonal weights wp(g) result in a radial
weight wgr(g)

wgr(g) = —2sin(n/g)wpe(g). (6.1)

6A. Dihedrally Symmetric Spheroidal Surfaces

We regard wgr(g) and wp(g) as functions of the
lengths of G, with values approximately given by
the Delaunay weights. We look for a scaling of
the graph G, such that the induced weights wg(g)
and wp(g) satisfy (6.1). For g = 6 the degenerate
weights wr = wp = 0 satisfy this equation, and

FIGURE 12. Spheroidal surface of genus 3. A sixth
of the surface is removed. As the tetrahedral sur-
face of Figure 2 the three unduloidal necks are con-
tained in the central bubble (see the front end of
the unduloidal bubble on the right).

the corresponding scaling of G with edge length 2
is the graph for the degenerate surface consisting
of 7 touching spheres.

For 3 < g <5 we have g, > 1. Thus there is a
scaling of the graph G, with radial edges shorter
than 2 and polygonal edges longer than 2. In view
of principle (ii) and (iii) this suggests unduloidal
necks on the polygonal edges and nodoidal necks
on the spokes. Using the Delaunay comparison
principle (i) we see the length of the spokes must
be approximately in the interval (2/q,, 2): the left
endpoint corresponds to polygonal edge length 2 so
that the right hand side of (6.1) vanishes, whereas
at the right endpoint the left hand side of (6.1)
vanishes. Thus the actual length can be viewed
to be the result of an intermediate value problem
for (6.1).

Note that for the same radial edge length both
sin(m/g) and, assuming principle (i), wp(g) are
larger for g = 3 than for ¢ = 4 and 5. Thus for (6.1)
to hold the scaling of G3 must be smallest. This
gives the genus 3 surface the largest radial necks
in agreement with our experimental results.

If g > 6 then g, < 1, so that the polygonal edges
of G, are shorter than the spokes. To be consistent
with principle (ii) and (iii) we need to flip undu-
loidal and nodoidal necks compared to the previous
family. An intermediate value argument similar to
the above gives that G, with spokes of unit length
has to be scaled with some factor in (2, 2/¢,). We
obtained existence for ¢ = §8,9,10 with increasing
neck sizes. For genus 7 the necks are thin and the
surface is numerically harder to deal with our al-
gorithm; on the other hand Kapouleas’ theoretical
existence result makes this surface most likely to
exist. Therefore we skipped g = 7.

6B. Dihedrally Symmetric Noidal Surfaces

Similarly to the noidal and spheroidal dihedrally
symmetric k-unduloids of the same weight (Sec-
tion 5B) we obtain a further set of cMC surfaces
with the same graphs G;. These have a noidal cen-
tral bubble and nodoidal polygonal necks. For this
type there is only “half a neck” on each spoke but
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FIGURE 13. Spheroidal surface of genus 4. The
outer bubbles are connected by unduloidal necks
and in turn have nodoidal necks joining them to
the central bubble. The outer bubbles look much
like bent unduloids and, like these, they are flatter
than the centre bubble.

still an entire neck on each polygonal edge. The
critical length quotient is therefore ¢, = 1/(1/2) =
2. The difference 2 — ¢, is always positive (for
g > 3), and by principle (i) we must have undu-
loidal spokes and nodoidal polygonal necks for all
g =>3.

Our experiments covered genus 4, 5, 8, and 9;
we skipped genus 6 and 7 because in view of prin-
ciple (v) existence is clear to us from the existence
of the higher genera. In [Grofle-Brauckmann and
Polthier 1996] we mentioned the numerical compli-
cations we faced when we tried to solve the period
problem for the surface with g = 3, so that we did
not have enough experimental evidence to claim
existence of the surface. However, in view of the
existence of similar surfaces with larger genus (and
larger necks) we do not doubt existence for genus 3
any more. This is in agreement with principle (v):
for large, not for small neck sizes, existence is prob-
lematic.

FIGURE 14. A noidal of genus 4. In this surface,
nodoidal and unduloidal necks are flipped relative
to the surface of Figure 13. This surface has a
central 4-noidal neck. The outer bubbles are con-
nected with nodoid necks, which are not visible in
this view.

How are the neck sizes of a spheroidal and noidal
surface related, for the common genera 7 to 97
Clearly the scaling of the noidal graph is smaller.
This makes the polygonal lengths of the noidal sur-
faces larger so that the nodoidal necks are larger.
By (6.1) the unduloidal necks must be larger too.

6C. Finiteness of the Dihedrally Symmetric Families

The key to understanding the upper limit g = 10 of
the spheroidal family is to see how the radial weight
grows in the genus. Unlike the spheroidal case for
g = 3,4,5 an estimate of the radial forces is not
straightforward from (6.1); indeed with increas-
ing genus sin(n/g) decreases, whereas the nodoidal
weights |wp(g)| increase for shorter edges accord-
ing to principle (i). Hence it is not clear how the
resulting weight —2sin(n/g)wp(g) depends on g;
it could still be bounded for g — oo.

We now give an estimate for —2sin(w/g)wp(g)
based on the Delaunay comparison principle (i).
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weight of a Delaunay resulting approximate max. weight wpy,ax (k)
genus nodoid with period 2q, radial weight experimental of a dihedrally

g (cf. Figure 10) assuming (6.1) | radial weight | symmetric k-unduloid
7 —0.23 0.20 (—) 0.77
8 —0.57 0.43 0.18 0.69
9 —0.96 0.62 0.29 0.62
10 —-1.2 0.87 0.43 0.57
15 —4.4 1.8 — 0.39
20 —8.6 2.7 — 0.30
100 —248 16 — 0.06
500 —6700 84 — 0.01

TABLE 3. Weight comparison for the dihedrally symmetric surfaces.

To simplify we assume that after scaling the graph
has spokes of length 2. This gives the polygo-
nal edge a length 2¢, = 4sin(7/g), i.e., we con-
sider one of the limiting cases of the intermedi-
ate value argument of 6A. In Table 3 we list the
weight of a Delaunay nodoid with period 2¢,. The
values of wp resulting from (6.1) are unbounded.
However, from the Delaunay comparison we ex-
pect an upper bound for the weight and thus only
finitely many compact surfaces of the considered
type should exist.

More specifically, by principle (v) the weights
should be no larger than approximately Wy (k).
This holds up to genus 9, which is in good coinci-
dence with our experimentally determined limiting
genus 10. We note that in fact the actual lengths
of the graphs are larger, so that the weights are
smaller than the estimate given in Table 3. For
comparison we computed approximate experimen-
tal weights by assuming that the polyhedral neck
cross section is a circle of the length stated in Ta-
ble 1, for which (5.1) gives the weight. The result-
ing weights are experimental evidence for (v): up
to genus 10 they are well below w,.x(10), but for
genus 11 the weight expected from linear extrapo-
lation would be larger than wy,..(11).

How does the limitation in genus appear in our
experiments? We can still find fundamental do-
mains for higher genus, but we cannot close the
periods. The reason for this is that the range of ex-
istence for the boundary polygons is limited. This

range can be determined using spherical trigono-
metric formulas. For genus 10 we are well away
from the boundary of existence and for genus 11
the periods for existing domains are sufficiently
large to give us confidence that smooth cMC sur-
faces also exist exactly up to (and including) 10.

We can also explain why the maximal genus 9
of the noidal surfaces is smaller than the maximal
genus 10 of the spheroidal family. As we pointed
out in Section 6B, the neck sizes of the noidal sur-
faces are larger than those of the spheroidal sur-
faces. Consequently the noidal surfaces reach the
limiting weight ~ wy..(k) for a lower genus than
the spheroidal ones.

6D. Platonic Symmetry

The value for the length quotient listed in Table 2
suggests four spheroidal surfaces with unduloidal
polyhedral necks and nodoidal radial necks, and
our experiments gave existence for all these cases.
The dodecahedron has length quotient less than 1
and we expect a surface of genus 30 with 20 outer
bubbles with polyhedral nodoidal necks. We did
not investigate this surface but its existence seems
very likely.

Similar to the dihedrally symmetric case there is
a noidal family. The length quotient for the dodec-
ahedral surface is so far away from 2 that the ra-
dial necks must be too large to exist—this explains
why we could not close the periods for the dodeca-
hedral surface. However, the icosahedral and cubic
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FIGURE 15. Two surfaces of genus 8. In both the outer bubbles are connected with nodoidal necks. However,
the spheroidal surface on the top has a much larger central bubble than the noidal surface on the bottom. The
details show three fundamental domains and give view to the nodoidal necks. Compare this figure to the two
8-unduloids of Figure 11.
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FIGURE 16. Noidal surface

of genus 12 with cubical symmetry.

Top: One bubble is removed to give

a view of the centre of the surface,

which resembles an 8-ended catenoid.
Bottom: One bubble, viewed from the centre.
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FIGURE 17. Spheroidal surface of genus 12 with
cubical symmetry.

surfaces exist. In view of (v) we are confident that
this implies existence for the surfaces with smaller
weights: these are the surfaces with tetrahedral
and octahedral graph and symmetry.

7. FURTHER CLASSES

We mention a few classes of graphs that could
admit similar compact cMC surfaces. We choose
examples that are symmetric enough for our con-
struction to be applicable. Figure 18.1 shows a
square whose opposite vertices are joined by two
further edges (no vertex at the centre). Similarly,
a regular 2k-gon (k > 2) whose opposite vertices
are joined gives a graph with dihedral symmetry
Dy X Zy; the corresponding ¢MC surfaces would
have genus k + 1. Figure 18.2 shows a different
way to connect the vertices of G¢: while the spokes
are kept every other hexagon point is joined. Sim-
ilarly g + 1 points (g > 5) give a graph with sym-
metry D, X Z,, for candidate surfaces of genus g.
Instead of every other polygonal vertex, we could

join every third, fourth, etc., so there are further
similar families. In Figure 18.3 the modification
of G¢ is opposite: the polygonal edges of Gy are
kept, but there are two different vertices in the
centre, each one joined to every other polygonal
vertex. More generally, a 2k-gon gives a graph of
symmetry Dy, X Zy for surfaces of genus 2k — 1;
again there are similar families with further cen-
tral vertices. Other options that might soon leave
the limits of our construction are to increase the
number of bubbles, or to decrease symmetry.

There are many beautiful graphs with Platonic
symmetry, some of which lead to further compact
cMmc surfaces. A description of these graphs is
rather tedious, and we leave the pleasure of finding
them to the reader.

FIGURE 18. More planar graphs with dihedral symmetry.
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