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We show that the mapping class group of a closed surface of

genus 2 does not satisfy the Kazhdan property by constructing

subgroups of finite index having a nonvanishing first cohomol-

ogy group. We also construct some subgroups of finite index in

the mapping class group of a genus 3 surface and calculate their

first cohomology groups, which all turn out to be trivial. Most of

the calculations have been carried out by computer using GAP.

1. INTRODUCTIONLet Sg be a closed surface of genus g, with funda-mental group �g = �1(Sg) and corresponding map-ping class group Mg; recall that Mg is the groupof the isotopy classes of orientation preserving dif-feomorphisms of Sg. The connection between Mgand combinatorial group theory was established byNielsen [1927; 1929; 1931]. Mg has index two inthe extended mapping class group M�g (the groupof isotopy classes of not necessarily orientation pre-serving di�eomorphisms), which from is isomorphicto Out(�g), the outer automorphism group of �g.HenceMg can be identi�ed with a subgroup of indextwo in Out(�g), which we denote by Out+(�g). Thegroup Mg is generated by Dehn twists around sim-ple closed curves [Dehn 1938]. Unaware of Dehn'sresult, Lickorish [1964] found a generating set of3g � 1 elements. The minimal number of Dehntwists generatingMg is 2g+1 and was determined byHumphries [1979]. The Dehn twists around the sim-ple closed curves �1; �1; �2; �2; : : : ; �g; �g; � of Fig-ure 1 will be our choice for a generating set andwe will denote them by D�1 ; D�1 ; D�2 ; D�2 ; : : : ; D�g ;D�g ; D�.
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FIGURE 1. Dehn twists generating Mg.The question of the existence of a �nite presen-tation was settled in [Birman and Hilden 1971] forthe case of g = 2 and in [McCool 1975] for g � 3.A simple presentation was determined (and latercorrected) by Wajnryb [1983], based on results ob-tained by Hatcher and Thurston. Directly from thepresentation, we can establish the well-known resultthat Mg is a perfect group for g � 3 [Powell 1978]:

H1(Mg;Z ) = �Z 10 if g = 2,0 if g � 3 .
Another property of Mg is its residual �niteness,proved in [Grossman 1974]. Residual �niteness ofMg means that the intersection of all of its normalsubgroups of �nite index is trivial [Magnus et al.1966, p. 116]. In the mid-eighties, the analogy be-tweenMg and the arithmetic groups was establishedby Ivanov [1987; 1984; 1986]. For the de�nition ofan arithmetic group we refer to [Humphreys 1980].However for our purposes the only arithmetic groupof interest would be the symplectic group over theintegers, Sp2g(Z ), for g � 2.

Theorem 1.1. Let �g(m) be the kernel of the canonicalepimorphism
�g(m) : Sp2g(Z )! Sp2g(Zm):(a) Every co�nite subgroup of Sp2g(Z ) (every sub-group of �nite index ) contains one of the con-gruence subgroups �g(m).(b) Every nontrivial normal subgroup in Sp2g(Z ) dif-ferent from the center contains a congruence sub-group and hence is of �nite index .(c) Every co�nite subgroup U of Sp2g(Z ) has a van-ishing �rst cohomology group; that is , H1(U) =0. Since Sp2g(Z ) is �nitely presented , this prop-erty is equivalent to saying that U=U 0 is �nite.

Proof. Parts (a) and (b) are proved in [Mennicke1965] the symplectic group and generalized in [Basset al. 1967]. Part (c) of the theorem is a consequenceof part (b) and the following proposition:
Proposition 1.2. Let H � G be co�nite. If [H : H 0] is�nite, so is [G : G0].
Proof. Since H 0 � G0, therefore H 0 � G0 \ H andconsequently G0 \H will be co�nite in G, but G0 \H � G0, which means that G0 is co�nite in G. �To prove part (c) of the theorem, we may assumethat U is a normal subgroup of G = Sp2g(Z ); other-wise we can pass to CoreG(U) = Tg2G g�1Ug, whichis a co�nite normal subgroup in G contained in U .Using the proposition, it su�ces to prove the state-ment for CoreG(U). Since U is a normal subgroupof G, therefore U 0 as a characteristic subgroup of Uwill be a normal subgroup of G. Using part b of thetheorem, U 0 is co�nite in G hence co�nite in U . �Let N � �g be a co�nite characteristic subgroup of�g. Then the canonical mapAut�g ! Aut(�g=N)factors through the outer automorphism group, andafter the restriction to Mg|recalling that Mg 'Out+(�g)|we obtain a homomorphism	g;N :Mg ! Out(�g=N)whose kernel �g;N is a co�nite normal subgroup inMg. We call these subgroups the congruence sub-groups, in analogy with arithmetic groups. N. Ivanov[1994] asks these questions about Mg:
1. Congruence Subgroup Problem for Mg: Does anyco�nite subgroup U � Mg contain one of the�g;N?
2. Does every co�nite subgroup U ofMg have a van-ishing �rst cohomology group?
3. Does Mg satisfy the Kazhdan property?
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For an introduction to the Kazhdan property (orproperty T ) see [Kazhdan 1967; de la Harpe andValette 1989; Lubotzky 1994]. What we need toknow here is that if a group satis�es the Kazhdanproperty the �rst cohomology group of all its co�nitesubgroups vanishes. Thus a negative response tothe second question would answer the third questionnegatively as well.
Theorem 1.3. The mapping class group of a closedsurface of genus g = 2 does not have the Kazhdanproperty .We will prove Theorem 1.3 by constructing examplesof subgroups having a nontrivial �rst cohomologygroup.
2. CONSTRUCTING EXAMPLES FOR g = 2Mg acts on the �rst homology groups H1(Sg;Z ) andH1(Sg;Zm) for every m 2 Z . This action preservesthe symplectic form and gives rise to the homomor-phisms �g :Mg ! Sp2g(Z )and �g(m) :Mg ! Sp2g(Zm);which are known to be surjective. Let Tg = Ker�gbe the Torelli subgroup of Mg andTg(m) = Ker�g(m)the preimage of the congruence subgroup �g(m) inMg. In this way, we obtain a lot of co�nite normalsubgroups of Mg all containing Tg. In particular, inthe case of g = 2 and m = 2 we get�2(2) :M2 ! Sp4(Z 2) ' S6:Sp4(Z 2) is isomorphic to S6, the symmetric groupon six elements, which has order 720. ThereforeT2(2) � M2 will be a normal subgroup of index720 in M2. The normal subgroup T2(2) is gener-ated by the squares of the Dehn twists around thesimple closed curves and normally generated by thesquare of only one of the Dehn twists, such as a1,the �rst generator of M2 [Humphries 1992]. Usingthe Schreier{Reidemeister method [Johnson 1976;1980b], we can calculate a presentation for T2(2) us-ing GAP [Sch�onert et al. 1996]. (We have used GAPversion 3 release 4.4 of April 18, 1997.) The simplestpresentation we can construct, after all the possible

reductions using Tietze transformations contains 14generators and 388 relations of total length 8622.As a subgroup, T2(2) is generated by the 14 ele-ments a�21 , b�21 , a�22 , b�22 , d�2, a1b�21 a�11 , b1a�22 b�11 ,a2b�22 a�12 , b2d�2b�12 , a1b1a�22 b�11 a�11 , a2b2d�2b�12 a�12 ,a1b1a2b�22 a�12 b�11 a�11 , b1a2b�22 a�12 b�11 , andb1a2b2d�2b�12 a�12 b�11 :By writing the 388 relations in additive form, weobtain a matrix of 388 rows and 14 columns that werefer to as the relation matrix of the presentation.From the presentation, we can compute H1(T2(2))(the commutator factor group of T2(2)) by applyingthe Gaussian algorithm to this matrix to evaluateits invariant divisors. The divisors are0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 2; 2; 2; 4;meaning thatH1(T2(2)) = 9Z � 4Z 2 � Z 4:As a byproduct, we see that 14 is the lowest cardi-nality for a generating set of this group ( since noneof the invariant divisors is 1). This example takescare of the genus g = 2.In addition, using an algorithm called LowIndex-Subgroups in GAP we can calculate a complete listof the conjugacy classes of all subgroups of �nite in-dex bounded by a given number p. (The algorithm ise�cient only for small indices. For example, p = 20is already a huge index for M2.) We have tabu-lated all the conjugacy classes of subgroups of M2for p = 10 together with their commutator factorgroup in Table 1.Index H H=H 01 H1 Z 102 H2 Z 53 { {4 { {5 H3 Z 26 H4 Z 106 H5 Z 807 { {8 { {9 { {10 H6 010 H7 Z � Z 2
TABLE 1. Subgroups of low index in M2.
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Actually, H6 is the commutator subgroup of M2,which is a perfect group, and H7 corresponds to theonly subgroup (up to conjugation) of order 72 in S6.Hereby, we have found the smallest index subgroupwith nontrivial �rst cohomology group. Using thesame method, we can �nd a generating set, togetherwith a presentation for H7:H7 = hb1; a�22 ; b2; a2b1a1b2a2d�1b�12 b�11 a�12 i:Since H7 has a relatively small index and is gener-ated by only four elements, the procedure of �ndinga presentation can even be done by hand. The sim-plest presentation we can construct for H7 consistsof 4 generators and 25 relations of total length 564.Table 2 shows this presentation explicitly.
1 3434
2 4242
3 212121
4 32313231
5 41414141
6 32323232
7 4134313143141313
8 3131413131314131
9 4131413141314131

10 343131313341431431
11 341413133431343131
12 41313131314133413431
13 31413214123141321412
14 13131141131311314131
15 23231241231431312414143
16 21314131243213141313323
17 21413243231421231431314
18 131413214331433123141312
19 1432322123414121314131324
20 1343212334213141332331413213243
21 314131423131413212314143123413134413134214
22 2413141321224142323314131231421334133412413
23 342321212413132141243413432334143414123132141
24 2414131344131314132143141321231413132131413241
25 3141311413323314113141332331413132241413232141� 23131413323

TABLE 2. The 25 relations in the presentation of H7.Here 1 stands for g1 and 1 stands for g�11 . The gen-erator g1 occurs 197 times, g2 occurs 81 times, g3occurs 174 times, and g4 occurs 112 times.

At the end, we calculate the commutator factorgroup of H7. The invariant divisors of the relationmatrix are 1, 1, 2, 0, meaning thatH1(H7) = Z 2 � Z ;or H1(H7) = Z :This proves Theorem 1.3.
3. CONSTRUCTING EXAMPLES FOR g = 3The result for genus g = 2 is not very surprising, be-cause of the exceptional status of g = 2. There aremany properties that all surfaces of g � 3 share, buta surface of g = 2 does not [Johnson 1983]. There-fore, the interesting examples would be for surfacesof higher genera.The case g = 3 is not only much more di�cultto handle but also quite di�erent in nature. The�rst reason is the following theorem, proved in [Mc-Carthy 1996].
Theorem 3.1. Let � �Mg be a subgroup of �nite indexcontaining the Torelli subgroup Tg. Then H1(�)=0.The proof uses a result from [Johnson 1980a] and thefact that the image of � in Sp2g(Z ) contains somecongruence subgroup. According to this theorem, ifa co�nite subgroup of Mg with nontrivial �rst coho-mology group exists, it has to be found among thosethat do not contain Tg. The residual �niteness ofMgassures us the existence of subgroups not containingthe Torelli subgroup. The main problems we en-counter for the construction of these subgroups are:
1. How to �nd co�nite subgroups of Mg?
2. How to check whether they contain Tg or not?
3. How to calculate the �rst cohomology groups ofthese subgroups?
Problem 1. In order to construct a whole series ofco�nite subgroups ofMg, we have adopted a methodthat was originally introduced by R. Gilman [1977]to study the automorphism groups of free groups.We have modi�ed this method and have applied itto Mg as follows:Let Q be a �nite group and G a �nitely presentedgroup. Two epimorphisms '1 and '2 from G ontoQ have the same kernel if and only if they di�er byan automorphism of Q; that is, '1 =  '2, where
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 2 AutQ. If we denote the set of all epimorphismsof G onto Q by Epim(G;Q), we have the bijectionNQ = fN � G : G=N ' Qg $ Epim(G;Q)=AutQ:Now let G = �g. The automorphism group of �gacts on NQ as a permutation group. Let k be thecardinality of NQ and Sk the symmetric group on kelements. We obtain a homomorphism�g;Q : Aut�g ! Sk:The inner automorphisms act trivially on NQ. Thus�g;Q factors through the outer automorphism groupof �g. After restriction to Mg, we obtain a homo-morphism �g;Q :Mg ! Sk:�g;Q, the kernel of �g;Q, will be a co�nite normalsubgroup of Mg. In this way, we obtain a lot of dif-ferent normal subgroups of Mg for di�erent choicesof Q.
Remark 3.2. Let N 2 NQ. ThenH := \'2Aut�g '(N)
will be a co�nite characteristic subgroup of �g, and�g;H � �g;Q. In particular, each of the subgroups�g;Q contains at least one congruence subgroup.
Problem 2. Based on Johnsons' results on the Torellisubgroup [Johnson 1983], we will give a method todetermine whether Tg � �g;Q or not. This will bediscussed in Section 4, when we construct some sub-groups.
Problem 3. This is the most di�cult part of the cal-culation to deal with. In order to determine H1(U),a presentation of U has to be given. The algorithmswe use to determine a presentation for a subgroupof a �nitely presented group are based on a classicaltheorem from combinatorial group theory:
Theorem 3.3 (Schreier–Reidemeister). Let G be a �nitelypresented group with n generators and m relations .In addition, let H � G be a subgroup of �nite indexwith [G : H ] = p. Then H is also �nitely presented ,and there is an algorithm to construct a presenta-tion for H on pn�p+1 generators and at most mprelations .

There are generally two di�erent methods to con-struct such a presentation, one due to Schreier andReidemeister, and the other due to Todd and Cox-eter [Johnson 1976; 1980b]. Modi�ed versions ofboth algorithms have been implemented on GAP.As we see from the theorem, the complexity of thepresentation increases with the index p. In addition,the length of the de�ning relations for H depends onp as well and can become eventually very large. (Seethe presentation that was constructed for T2(2) inthe previous section. For instance, the �rst relationis a word of length 4. Meanwhile the length of thelast relation is 50.) Therefore, constructing presen-tations for subgroups of huge indices can becomean infeasible task, (for instance p = 1000 is alreadyhuge in the case of M2(2)).In the next sections, we consider some examplesfor di�erent choices of Q. At �rst, we show thatabelian Q's are of no help for our purposes.
Example 3.4. Q = Z 2.AutZ 2 is trivial. Hence there are as many subgroupsof index 2 in �3 = �1(S3) as di�erent epimorphismsfrom �3 onto Z 2. Therefore, there are exactly 26 �1 = 63 subgroups of index 2 in �3. Consequently,we obtain the homomorphism�2;Z2 :M3 ! S63:The action ofM3 on these subgroups coincides withthe symplectic action of M3 on the subspaces ofcodimension 1 in (Z 2)6 ' H1(S3;Z 2). Therefore,�2;Z2 factors through Sp6(Z 2) and gives us a faith-ful permutation representation of Sp6(Z 2), which isalso transitive (see [Huppert 1967] page 221). Thisimplies that �3;Z2 = T3(2) is a normal subgroup ofindex ��Sp6(Z 2)��=1451520 that contains Tg, and con-sequently, H1(�3;Z2) = 0.
Theorem 3.5. For every abelian Q, H1(�g;Q) = 0.
Proof. Tg acts trivially on H1(Sg;Z ). Since Q isabelian, every N � �g with �g=N ' Q contains �0g.As a result, Tg acts trivially on fN : �g=N ' Qg,that is, Tg � �g;Q. �In the next section, Q will be always a nonabeliangroup, and we will describe the procedure to con-struct the homomorphism �g;Q and its kernel �g;Q.
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FIGURE 2. The bounding pair generating Tg.
4. CONSTRUCTING �g,QWe proceed as follows:
1. We need to know AutQ. In general, there is noalgorithm to calculate the automorphism groupof a �nite group, unless the group belongs to acertain category such as P -groups or more gener-ally nilpotent groups [Sch�onert et al. 1996]. Butfor small Q this might be done by hand.
2. To �nd the set Epim(�g; Q), we consider all tu-ples q1; q2; : : : ; q2g 2 Q generating Q and satisfy-ing the only de�ning relation of �g:r0 = [q1; q2][q3; q4] : : : [q2g�1; q2g] = 1:AutQ acts on the set of all these tuples. Letus choose a set of orbit representatives for thisaction. This yields the set Epim(�g; Q)=AutQ.
3. For every ' 2 Epim(�g; Q), we determine N' =Ker' as the normal closure of a �nite set of ele-ments of �g as follows:We construct a presentation for Q on generatorsq1; q2; : : : ; q2g. Besides r0, the only relation of �g,this presentation of Q will satisfy some more re-lations, such as r1, r2, . . . , rk. If we rewrite r1,r2, . . . , rk as words in generators of �g, we willobtain a set whose normal closure will be N .
4. Mg ' Out+(�g) acts on the conjugacy classes of�g. Through hand calculation we determine theaction of D�1 ; D�1 ; : : : ; D�g ; D�g ; D� (see Figure3) on the conjugacy classes of the generators of�g (see Figure 3). We choose a �xed presentationof �g as follows:h a1; b1; : : : ; ag; bg : [a1; b1][a2; b2] : : : [ag; bg] = 1i:In Figure 3, we have drawn 2g loops, with the ap-propriate orientation, whose isotopy classes rep-resent the 2g generators of �g satisfying the onlyrelation of �g. Here, [a; b] = aba�1b�1 is the com-mutator of a and b, and we multiply curves from

left to right; that is, the curve ab is obtained bytraversing at �rst curve a, then curve b.In addition to D�1 , D�1 , . . . , D�g , D�g , D�, wealso need to know the action of D� (see Figure 3).The reason is the following (see [Johnson 1983]).The Torelli subgroup Tg is generated by all theelements of the formD�D�1� ;where � and � represent a bounding pair, i.e., apair of disjoint simple closed curves representingthe same nontrivial Z -homology class. Johnsonfurther de�nes the genus of a bounding pair to bethe smaller of the genera of the two pieces of thesurface cut by the two curves, and proves that Tgis normally generated by any genus 1 boundingpair. Our choice in Figure 3 is of genus 1. Thisresult will be used to settle problem 2. That is, in

ag
bg a1

b1
a2 b2

FIGURE 3. The generators of �g.
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order to determine if a certain normal subgroupofMg such as �g;Q contains Tg or not, all we haveto do is determine whether�g;Q(D�D�1� )is the trivial permutation, which can easily bedone.We will now list the action of the Dehn twists onthe generators of �g. Every Dehn twist changesonly some of the generators. So we will not listthose generators that remain invariant. We willneed some new elements of �g, de�ned as follows:�1 = b�11 ;�i = aib�1i a�1i bi�1; for i = 2; : : : ; g;�i = ai; for i = 1; : : : ; g;� = b2;� = ��13 b�13 :See Figure 4.

�3
�2

��2��1
�1

�g
�g

FIGURE 4. The action of Dehn twists.
These elements of �g are denoted by the same let-ters as the simple closed curves used in the pre-sentation of Mg because they all happen to besimple closed curves representing the same iso-topy classes. For the right Dehn twists, we get:

D�1 : a1 7! a1�1;D�i : ai�1 7! ai�1��1i ;bi�1 7! �ibi�1��1i for i = 2; : : : ; g;ai 7! �iai;D�i : bi 7! bi�i for i = 1; : : : ; g;D� : a2 7! a2��1;D� : a2 7! a2�;b2 7! ��1b2�;a3 7! ��1a3�;b3 7! ��1b3�:We will also need the action of the left Dehntwists:D�1�1 : a1 7! a1��11 ;D�1�i : ai�1 7! ai�1�i;bi�1 7! ��1i bi�1�i for i = 2; : : : ; g;ai 7! ��1i ai;D�1�i : bi 7! bi��1i for i = 1; : : : ; g;D�1� : a2 7! a2�;D�1� : a2 7! a2��1;b2 7! �b2��1;a3 7! �a3��1;b3 7! �b3��1:
5. Let w = !(a1; b1; : : : ; ag; bg) be some word in thegenerators of �g, and let D� be some Dehn twist.De�neD�(w) = !(D�(a1); D�(b1); : : : ; D�(ag); D�(bg)):Now if N is the normal closure of n1; n2; : : : ; nl,where ni are some words in a1; b1; : : : ; ag; bg, thenD�(N) will be a normal subgroup normally gen-erated by D�(n1); : : : ; D�(nl). Now let ' be anelement of Epim(�g; Q) and N = N' be the cor-responding kernel of '. If we apply D� to N ,we will obtain another N'0 for some other '0 2Epim(�g; Q). Since we know all ''s together withtheir kernels, we can �nd the appropriate normalsubgroup thatN gets mapped to under the actionof D�. In this way, we construct the homomor-phism �g;Q :Mg ! Sk:In the next example we choose Q to be the smallestnonabelian �nite group S3. First we need some factsfrom classical group theory.
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Definition 4.1. LetG be a group andH a permutationgroup on a �nite set 
 with j
j = n. The wreathproduct G oH of G with H is de�ned to be the setG oH = f(g1; g2; : : : ; gn; h) : gi 2 G; h 2 Hgwith the group multiplication(g1; g2; : : : ; gn; h)(g01; g02; : : : ; g0n; h0)= (g1g0h(1); g2g0h(2); : : : ; gng0h(n); hh0):
Theorem 4.2. Let G and H be de�ned as in de�nition4.1. Then GoH has a normal subgroup isomorphic tothe direct product of n copies of G and is isomorphicto a semidirect product of this normal subgroup byH . Hence, the order of G oH will bejG oH j = jGjnjH j:See [Huppert 1967] page 95 for a proof.
Definition 4.3. A permutation group G on the set 
is imprimitive if there exists a proper subset � � 
such that for all g 2 G either g� = � or g�\� = ?.� is called an imprimitivity region ofG. A transitivepermutation group that is not imprimitive is calledprimitive.
Theorem 4.4. Let G be an imprimitive permutationgroup on 
 with imprimitivity region �, and let H =fg 2 G : g� = �g be the stabilizer of �. Let furtherR be a set of coset representatives of G=H .(a) 
 = Sr2R r�.(b) If j
j = n is �nite, then j
j = j�j [G : H ]. Letj�j = k and [G : H ] = p. Then G is isomorphicto a subgroup of the wreath product of Sk o Sp.(c)H acts transitively on �.The proof can be found in [Huppert 1967, p. 146].
Theorem 4.5. Let G = hg1; g2; : : : ; gm : r1; r2; : : : ; rkibe a �nitely presented group and' : G! Snbe a transitive permutation representation of G onn elements . Let us denote the image of ' by H .Then we can construct a presentation for H on h1 ='(g1); : : : ; hm = '(gn) as followsH = hh1; h2; : : : ; hm : r01; r02; : : : ; r0k0i(see Section 7), and N = Ker' is normally gener-ated by r01; r02; : : : ; r0k0 . (Note that r01; : : : ; r0k0 are thesame words used in the presentation of H but writ-ten in the generators of G.)

Let further fs1; s2; : : : ; stg be a set of representa-tives of the preimages of all elements of H under '.Then a generating set for N as a subgroup will beN = hs�1i r0jsi : i = 1; : : : ; t; j = 1; : : : ; k0i:If U is a subgroup of H (such as the stabilizer of onepoint), generated by u1; : : : ; ul, and w1; : : : ; wl aretheir preimage representatives in G, then '�1(U) isgenerated ashw1; : : : ; wl; s�1i r0jsi : i = 1; : : : ; t; j = 1; : : : ; ki:The proof is trivial.Now we are ready to look at some examples.
Example 4.6. Q = S3.AutS3 is isomorphic to S3. The setEpim(�g; Q)=AutS3contains exactly 2520 elements; that is, there areexactly 2520 normal subgroups N � �1(S3) with�1(S3)=N ' S3. As a result, we obtain the homo-morphism �3;S3 : M3 ! S2520:S3 is solvable with S03 ' Z 3. As mentioned ear-lier in example 3.4, there are exactly 63 subgroupsM1;M2; : : : ;M63 in �1(S3) with Z 2-quotient. Eachof these normal subgroups Mi turns out to containNi;1; Ni;2; : : : ; Ni;40 normal subgroups with Z 3 as aquotient such that each Ni;j is also normal in �1(S3)and �1(S3)=Ni;j ' S3. Let's denote the set of thesesubgroups by NS3 = fNi;jg. In this way, we obtaina partitioning of these 2520 normal subgroups into63 blocks, �1; : : : ;�63, each containing 40 normalsubgroups. The action of M3 on NS3 is transitivebut not primitive. The imprimitivity regions areexactly the blocks �1; : : : ;�63. The permutation ofthe �0is is determined by the action of M3 on thenormal subgroups M1;M2; : : : ;M63, which gives usa faithful transitive permutation representation ofSP6(Z 2) on 63 elements, as we saw in example 3.4.The stabilizer of one of the �0is, such as �1, forinstance, under the action of M3 acts transitivelyon �1 (see Theorem 4.4). Therefore, the restrictionof this action on �1 will be a transitive permuta-tion representation on 40 elements. Let us denotethe image of this representation by U . We can alsocompute a set of generators for U . Table 3 showssix permutations that generate U .
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( 5; 23; 32)( 6; 24; 34)( 7; 25; 33)( 8; 26; 38)( 9; 27; 40)(10; 28; 39)(11; 29; 35)(12; 30; 37)(13; 31; 36)(14; 32; 23)(15; 33; 24)(16; 34; 25)(17; 35; 26)(18; 36; 27)(19; 37; 28)(20; 38; 29)(21; 39; 30)(22; 40; 31)( 2; 3; 4)( 8; 9; 10)(11; 13; 12)(17; 18; 19)(20; 22; 21)(26; 27; 28)(29; 31; 30)(35; 36; 37)(38; 40; 39)( 1; 2; 4)( 6; 11; 10)( 7; 8; 12)(15; 20; 19)(16; 17; 21)(24; 29; 28)(25; 26; 30)(33; 38; 37)(34; 35; 39)( 2; 3; 4)( 8; 9; 10)(11; 13; 12)(17; 18; 19)(20; 22; 21)(26; 27; 28)(29; 31; 30)(35; 36; 37)(38; 40; 39)( 2; 22; 19)( 3; 21; 17)( 4; 20; 18)( 5; 25; 34)( 6; 23; 33)( 7; 24; 32)(11; 37; 31)(12; 36; 29)(13; 35; 30)
TABLE 3. Six permutations that generate U .U turns out to be a simple group of order 25920.The only simple group of this order is PSp4(Z 3), (see[Conway et al. 1985]). Thus, we proved thatIm(�3;S3) ' PSp4(Z 3) o Sp6(Z 2);and the order of this image is(25920)63 � 1451520 � 10284:It's needless to mention that computing a presenta-tion for � = �3;S3 is a hopeless task, but we are notactually interested in computing this presentation,but rather knowing if H1(�) is �nite or not. Weare going to look at H = ��13;S3(Stab�3;S3 (M3)(N1;1)).As mentioned above, the image of M3 under �3;S3is transitive. So the stabilizer of one of the fNi;jg,such as N1;1, will be a subgroup of index 2520, andits preimage H will be a subgroup of the same indexinM3. What seems to be realistic to handle is com-puting a presentation for H . On the other hand,�3;S3 = CoreM3(H) = Tg2M3 g�1Hg, meaning thatT3 � �3;S3 if and only if T3 � H .

5. COMPUTING A PRESENTATION FOR HEven 2520 is a huge index, and our computer won'tbe able to compute a presentation for H . Therefore,we will break down the calculations in two steps.At �rst, we look at K = ��13;Z2(Stab�3;Z2 (M3)(M1)),which will be of index 63 in M3. Since K �xes M1,it acts on fN1;1; : : : ; N1;40g. Therefore, �3;S3 can berestricted to K and we will get a homomorphism(that we denote by the same letter)�3;S3 : K ! S40:In the previous example, we denoted the image of Kby U . Now we look atH=��13;S3(Stab�3;S3 (K)(N1;1)),which will be a subgroup of index 40 in K, and asubgroup of index 40�63 = 2520 inM3. Using The-orem 4.5, we can �nd a generating set for K. Thenwe construct a presentation for K on this generating

set; see Section 7. The advantage of this speci�c rep-resentation of K is that every element of K (writtenas a word in its generators) can be directly rewrit-ten as a word in the generators of M3. This meansthat every subgroup of K can be directly realizedas a subgroup of M3, and any homomorphism fromM3 onto any permutation group can be restrictedon K and easily evaluated. We can also �nd a gen-erating set (using again Theorem 4.5) for H as asubgroup of K together with a presentation. Usingthe presentation, we can evaluate its �rst homologygroup, and taking advantage of the special presen-tation of K, we can realize H as a subgroup of M3.The most time consuming part of the calculationsinvolves the computation of a presentation for H .Here, it would be reasonable to check, at �rst, if Hcontains the Torelli subgroup or not. The smallestgenerating set we can �nd for K consists of the 8elementsa1; b1; a�22 ; b2; a3; b3; d�2; a2b2db�12 a�12 :Then, we calculate a presentation for K, and applythe Tietze transformations to simplify it. The sim-plest presentation we get has 8 generators and 242relations of total length 66790. H is generated bythe 9 elements a1, b1, a�22 , b2, b3, d�2, a2b2db�12 a�12 ,a3b�12 a3, a3b3b�12 a�13 , and does not contain the Torellisubgroup. H has a presentation on 94 generatorsand 9401 relations of total length 2120026. At theend, we determine the commutator factor group ofH . The nontrivial invariant divisors are 2, 6, and12. Hence H1(H) ' Z 2 � Z 6 � Z 12:Although H is a subgroup that does not contain theTorelli subgroup, its �rst cohomology group is zero.The next attempt will be undertaken using thequaternion group Q8 instead of S3.
Example 5.1. Q = Q8.



270 Experimental Mathematics, Vol. 9 (2000), No. 2

Q8 is a solvable group with Q08 ' Z 2 and Q8=Q08 'Z 2 � Z 2. We have exactly(26 � 1)(26 � 2)(22 � 1)(22 � 2) = 651subspaces of codimension two in (Z 2)6, so there areexactly 651 normal subgroupsM1; : : : ;M651 in �1(S3)with Z 2�Z 2 as quotient. The action ofM3 on thesesubspaces won't be transitive. There are exactly twotypes of subspaces of codimension two, and the ac-tion of M3 will be transitive on each of these fam-ilies. One of them is called isotropic, on which thesymplectic form vanishes on its symplectic orthogo-nal complement, and the other one is called hyper-bolic, on which the symplectic form is nondegenerateon its symplectic orthogonal complement (see [Hup-pert 1967]). In our situation, we will be only inter-ested in the hyperbolic ones and there will be 315 ofthose. Each of these hyperbolic subgroups Mi con-tains exactly 16 normal subgroups fNi;1; : : : ; Ni;16gsuch that their quotient in �1(S3) is isomorphic toQ8. In this way, we obtain 315� 16 = 5040 normalsubgroups of quotient Q8. The homomorphism�3;Q8 :M3 ! S5040will have an image isomorphic to U o L, where L isa transitive permutation representation of Sp6(Z 2)on 315 elements and U is a solvable permutationgroup of order 9216 on 16 elements. The order ofthis image will be9216315 � 1451520 � 101255:Again, we look atK = ��13;Z2�Z2(Stab�3;Z2�Z2 (M3)(M1))and at its subgroup H = ��13;Q8(Stab�3;Q8 (K)(N1;1)).K is a subgroup of index 315 containing the Torellisubgroup, and H is a subgroup of index 5040 thatdoes not to contain the latter group. K is gener-ated by the 10 elements a1, b1, a�22 , b2, a�23 , b3, d�2,a3b3b�12 a�13 , a2b2db�12 a�12 , anda2b1a1b2a2b1a3b2da�12 b�12 a�13 b�11 a�12 b�12 a�11 b�11 a�12 ;and has a presentation with 10 generators and 1140relations of total length 285918. H is generated bythe 13 elements a1, b1, a42, b2, a43, b3, d4, a3b3b�12 a�13 ,a2b2db�12 a�12 , a�22 b2a22, a�22 a3b3b�12 a3a22,a2b1a1b2a2b1a3b2da�12 b�12 a�13 b�11 a�12 b�12 a�11 b�11 a�12 ;

and a�22 b�21 a22, and has a presentation with 86 gen-erators and 18105 relations of total length 3935640.At the end we look at the commutator factor groupof H . The nontrivial invariant divisors are 2, 4, 8.Hence H1(H) ' Z 2 � Z 4 � Z 8:Therefore, H1(H) = 0.We now list the results of our calculations for allthe other choices for Q that we have been able tohandle. Although in each case the calculations areslightly di�erent and need to be treated separately,we will not get into the details and will just statethe results.
Example 5.2. Q = D8.There are 15120 normal subgroups of quotient D8(the dihedral group of order 8) inM3. The action ofM3 on these 15120 subgroups is not transitive andhas 2 orbits of equal length of 7560 elements. Thestabilizer of one of the elements in the �rst orbitis a subgroup H1 of index 7560 in M3 generatedby 10 elements. A presentation on 126 generatorsand 27169 relations of total length 6069283 can beconstructed forH1. The nontrivial invariant divisorsof H1=H 01 are 2, 2, 2, 4, 4, 4. HenceH1(H1) = 0:As a matter of factH1 contains the Torelli subgroup.The stabilizer of one of the elements in the secondorbit is a subgroupH2 of index 7560 inM3 generatedby 10 elements. A presentation on 126 generatorsand 27168 relations of total length 6060990 can beconstructed forH2. The nontrivial invariant divisorsof H2=H 02 are 2, 2, 4, 8. HenceH1(H2) = 0:It turns out that H2 also contains the Torelli sub-group.
Example 5.3. Q = D10.There are 9828 normal subgroups of quotient D10in M3 falling into 982863 = 156 blocks. The action ofM3 on these 9828 subgroups is an imprimitive tran-sitive group. The stabilizer of one of its elementis a subgroup H of index 9828 in M3 generated by11 elements. A presentation on 259 generators and



Taherkhani: The Kazhdan Property of the Mapping Class Group and the First Cohomology Group of Its Cofinite Subgroups 271

34795 relations of total length 5206667 can be con-structed for H . The nontrivial invariant divisors ofH=H 0 are 2, 4, 4. HenceH1(H) = 0:Here again H contains the Torelli subgroup.
Example 5.4. Q = D12.There are 78120 normal subgroups of quotient D12(the dihedral group of order 12) inM3. The action ofM3 on these subgroups is not transitive and falls into4 orbits. We were not able to calculate a generatingset much less a presentation for the stabilizer of anyof these subgroups.
Example 5.5. Q = D14.There are 25200 subgroups of quotient D14 in M3falling into 2520063 = 400 blocks. The action of M3 ontheses subgroups is an imprimitive transitive group.The stabilizer of one of its element is a subgroup Hof index 25200 in M3 generated by 11 elements. Apresentation on 701 generators and 89308 relationsof total length 12995940 can be constructed for H .However, we were not able to calculate the invariantdivisors of H=H 0. But we could establish the factthat H contains the Torelli subgroup, thereforeH1(H) = 0:
Example 5.6. Q = A4.For A4, the alternating group of order 12, we werenot even able to calculate a full list of normal sub-groups in M3 having an A4-quotient.
Example 5.7. Q = T12.In addition to D12 and A4 there is another non-abelian group T12 of order 12, with presentationT12 = ht1; t2 : t31; t42; t1t�12 t1t2iand permutation generators(1; 2; 4)(3; 6; 5)(7; 8; 9)(10; 12; 11);(1; 3; 7; 10)(2; 5; 8; 11)(4; 6; 9; 12):There are 80640 subgroups of quotient T12 in M3falling into 8064063 = 1280 blocks. The action of M3on these group is an imprimitive transitive group.The stabilizer of one of its element is a subgroup Hof index 80640 in M3 generated by 24 elements. Wewere able to construct a presentation on 2336 gener-ators and 287680 relations of total length 40604058

for H . Although we were not able to calculate theinvariant divisors, we could establish that H con-tains the Torelli subgroup, thereforeH1(H) = 0:The choices forQ, considered in the examples above,were the only cases we were able to handle for g = 3.However, for g = 2 we were able to construct moresubgroups.
6. MORE EXAMPLES FOR g = 2In the following we will list some more subgroups wehave been able to construct forM2 using the methodwe described in this section.
Example 6.1. Q = S3.There are 60 normal subgroups of quotient S3 inM2. The action of M2 on these 60 subgroups isa transitive permutation group. The stabilizer ofone of these subgroups is a subgroup H of index 60in M2 generated by 7 elements. A presentation on11 generators and 165 relations of total length 3496can be constructed for H . The nontrivial invariantdivisors of H=H 0 are 2, 2, 0, 0. HenceH1(H) = Z � Z :
Example 6.2. Q = D8.There are 180 normal subgroups of quotient D8 inM2. The action of M2 on these 180 subgroups has2 orbits of equal length 90. The stabilizer of oneof these subgroups in the �rst orbit is a subgroupH1 of index 90 in M2 generated by 8 elements. Apresentation on 35 generators and 391 relations oftotal length 6675 can be constructed for H1. Thenontrivial invariant divisors of H1=H 01 are 2, 2, 2, 0,0, 0. Hence H1(H1) = Z � Z � Z :The stabilizer of one of the subgroups in the secondorbit is a subgroup H2 of index 90 in M2 generatedby 7 elements. A presentation on 36 generators and393 relations of total length 6682 can be constructedfor H2. The nontrivial invariant divisors of H2=H 02are 2, 2, 8, 0, 0. HenceH1(H2) = Z � Z :
Example 6.3. Q = Q8.
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There are 60 normal subgroups of quotient Q8 inM2. The action of M2 on these 60 subgroups is atransitive permutation group. The stabilizer of oneof these subgroups is a subgroup H of index 60 inM2 generated by 11 elements. A presentation on24 generators and 263 relations of total length 4562can be constructed for H . The nontrivial invariantdivisors of H=H 0 are 2, 2, 4, 0. HenceH1(H) = Z :
Example 6.4. Q = D10.There are 90 normal subgroups of quotient D10 inM2. The action of M2 on these 90 subgroups isa transitive permutation group. The stabilizer ofone of these subgroups is a subgroup H of index 90in M2 generated by 7 elements. A presentation on15 generators and 245 relations of total length 5063can be constructed for H . The nontrivial invariantdivisors of H=H 0 are 2, 2, 4, 0, 0. HenceH1(H) = Z � Z :
Example 6.5. Q = T12.There are 480 normal subgroups of quotient T12 inM2. The action of M2 on these 480 subgroups isa transitive permutation group. The stabilizer ofone of the these subgroups H is a subgroup of index480 inM2 generated by 11 elements. A presentationon 68 generators and 1370 relations of total length23395 can be constructed for H . The nontrivial in-variant divisors of H=H 0 are 2, 2, 2, 0, 0, 0. HenceH1(H) = Z � Z � Z :
7. FINAL REMARKSAs mentioned in the introduction, almost all of thecalculations have been performed in the program-ming language GAP. The programs were written bythe author, except for the following two cases, wheresome new programs, that at the time of writing thispaper were not yet implemented in GAP's library,were needed in:
1. calculating a presentation for a �nite permuta-tion group (see Theorem 4.5), and
2. producing a presentation on a given set of gener-ators (see Section 5).

My special thanks goes to T. Brauer from RWTH{Aachen, not only for providing the programs in ad-vance, but also for his valuable help and advice.The �rst machine we have used for the purpose ofour calculation was an Sun Ultrasparc 1 Model 170(170 MGHz, and 128 Mbytes of RAM). The calcula-tions for the groups S3; Q8 and D8 were carried outusing this machine. The three major parts of thecalculations involve
1. calculating Epim(�g; Q) (Section 4),
2. evaluating �g;Q (Section 4),
3. producing the presentations for H and K (Sec-tion 5).Part 3 is the most time consuming. The �rst twoparts together take only about 20 percent of thetotal computing time. Here are the times neededfor Examples 4.6, 5.1 and 5.2:
1. Q = S3, 52 min,
2. Q = Q8, 283 min,
3. Q = D8, 415 min.The other groups were handled with a faster ma-chine: a 400 MGHz Pentium II with 256 Mbyte ofRAM.Although we have been able to construct only afew number of subgroups insideM3, all of them haveturned out to have a trivial �rst cohomology group.Unfortunately, the fact that almost all of them (ex-cept for Q = S3) contain the Torelli subgroup makesit very di�cult for us to guess whether M3 has theKazhdan property. Considering that in our calcula-tion Q has always been a solvable group, the choiceof a simple group for Q would be an interesting casethat deserves attention. Although the calculationsfor a simple Q might shed some light on this prob-lem, even the smallest choice A5 (the alternatinggroup on 5 elements) of order 60 turns out too bigfor the current methods.
ELECTRONIC AVAILABILITYThe GAP programs used in our calculations areabout 2300 lines long and can be found at http://www.math.msu.edu/~ferry.
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