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Character-theoretic methods using Clifford algebras are devel-

oped to describe the quadratic forms on a vector space V that

are invariant under a finite subgroup G of GL(V) such that the

order of the commutator factor group of G is odd.

1. INTRODUCTIONLet G be a �nite group. Any Q G-module V isuniquely determined by its character �V . So in prin-ciple �V also determines the G-invariant quadraticforms on V . However, there is not much knownhow to calculate rational invariants of these quad-ratic forms without describing the action of G onV explicitly. Of course, the G-invariant form q onV is not unique, since for all a 2 Q , the form aqis also G-invariant, and there are more G-invariantforms, if V is not irreducible over the reals. So onecan only hope to calculate say the determinant ofq, which is de�ned as the determinant of a Grammatrix of the corresponding bilinear form modulosquares, if dimV is even.Invariants for a nondegenerate quadratic space' := (V; q) over an arbitrary �eld K can be reado� from the Cli�ord algebra C('). This is a Z =2Z -graded algebra functorially attached to ' and it de-termines the two most important invariants of thequadratic space ': its determinant and its Cli�ordinvariant (see Theorem 2.1). According to [Hasse1924], if V is a vector space over a number �eld K,then these two invariants together with the dimen-sion of V and the signatures of ' at all real places ofK describe the K-isometry class of the nondegener-ate quadratic space ' over K completely.If G acts on ' = (V; q) as isometries, then G actson C(') as algebra automorphisms respecting thegrading. If dimV is even, C(') =: c(') is central
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simple; if dimV is odd, the even part c(') := C0(')of the Cli�ord algebra is a central simple algebra.So the simple c(')-moduleW becomes a module forsome projective representation of G (in the senseof Schur) of which the character �W (of a coveringgroup of G) is a certain square root of a charac-ter constructed from �V . An irreducible constituentthat occurs in �W with odd multiplicity gives infor-mation on either the determinant of ', if dimV iseven, or the Cli�ord invariant of ', if dimV is odd(see Corollary 3.6). Applications are given in theexamples in Section 4.Related ideas have been used by A. Turull [1992],where he determines the Schur index of �W using ex-plicit knowledge about (V; q) for the (n� 1)-dimen-sional Sn-module V .This paper summarizes one idea of my Habilita-tionsschrift [Nebe 1999]. There I develop also othermethods to calculate the isometry class of ' usingconstructions of V as a constituent of a tensor prod-uct or of an induced module. See also [Nebe 2000].
2. CLIFFORD ALGEBRASLet ' := (V; q) be a quadratic space of dimensionn := dimV over a �eld K. Then the Cli�ord al-gebra C(') := T (V )=I(') is the quotient of thetensor algebra T (V ) :=L1i=0
iV by the two-sidedideal I(') generated by v 
 v � q(v) � 1 with v 2 V(see [Scharlau 1985, Chapter 9]). C(') is a 2n-dimensionalK-algebra. It contains the even Cli�ordalgebraC0(') := hv1 : : : vs j vi 2 V; s even i � C(')as a subalgebra of dimension 2n�1 = dimK(C0(')).Let C1(') := hv1 : : : vs j vi 2 V; s oddi:If (v1; : : : ; vn) is a basis of V , then (vi1 : : : vis j 1 �i1 < � � � < is � n) is a basis of C('). In particular,V is embedded in C(').If charK 6= 2, then let Bq be the bilinear formassociated to q, de�ned byBq(v; w) := 12(q(v + w)� q(v)� q(w))for all v; w 2 V . Then the determinant det(') is thedeterminant of a Gram matrix of Bq modulo squaresdet(') := det(Bq(vi; vj))ni;j=1(K�)2 2 K=(K�)2

and the discriminant of ' isd�(') = (�1)(n2) det(') 2 K=(K�)2:Assume that charK 6= 2 and ' is nondegenerate,that is, d�(') 6= 0. Then:
Theorem 2.1 [Scharlau 1985, Theorem 9.2.10]. (i) If nis even, then C(') is a central simple K-algebraand Z(C0(')) is isomorphic toK[X]=(X2 � d�(')):(ii) If n is odd , then C0(') is a central simple K-algebra and Z(C(')) is isomorphic toK[X]=(X2 � d�(')):An analogous theorem holds if charK =2; see [Knus1991, Theorem (2.2.3)].Let c(') := �C(') if dimV is even,C0(') if dimV is odd.The class [c(')] 2 BrK of the central simple K-algebra c(') in the Brauer group BrK of K is calledthe Cli�ord invariant of '.
Remarks 2.2. (i) IfW is the simple right c(')-module,D := Endc(')(W ), and W � := HomD(W;D) isthe simple left c(')-module, then c(') �=W � 
DW as c(')-bimodule.
(ii) Because of the universal property of C('), theidentity embedding of V � C(') extends to aunique algebra antiautomorphism of C('), thecanonical involution . The involution satis�esv1 : : : vs = vs : : : v1 for all vi 2 V and induces analgebra antiautomorphism on the central simpleK-algebra c('). Via this involution W � becomesa right c(')-module isomorphic to W .
The Orthogonal GroupFor a nondegenerate quadratic space ' = (V; q) theorthogonal group O(') is de�ned asO(') := ff 2 GL(V ) j q(f(v)) = q(v) for all v 2 V g:Using the universal property of C(') one easily seesthat the linear action of O(') on V extends uniquelyto K-algebra automorphisms of the Cli�ord algebraC('). This action of O(') on C(') respects thegrading.The Cli�ord group is�(') := fs 2 C0(')�[(C(')�\C1(')) j sV s�1 = V g
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[Scharlau 1985, Section 9.3; Knus 1991, Section IV.6].For s 2 �(') let (s) = 1 if s 2 C0(') and (s) = �1if s 2 C1('). De�ne �(s) : V ! V so that�(s)(v) (s)s�1vs:Then �(�(')) � O('). If s 2 V � C1(') satis�esq(s) 6= 0, then s 2 �(') and �(s) 2 O(') is thereection along the anisotropic vector s. If charK 6=2, then the reections along anisotropic vectors inV generate O('). Therefore �(�(')) = O('). IfcharK = 2 then � is also surjective [Knus 1991, p.228]. The kernel of � is K� � C0(')� and one hasthe following exact sequence1! K� ! �(')! O(')! 1which gives rise to a projective representationP : O(')! �(')mapping the reection along the anisotropic vectors 2 V to s 2 �('). By [Scharlau 1985, Lemma9.3.2], s�s 2 K� � C0(') for all s 2 �('), whereis the canonical involution of c(') (see Remark 2.2).This gives rise to a group homomorphismnorm : O(')! K�=(K�)2;g 7! P (g) � P (g) � (K�)2;called the Spinor norm [Scharlau 1985, De�nition9.3.4]. LetS�(') := fs 2 �(') \ C0(') j �s = s�1g:
Proposition 2.3. The group S�(') acts on c(') byconjugation: c(') � S�(') ! c('); (x; s) 7! s�1xs.With the notations of Remark 2.2 one hasc(') �=W 
D Was S�(')-modules .
3. CLIFFORD ALGEBRAS AS G-ALGEBRAS.Let ' = (V; q) be a nondegenerate quadratic spaceand G be a subgroup of the orthogonal group O('):Then ' is also called an orthogonal KG-module.Theoretical concepts for Cli�ord algebras as G-al-gebras are given in [Fr�ohlich 1972]. Here practicalmethods to obtain information on C(') from thecharacter � = �V of the G-module V are developed.Since G � O('), the action of O(') on C(') re-stricts to a linear representation �C(') of G on theCli�ord algebra that respects the grading:

Remark 3.1. The character of the KG-module C(')respectively C0(') is~� := nXi=0 �i(�) respectively ~�0 := nXi=0;i even�i(�)where �i(�) is the i-th exterior power of �.Note that~�(g) = (�1)npg(�1) for all g 2 Gwhere pg is the characteristic polynomial of g on V .With this trick one can calculate ~�(g) (and ~�0(g))with the help of GAP [Sch�onert et al. 1994], by re-stricting � to the subgroup hgi � G, for any groupG whose character table and powermap is known.
Assumption. From now on we assume that the orderof the commutator factor group G=G0 is odd.
Lemma 3.2. There are ag 2 K� (for all g 2 G) suchthat P0(g) := agP (g) satis�esP0(g) � C0('); P0(g)P0(g) = 1;and P0 
 P0 : G! GL(c(')) is a linear representa-tion equivalent to �c(').
Proof. The mapping P : G ! C(')�; g 7! P (g) is aprojective representation of G. Hence P (g)P (h) =a(g; h)P (gh) for some a(g; h) 2 K� and for all h; g 2G. Since K� � C0('), the grading of the Cli�ordalgebra de�nes a group homomorphism G! Z =2Z ,g 7! deg(P (g)). Since jG=G0j is odd, this grouphomomorphism is trivial, hence P (G) � C0('). Inparticular P (G) � c(') and P is a projective repre-sentation of G on the simple c(')-module W . Alsothe Spinor norm, norm : G! K�=(K�)2, is a homo-morphism from G to an abelian 2-group and hencetrivial. Rescaling P (g) with elements in K� wemay therefore assume that P (g)P (g) = 1, that is,P (g) 2 S�(') for all g 2 G.Therefore, by Proposition 2.3, the G-module c(')is isomorphic to the tensor square W 
D W of theprojectiveG-moduleW . In particular the projectiverepresentation P 
D P is equivalent (as a projectiverepresentation) to the linear representation �c(') ofG on c('). This means that there is T 2 GL(c('))and a mapping � : G ! K� such that TP (g) 
P (g)T�1 = �(g)�c(')(g) for all g 2 G. Since P isa projective representation and �c(') is linear, � :G ! K�=(K�)2 is a homomorphism. Again, since
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jG=G0j is odd, we have �(g) = �(g)2 2 (K�)2 forall g 2 G and P0(g) := �(g)�1P (g) has the desiredproperties. �
Corollary 3.3 (compare [Gagola and Garrison 1982,Theorem 1.2, Corollary 4.3]). Assume that charK 6=2 and let g 2 G be an element of order 2 and e thedimension of the �1-eigenspace of g in V . ThenP0(g)2 = (�1)(e2) id.
Proof. Let v1; : : : ; ve be an orthogonal basis of the�1-eigenspace of g on V . ThenP0(g) = agv1 : : : ve;P0(g) = agve : : : v1 = (�1)(e2)P0(g):Since P0(g)P0(g) = id, one has P0(g)2 = (�1)(e2) id.�If c(') �= Da�a for some central K-division algebraD, then the simple c(')-module W is isomorphicto Da. Over the algebraic closure of K, the c(')-module W is isomorphic to the sum of m copiesof a simple module, where m is the index of D(dimK(D) = m2).We now �x a covering group u : ~G! G of G suchthat P0 is equivalent to a linear representation of ~G.Let W be the simple c(')-module and m the indexof Endc(')(W ).
Corollary 3.4. Let m�W be the character of a linearK ~G-module that is equivalent to W over the alge-braic closure of K. Regarding � as a character of ~Gone has �W 
 �W = � ~� if n is even,~�0 if n is odd .For the next theorem we additionally assume thatK is a number �eld. By [Scharlau 1985, Lemma9.2.8] c(') is a tensor product of quaternion alge-bras. Since K is a number �eld, this implies thatc(') is a matrix ring over a quaternion algebra (see[Reiner 1975, Theorem (32.9)], for instance) andC0(') �= Da�a;where D = L := Z(C0(')) or D is a quaterniondivision algebra over L.
Theorem 3.5. With the notations above let m be theSchur index of D, W the simple C0(')-module andm�W the corresponding character of ~G. Assume

that there is an absolutely irreducible character  of ~G occurring with odd multiplicity in �W .(a) If n is even and L = Z(C0(')) is a �eld then Lis a sub�eld of the character �eld K( ).(b) Assume that n is odd . If the Schur index of  isodd , then K( ) splits D. Otherwise let U be theirreducible K ~G-module whose character contains . Then D � EndK ~G(U).
Proof. By Lemma 3.2 P (G) is already contained inC0(') and therefore EndC0(')(W ) � End ~G(W ).In both cases C0(') �= Da�a and dimK(C0(')) =a2m2[L : K] = 2n�1 is a power of 2. Let x be themultiplicity of  in �W , U the irreducibleK-modulewhose character contains  and DU := EndK ~G(U).Then DU is a skew �eld with center K( ) and ofindex, say, mU . Let U 0 be the U -homogeneous com-ponent in Wj ~G. Then EndK ~G(U 0) �= Dy�yU for somey 2 N . Since the multiplicity of  in m�W and themultiplicity of  in �U 0 are equal, one hasmx = ymU : (3–1)Since D has no zero divisors, D embeds intoEndK ~G(U 0)and henceA := DopU 
K( ) (D 
K K( ))! DopU 
K( ) Dy�yU �= K( )m2Uy�m2Uy =: B;where DopU denotes the opposite algebra of DU . IfK( ) 
K L is a �eld then let " := [L : K] 2 f1; 2g.Then A is a central simple K( ) 
K L-algebra iso-morphic to ~Dk�k for some centralK( )
KL-divisionalgebra ~D of index, say, ~m. If K( ) 
K L is not a�eld then let " := 1. Then A is a direct sum of twoisomorphic central simpleK( )-algebras isomorphicto ~Dk�k for some central K( )-division algebra ~Dof index, say, ~m.In both cases the dimension of A over its centeris m2U �m2 = ~m2 � k2 (3–2)and the K( )-dimension of a simple A-module is" � ~m2 � k and divides the K( )-dimension of thesimple B-module, which is m2U � y" � ~m2 � k divides m2U � y:
Claim. ~m is odd and " = 1.
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Proof. SinceK is a number �eld, m is either 1 or 2. Ifm = 1, then mU and y are odd by (3{1) (recall thatx is odd) and hence also ~m and " are odd. Assumethat m = 2. Then (3{1) implies that either mU iseven and y �mU=2 is odd, or y is even and mU �y=2 isodd. Assume 2 j ~m. If mU is even, 23 divides ~m2 �k;if mU is odd, 22 divides ~m2 � k. But this power of2 does not divide m2U � y in both cases, which is acontradiction. Therefore ~m is odd and k is even. IfmU is even, then 4 divides k by (3{2) and therefore" is odd. If mU is odd, then also " = 1 since k iseven and y=2 is odd. The claim follows. �In particular " = 1 and hence L is a sub�eld of K( )which proves (a).Now we prove (b). Since n is odd, L = K and([DU ]�1 � [D
K K( )]) has odd order in the Brauergroup of K( ) because�[DU ]�1 � [D 
K K( )]� ~m = 1 2 Br(K( ))Therefore the local index m}(DU) is even, if andonly if the local index m}(D 
K K( )) is 2, forall (in�nite and �nite) places } of K( ). HenceD
KK( ) embeds into DU (compare [Reiner 1975,Exercise 29.7]). �In the applications absolutely irreducible orthogonalG-modules (V; q) over totally real number �elds Kare of special interest. Then q is (positive or nega-tive) de�nite. If n is even, then the discriminant ofq is negative, if n � 2 (mod 4) and positive, if 4 j n.
Corollary 3.6. In addition to the assumptions of thetheorem let K be a totally real number �eld and as-sume that ' is de�nite.(a) Let n be even. If [K( ) : K] is odd or n � 0(mod 4) and all intermediate �elds K( ) � L �K of degree [L : K] = 2 are complex �elds , thenthe discriminant d�(') = 1.If n � 2 (mod 4), then K( )=K has a totallycomplex intermediate �eld L with [L : K] = 2.One of these �elds is isomorphic K�pd�(') �.(b) Assume that n is odd . If  has Schur index 1,then the Cli�ord invariant [c(')] satis�es[c(')
K K( )] = [K( )] 2 Br2(K( )):If  has Schur index 2 then [K( ) 
K c(')] =[EndK( ) ~G(U)] 2 Br2(K( )) for the irreducibleK( )G-module U with character 2 .

4. EXAMPLESWe will now apply the methods presented before tosome irreducible representations of �nite quasi sim-ple groups. The notations are taken from [Conwayet al. 1985].
Example 1Let G �= 2:O+8 (2). Then G is perfect and its univer-sal covering group is ~G �= 22:O+8 (2). Let V be the8-dimensional faithful Q G-module with character �and q a non zeroG-invariant quadratic form on V . If' := (V; q), then dim(c(')) = 28 and ~� = �W 
 �Wfor a 16-dimensional ~G-module W . One calculatesthat �W = �8+�08 is the sum of the two irreduciblecharacters �8; �08 6= � which belong to absolutely ir-reducible rational modules of degree 8 of ~G. There-fore d�(') = 1 and also [c(')] = [Q ].Of course, that d�(') = 1 is well known andcan also be seen by inspection of the modular con-stituents of V [Jansen et al. 1995].
Example 2Let G �= M cL and ' := (V; q) a 22-dimensionalorthogonal Q G-module with character �. The uni-versal covering group of G is 3:G. Therefore P0 :G ! c(') can be chosen to be linear. There is aunique character �W of G satisfying �W 
 �W = ~�.In the notation of [Conway et al. 1985] one has�W = 2(�1+�2+�3) +�5+�6. Now the character�eld Q [�5] = Q [�6] = Q [p�15]. Since dim(V ) � 2(mod 4), Corollary 3.6 yields d�(') = �15.
Example 3Let G �= S6(3) and � the irreducible character ofdegree 78 with orthogonal Q G-module ' := (V; q).The universal covering group of G is ~G �= 2:S6(3).Let �W be the character of ~G on the simple c(')-module. If g 2 G is an element of order 2 in class2B in the notation of [Conway et al. 1985], then �ghas a 42-dimensional �xed space on V . Therefore�W is a faithful character of ~G by Corollary 3.3.With GAP one �nds that there is only one faithfulcharacter �W of ~G satisfying �W 
 �W = ~�. Thecharacter �W contains the two complex conjugateirreducible characters  1 and  2 of degree 13 withmultiplicity 1683. Since dim(V ) � 2 (mod 4) andQ [ 1] = Q [p�3] Corollary 3.6 yields d�(') = �3.
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Example 4The applications are not restricted to the charac-teristic 0 case. Let V be the 4-dimensional F 2A6-module. If V admits a nondegenerate A6-invariantquadratic form q, then there is a projective repre-sentation A6 ! C0((V; q))�yielding an irreducible F 2A6-module of dimension 2.Since there is no such module, one concludes that Vis not of quadratic type.Now let ' := (V; q) be a 4-dimensional simple or-thogonal F 3A5-module. Then there is a linear repre-sentation 2:A5 ! C0(')� giving rise to a nontrivialaction of �F 32:A5 on the 2-dimensional simple C0(')-module. Since the two irreducible �F 32:A5-modulesof dimension 2 are only realisable over F 9, the de-terminant d�(') = �1 is not a square in F �3.
Example 5Let G = U3(5) and ' := (V; q) be a 21-dimensionalsimple orthogonal Q G-module. The universal cov-ering group of G is 3:G. Therefore P0 : G ! c(')can be chosen to be linear. There is a unique char-acter �W of G satisfying �W 
 �W = ~�. In thenotation of [Conway et al. 1985] one has �W =2�1+�2+2�3+2�7+2�10+�11+�12+�13+�14.The character �eld of �2 (of degree 20) is Q and itsrational Schur index is 2. If U is the irreducible Q G-module with character 2�2 then EndQG(U) = Q1;5the rational quaternion algebra rami�ed only at 5and the in�nite place. Now Corollary 3.6 yields[c(')] = [Q1;5].Let q be a power of an odd prime p. As noted by areferee, the group U3(q) has a absolutely irreduciblerational representation V of degree q2 � q + 1 (see[Simpson and Frame 1973]) and a rational character� of degree q(q � 1) with Schur index 2 at 1 andp ([Gross 1990, Section 14]). So one might hope togeneralize this calculation to arbitrary prime powersq. For q = 7 the character � occurs with odd mul-tiplicity in �W , so here [c(')] = [Q1;7]. If q = 3 orq = 11, then dim(V ) � �1 (mod 8). Therefore Rsplits c(') for any positive de�nite quadratic formon V and � can not occur with odd multiplicityin �W . But here one �nds that the trivial charac-ter has odd multiplicity in �W , hence [c(')] = 1in these cases. For q = 9 the calculations do not

allow to determine [c(')] uniquely. It seems to bevery di�cult to calculate the candidates for �W (forq = 7; 9; 11 one has two possibilities for the charac-ter �W ) generically.As a referee pointed out, some of the examplesabove can also be considered from the integral lat-tice point of view, replacing the determinant by thedeterminant module L#=L, where L is a G-invariantlattice in the Q G-module V and L is integral, thatis, contained in its dual latticeL# := fv 2 V j Bq(v; L) � Z g:If L is a maximal integral G-invariant lattice in V ,then L#=L is a direct sum of simple selfdual F pG-modules, where p runs through the primes dividingjL#=Lj. If all selfdual p-modular constituents of Vhave even degree, then p does not divide the deter-minant of V . This observation immediately yieldsthat det(') = 1 in Example 1, since the character isabsolutely irreducible modulo every prime p. Simi-larly the only primes p that can divide det(') are 3and 5 in Example 2 and 3 in Example 3. In Example3 one even can conclude that det(') = 3, becauseotherwise G would �x an even unimodular latticeL � V , and hence 8 j dimV .
ConclusionThis method is better called a trick, because it cannot be applied too often. For instance, for the �nitesimple groups only the �rst two or three characters�V usually have a real chance that there is sucha constituent  of �W with odd multiplicity. Butwhen this trick can be applied, the calculations areeasy and it is surprising to see the determinant of aG-invariant quadratic form appear in the charactertable.
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