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We show that the unboundedness of the ranks of the quadratic
twists of an elliptic curve is equivalent to the divergence of cer-
tain infinite series.

1. INTRODUCTION

In this paper we reformulate the question of whether
the ranks of the quadratic twists of an elliptic curve
over Q are bounded, into the question of whether
certain infinite series converge. Our results were in-
spired by ideas in [Gouvéa and Mazur 1991].

Fix integers a, b, ¢ such that the polynomial

f(x)=2+az’ + bz +c

has 3 distinct complex roots, and let E be the elliptic
curve y?> = f(z). For D € Z — {0}, let E® be the
elliptic curve Dy? = f(z).

For every rational number x which is not a root
of f(x), there are a unique squarefree integer D and
rational number y such that (z,y) € EP?(Q). For
all but finitely many z, the point (z,y) has infinite
order on the elliptic curve EP). Gouvéa and Mazur
[1991] counted the number of D that occur this way
as x varies, and thereby obtained lower bounds for
the number of D in a given range for which E(”)(Q)
has positive rank.

Building on their idea, in this paper we keep track
not only of the number of D which occur, but also
how often each D occurs. The philosophy is that the
greater the rank of E(P)| the more often D should
occur, i.e., curves of high rank should “rise to the
top”. By implementing our approach, Rogers [2000]
found a curve of rank 6 in the family Dy? = x® — .

Let

F(u,v) = v(u® + au®v + buv® + cv®) = v* f(u/v),
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and
U = {(u,v) € Z* : ged(u,v) = 1 and F(u,v) # 0}.

We define three families of infinite series as follows.

If n € QF, let s(n) denote the squarefree part
of n, i.e., s(n) is the unique squarefree integer such
that n = s(n)m? with m € Q. Note that

s(f(ufv)) = s(F(u,v))

for all u,v € Z such that F(u,v) # 0. If o is a
non-zero rational number, and o = u/v with u and
v relatively prime integers, define

h(a)
For non-negative real numbers j and k define the
infinite sums

= max{1, log |ul,log |v|}.

1
2 |s(F(u, v))[*h(u/v)’

(u v)EW

ZZ

t=1 (u,v)e¥
t2|F(u,v)

k

(u,v |kh u/v)i’

Further, if d is a positive integer, let
Qy={a€Z/d®Z: f(a) =0 (mod d*)}.
If d and d' are positive integers and « € g4, let
Wa,d,ar De a shortest non-zero vector in the lattice
Loaw ={(u,v) €Z*:u=av (mod d?)
and v = 0 (mod d?)}.

(In general there will be more than one shortest vec-
tor; just choose one of them.) Define

) _ 0 (dd/ 2k
QUR) = D i Togay 2 Nowaal™
gcd(7d d_) Ya,d, d’e\I’

Our main result is the following, which will be
proved in Sections 2—4.

Theorem 1.1. If j is a positive real number, then the
following conditions are equivalent:

a) rank, EP)(Q) < 25 for every D € Z — {0}.
b) Sk(j, k) converges for some k > 1.
Sk(j,k) converges for every k > 1.
) converges for some k > 1.
) converges for every k > 1.
) converges for some k > 1.
) converges for every k > 1.

It follows from Theorem 1.1 that for many elliptic
curves E and for small values of j, Sg(j, k), Re(j, k),
and Qg(j, k) diverge for all real numbers k.

Example 1.2. Consider the case f(z) = z® — x. Here,
F(u,v) = wo(u + v)(u — v). If ged(u,v) = 1 and
F(u,v) # 0, then

s(F(u,v)) = s(u)s(v)s(u + v)s(u —v)/m,

with m = 1 or 4. The family of quadratic twists
Dy? = 2® — x has been extensively studied.

Ranks in families of twists of elliptic curves have also
been studied by Heegner [1952], Kramarz [1986],
Satgé [1987], Zagier and Kramarz [1987], Gouvéa
and Mazur [1991], Heath-Brown [1993; 1994], Stew-
art and Top [1995], and Mestre [1992; 1998], among
others.

2. RELATING S¢(j, k) TO TWISTS OF E

If A is an elliptic curve over Q, let hy : A(Q) — Ro
denote the canonical height function on A(Q). We

abbreviate h D= —h mo) for squarefree integers D.
If X C R, define

S oot Y ho(P)

DeZ—-0 (D) _g(D)
D squarefree Pek EL'QE%’)GEX (@rors

Ts(j,k, X) =

where z(P) is the z-coordinate of P, and define

. 1
SE(.]a ka X) = k i)
(u,w) eV, u/veX ‘S(F(U,U))‘ h(U//U)]
> ¥
RE(]a ka X) = k ot
t=1 (u,0)ET ‘F(U’a U)‘ h(u/v)i
u/vEX,t?|F(u,v)
Then
SE(.]a k, R) - SE‘(.]? k)a
RE(]} kaR) = RE(]a k)a

as defined in Section 1. Let Tx(j, k)
If X C R, define

Yox ={(y,v) e ¥:u/ve X, v>0,

and s(F(u,v) = D)}.

If A is an elliptic curve over Q, let Ay denote the
N-torsion on A. The following fact is easily proved:

2-1)



Rubin and Silverberg: Ranks of Elliptic Curves in Families of Quadratic Twists 585

Lemma 2.1. If D is a squarefree integer and X C R,
then the map

¢p(u,v) = (E,M)

v v2
defines a bijection
¢p: Lpx—{PeEP(Q)—E (Q):x(P)eX}/+1.

Proposition 2.2. If j.k > 0 and X C R, then the
convergence of Tr(j,k,X) is equivalent to the con-

vergence of Sg(j,k,X).
Proof. We have
Se(ik, X) = 3 [s(F(u,v))| "hlufv)~

(u,v)EW
u/veX

=2 Z |D|~* Z h(u/v)~7.
D squarefree  (u,v)€Xp, x
By Lemma 2.1,
To(k, X)=2 3 (DI

D squarefree

S holen(u,v) .

(u,w)€Xp, x
YD (u,’U)QE(D) (Q)tors

For (z,y) € E®(Q) we have
ilD(xa y) = iLE(xv \/By)a
see [Silverman 1986, hint in Exercise 8.17, p. 239].

For (z,y) € E(Q) with z € Q,
| (,y) = 3h(@)]

is bounded independently of z and y; see [Silverman
1986, Theorem VIIL.9.3(e)]. Therefore there is a
constant C (independent of w, v, D, and X) such
that for (u,v) € ¥p x,

|hp(p(u,v)) = Sh(u/v)| < C.

Except for finitely many rational numbers u/v, we
have th(u/v) > C. Therefore if either |u| or |v] is
sufficiently large, then

Lh(u/v) < hp(ep(u,v)) < h(u/v).

Thus the convergence or divergence of Sg(j, k, X) is
equivalent to that of Tg(j,k, X). O

If A is an elliptic curve defined over R, let A(R)°
denote the connected component of the identity in

A(R).

(2-2)

Lemma 2.3. Suppose A is an elliptic curve over R,
Py,...,P. € A(R)" are Z-linearly independent in

A(R)/A(R)tors, and U is an open subset of A(R)°.

Then

) €EL":ng|) < B, > n;P,eU}
(2B+1)"

L #
B—oo

= u(U),
where u is a Haar measure on A(R)° normalized so

that n(A(R)°) = 1.

Proof. Let (z) = z—|z] € [0, 1) denote the fractional
part of a real number z. By [Koksma 1974, Satz 10,
p. 93], if i, ..., a, € R are Z-linearly independent
inR/Q and 0 < a < b <1, then the limit as B — oo
of

#{(ny,...,n,) €Z" : |n;| < B, a < {d_ n;a;) < b}
(2B +1)"

equals b—a. Since A(R)? = R/Z, the lemma follows

easily. O

If A is an elliptic curve over Q, let

Aot = min Ay (P) > 0.
A" = min a(P)
ha(P)#0
Proposition 2.4. Suppose A is an elliptic curve over Q
and j is a positive real number. Let r =rank; A(Q).

1. If r > 25 and U is a nonempty open subset of

A(R)°, then
> ()
Pe(A(Q)—A(Q)tors)NU

diverges.
2. Ifr < 27, then there exists a constant C; depend-
ing only on j (and independent of A) such that

S ha(P) < #AQ)ions(RF™) IO,
PeA(Q)—A(Q)tors

Proof. Suppose Py, ..., P, is a Z-basis of
A(Q) N A(R)°

modulo torsion. The canonical height function ha is
a quadratic form on the lattice A(Q)/A(Q)tors, and

Y ﬁ(z n.P;) 7.

Z ha(P)™ > Z
PeA(Q)-A(Q)tors Ny, Ne=—
By the theory of Epstein zeta functions, the latter
sum diverges if 25 < r. Using Lemma 2.3 it is now
straightforward to deduce (i).
By [Terras 1988, IV.4.4, Proposition 1(c)], there
exist a positive constant K, depending only on 7,
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and a Z-basis Pi,..., P, for A(Q)/A(Q)tors, such
that for all (ny,...,n,) €Z",

Let &,(7) = Sopucar ] ¥. Then

> ha(P)?
PGA(Q)_A(@)torS
< H#AQors Y (WF) VK |wl|

0FwEL™
= #A(Q)tors(hﬁin)_jKr_jgr(j)‘

The Epstein zeta function €,(j) converges if r < 2j;
see [Terras 1985, 1.1.4]. Thus assertion (ii) is true
with C; = max,«o; (K, 7&,(5)). O

Remark 2.5. Proposition 2.4(ii) remains true, with
the same proof, when Q is replaced by a number
field. Proposition 2.4(i) remains true, with the same
proof, when Q is replaced by a number field with a
real embedding, or when Q is replaced by an arbi-
trary number field and U is replaced by A(C).

Definition 2.6. Write e,., and ey, for the largest
and smallest real root of f, respectively. We say
that X is broad if X is an open subset of R which
has nontrivial intersection with both of the intervals
(Emax, 00) and (—00, emiy)-

Theorem 2.7. If j is a positive real number, then the
following are equivalent:

(a) rank;, EP)(Q) < 25 for every D € Z — {0},

(b) Sk(j,k,X) converges for some k > 1 and some
broad X,

(c) Se(j, k) converges for every k > 1.

Proof. Fix a positive real number j. Clearly, (c) =
(b), by taking X = R.

If Sg(j, k, X) converges for some k > 1, and some
broad X, then by Proposition 2.2, Tx(j,k,X) con-
verges as well. In particular for every squarefree D

the inner sum
> hp(P)

PEEDP)(Q)—EP)(Q)tors
z(P)eX

converges. Since X is broad, the set

U={PcEPR):z(P)ec X}nEP(R)

is nonempty. Proposition 2.4(i) now shows that
rank; EP)(Q) < 2j. This proves that (b) = (a).
Now suppose that rank; EP)(Q) < 2j for every
D € Z — {0}. Let
hE® =h2s =  min o (P).
PeE®(Q)
h i (p) (P)#0

By Mazur’s Theorem [Mazur 1977], #E®)(Q)ors <
16. By Proposition 2.4(ii),

S he(P) <165 G
PcED)(Q)—E®P)(Q)tors
Therefore
Tp(jk) <16C; > |D| *(hmm).

DeZ—0
D squarefree

It follows from [Silverman 1986, Exercise 8.17c on
p. 239] that there exists Dy > 1, depending on E,
such that
; 1
hp™ > ﬁlog |D| if |[D| > D,.

Thus, for a new constant CJ,
> D] *(hpm)

|D|<Dy
'y |D|’“<log|D|>J').

D squarefree
D>1

It follows that Tg(J, k) convergesif k > 1, orif k = 1
and j > 1. There exists a D such that

rank; FP)(Q) > 2

(by [Mestre 1992] when the j-invariant of E is not
0 or 1728; however, Mestre says he shows this in
general in unpublished work). Therefore j > 1, so
Tx(j, k) converges. By Proposition 2.2, Sg(j, k) con-
verges. Therefore, (a) = (c). O

3. RELATING R.(j, k) AND S.(j, k)
Proposition 3.1. If k& > %, j >0, and X CR, then:

(ii) Rg(j, k, X) converges if and only if Sg(j,k,X)

CONVETGES.
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Proof. We have

(u,v)e¥,u/veX

<ZZ

(u,v)ew

|s(F (u,0))| " h(u/v)

2| F (u, v)| “h(u/v)

u/vEX t2|F (u,v)
< Z Z n_%‘s(F(u,v))rkh(u/v)ﬂ
n=1 (u,v)eV
u/veX

= C(Zk)SEUa k:,X),

since k > 1. This is (i), and part (ii) follows imme-
diately. O

Corollary 3.2. If j is a positive real number, then the
following are equivalent:

(a) rank, E®)(Q) < 2j for every D € Z — {0},

(b) Rr(j,k,X) converges for some k > 1 and some
broad X,

(c) Re(j,k) converges for every k > 1.

Proof. This is immediate from Proposition 3.1 and
Theorem 2.7. |

4. RELATING Qc(j, k) AND Rq(j, k)

Let v(d) denote the number of prime divisors of d.
Let
§={(a,d,d):d,d € Z*, ged(d,d) =1,a € Q}.

Lemma 4.1. Suppose (u,v) € ¥, t € Z, and t*|F (u,v).
Then there ezists a unique triple (a,d,d') € § such
that (u,v) € Ly a0 and dd = t.

Proof. Note that F'(u,v) = v(v?f(u/v)) and v3 f(u/v)
is an integer. Since u and v are relatively prime, so
are v and v3 f(u/v). Let

d = /ged(t2,v3 f(u/v)),
d' = \/ged (2, v),

a=uv' (mod d?),

where v’ is the inverse of v (mod d?). The proof is
now straightforward. O

Proposition 4.2. If k > + and j > 0, then Qg(j,k)
converges if and only if Rg(j, k) converges.

Proof. It follows from Lemma 4.1 that

{(wv) e ¥: 2| Fw,o)}= [T ][] #NLada-

dd'=t acQy
ged(d,d)=1
(4-1)
Hence if X ¢ R we have
RE(.]akaX) = Z (ddl)zk
d,d =1
ged(d,d')=1
x> S |F(uw)| h(ujo) . @42

a€Qq (u,0)EYNL, 4 4/
u/vEX

In the remainder of this proof, unless otherwise
noted (by a subscript denoting additional depen-
dence on something else), “<” and “>” mean up
to a multiplicative constant that depends only on F’,
j, and k.

Suppose (o, d,d') € § and wyga € ¥. Then
Wa,a, contributes to one of the terms in (4-2) when
X =R. Since F has degree 4, |F(wq a0 )| < ||Wa,d.a ||
S0 ||waga || < |F(waaa)| ™" Since the lattice
Lo.aq has area (dd')?, Minkowski’s Theorem im-
plies that ||wa. a4 || < dd’, so log(dd')™7 < h(u/v)™
where w, 4.4 = (u,v). Therefore Qg (j, k) < Rg(j,k),
so if Rg(j, k) converges then Qg(j, k) converges.

Conversely, suppose Qg(j, k) converges. We will
show that for some broad X, Rg(j, k, X ) converges.
Then by Corollary 3.2, Rg(j, k) converges as well.

Let X be a broad bounded subset of R such that f
is nonzero on the closure of X (for example, we could
take X = (emin — 2, €min — 1) U (€max + 1, €max + 2))-
Then on X, |f| >x 1. Therefore if u/v € X, then

|F(u,v)] = 0 f (u/v)] >x [v|* >x |ul*,

the final inequality because X is bounded. It follows
that if u/v € X then

|F(u,0)| >x |[(u, v)[*. (4-3)

If (u,v) € Lygq then (dd’)? divides F(u,v); if
further F(u,v) # 0, then

(dd')? < |F(u,v)| < max(|ul,|v])*. (4-4)

Thus A(u/v) > max(1,log(dd’)). By (4-2) and (4-3)
we have Rg(j,k, X) <x R; + Ry, where

dd/ 2k 4k
Z Z max(1, log dd')7_ Z el

d, d'=1 a d,d’
ged(d,d’)=1 wa d, .1'6‘1’ w;éo

R1:
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and
ddl 2k
Jlw]| 7.
;1 a%;g maX 1 log ddl)) E‘I/;xdd’
Wo,a,a’ EY

Exactly as in the proof of Proposition 2.4(ii), the
theory of Epstein zeta functions shows that there is
an absolute constant C such that

> wl™ < Cllwaawll™.
wGLa)d)d/
w#0
Therefore Ry < CQg(j,k), so Ry converges.

It remains to show that R, converges. (Note that
the terms in R, have no counterparts in Qg(j,k).)
Fix positive integers d and d’' and « € §4 such that
Wada ¢ ¥. Let t = dd' and let w’' be a shortest
vector in L, 4.4 Then {wq,q,0,w'} is a
basis of L, 4.4/,

— Zu}a’d’d/ .

|wad,a | ||| > Area(La.aa) =17,
and
lwaaa| < VArea(Lyga) =1
One can check that for every m,n € Z,
> 5 (m?||wa,aw|® +n?llw’?) .

Clearly YN L, 440 C Lo g0

> el

wE\PﬂL&,d’d/

o0 o0
<2 Z Z [Mwea.g.a + nw'|| =4
n=1 m=—oo
o0 o0
<> N (m
n=1 m=0

<< t74k,

(4-5)

lmwe.q.a + nw'||?

- Zwa,d,d’a S0

72)72’6

Nwa,aa I + n°tY|wa,ae

where the last inequality follows from (4-5) and a
computation of the corresponding integral. Thus

(dd')~2
R, < Z Z max(1,log dd’))

d,d'=1 a€Qy
gu(d) =2

<<Z e Zd,gk,

d'=1

since #(Q4) < 3¥(4). Tt is easy to see that 3¥(% <,
d¢ for every € > 0. Therefore these sums converge,
if k> % This completes the proof. O

Corollary 4.3. If j is a positive real number, then the
following are equivalent:

(a) rank; EP)(Q) < 25 for every D € Z — {0},
(b) QE(j, k) converges for some k > 1,
(C) QE(j, /-c) converges for every k > 1.

Proof. This is immediate from Proposition 4.2 and
Corollary 3.2. O

Theorem 1.1 is now immediate from Theorem 2.7
and Corollaries 3.2 and 4.3.

5. ADDITIONAL REMARKS

Remark 5.1. As in (4-4) and (4-5), each w, g4 lies
in an annulus A4, of inner radius C;+v/t and outer ra-
dius Cyt, with positive constants C; and Cy depend-
ing only on F'. If the lattices L, 44 Were “random”
lattices of area t? (with F(wa.q4a4) # 0) then one
can compute that for large t, the expected value of
t—k,HM in the annulus 4; would be

1
llw cF o3 (2k—1)t”
If we replace the corresponding terms of Qg(j,k)
with this expected value, we obtain a “heuristic up-

per bound” for Qg(j, k) of

o0

O<C4k 2k — 1) ZtlogJ ’(t >

(5-1)

Here we have used that the number of (o, d,d’) € 8
with dd' =t is O(4*®), and

Z 4"® = O (zlog*(z)) .

1<t<z

The heuristic upper bound (5-1) correctly captures
the fact that the divergence of Qg(j, k) is indepen-
dent of k. On the other hand, the heuristic upper
bound does not correctly predict the divergence of
Qr(j, k). Note that (5-1) converges if and only if
j > 4. However, it cannot be the case that Q (7, k)
converges for all £ and all j > 4, by Theorem 1.1
and the existence of elliptic curves over Q of rank
greater than 8.

Remark 5.2. Another way of studying the “random-
ness” of the lattices L, 44 or their shortest vec-
tors wy qq is as follows. For every (a,d,d’) € 8§,
choose a random point z, 44 in the annulus Ay If

B,C € R™ define
SB,C = {(O{,d7 dl) € S . ddl < B, ||Za7d7dl|| S CV dd,}



Rubin and Silverberg: Ranks of Elliptic Curves in Families of Quadratic Twists 589

It is straightforward to compute that for fixed C and
large B,

the expected value of #8 ¢ is O(log*(B)).

Now suppose that £ and D are fixed and that
E™®)(Q) has rank r. Fix r independent points P,
ooy Poin EPY(Q)N EP)(R)?, and let

c= (Z \/;EE(D)(PZ.)>2.

As in the proof of Proposition 4.2, fix a broad
bounded subset X of R such that f is nonzero on
the closure of X, and for B € R™ define

MB = {anR n; € Z, \nz| < 1/ 10g(B)/2C}

i=1

(5-2)

N{P e EP(Q):z(P) € X}.
Suppose P is a non-zero point in Mg. Then

hp(P) < log(B)/2. (5-3)

Write z(P) = u/v in lowest terms. By Lemma
2.1, F(u,v) # 0 and s(F(u,v)) = D. By Lemma
4.1, there is a unique triple («,d,d’) € 8§ such that
(u,v) € Lyaa and D(dd')? = F(u,v). Exactly as
in (4-3), we have

|lwaa,a |l < 1w, v)|| <x |F(u,0)[* = |DI*Vdd,
SO
||wa7d,d/|| S Cl\/ dd’

for some constant C’ (depending only on F' and X).
Using (44), (2-2), (5-3), and Lemma 2.1 we have

(5-4)

dd' = \/F(u,v)/D < max(|ul|, |v|)> < B. (5-5)

By Lemma 2.3,
#Mp >x log"*(B).

It is not difficult to check that the fibers of the map
from Mg to 8 all have order bounded by 6 times the

number of divisors of D, and it follows from this,
(5-4), (5-5), and (5-6) that

#{(aa d, d,) €8:dd < B, ||w01,d7d'||
< C'Vdd'} > log"*(B).

Comparing (5-2) and (5-7) we conclude that if for
at least one D we have rank; EP)(Q) > 8, then the
vectors wey,q,q¢ are not distributed randomly in the
annuli A,y .

(5-6)

(5-7)

Remark 5.3. The sum Qg(7, k) is very sensitive to the
terms where w, 4 4 lies close to the inner edge of the
annulus A4;.

Remark 5.4. The reason for introducing X in the
sums is for the proof of Proposition 4.2 (see (4-3)).

Remark 5.5. By working a little harder in the proofs,
one can show that Theorem 1.1 remains true if one
replaces Qg(j, k) by a new sum where the condition
Wa,aa € ¥ in the definition of Qg (4, k) is replaced
by the condition F'(wq,a,a) 7 0.

Remark 5.6. Suppose we replace the cubic polynomial
f(z) by a polynomial of degree d > 5 (with distinct
complex roots), and replace F(u,v) by v™f(u/v)
where m is even and m > d. Then the resulting
hyperelliptic curve has genus greater than one. Ca-
poraso, Harris, and Mazur [Caporaso et al. 1995]
conjectured that the number of rational points on
curves of genus greater than one is bounded by a
constant depending only on the genus of the curve.
The conjecture of Caporaso—Harris-Mazur implies
that the corresponding sums Sg(j, k) and Rg(j, k)
converge for all £ > 1 and j > 0, since, conjecturally,
#Xpr is bounded by a constant that is independent
of D, where ¥p is defined in equation (2-1).
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