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Rubinstein and Sarnak investigated systems of inequalities of the
form m(x;q,a;) >+ >m(X;q,a), where m(x;q,b) denotes the
number of primes up to x that are congruent to b mod q. They
showed, under standard hypotheses on the zeros of Dirichlet
L-functions mod q, that the set of positive real numbers x for
which these inequalities hold has positive (logarithmic) density
Oqiay,....a, > 0. They also discovered the surprising fact that a cer-
tain distribution associated with these densities is not symmetric
under permutations of the residue classes a; in general, even if
the a; are all squares or all nonsquares mod q (a condition neces-
sary to avoid obvious biases of the type first observed by Cheby-
shev). This asymmetry suggests, contrary to prior expectations,
that the densities dg,,,... o, themselves vary under permutations
of the a.

Here we derive (under the hypotheses used by Rubinstein and
Sarnak) a general formula for the densities dgsa,,...,, and we use
this formula to calculate many of these densities when q <12
and r < 4. For the special moduli q=8 and q=12, and for
{ay,ay,a3} a permutation of the nonsquares {3,5,7} mod 8
and {5,7,11} mod 12, respectively, we rigorously bound the
error in our calculations, thus verifying that these densities are
indeed asymmetric under permutation of the aj. We also deter-
mine several situations in which the densities §g.,,,...a, remain
unchanged under certain permutations of the aj, and some situ-
ations in which they are provably different.

1. INTRODUCTION AND SUMMARY

In 1853 Chebyshev remarked that there are more
primes congruent to 3 than to 1 modulo 4, and since
that time considerable efforts have been expended
in attempts to determine in what sense this remark
is true. It follows from the prime number theorem
for arithmetic progressions (see [Davenport 1980],
for instance) that, asymptotically, half of all primes
are congruent to 3 mod 4 and half are congruent to
1 mod 4, so that Chebyshev’s observation cannot be
interpreted in that sense. However, when we com-
pute the numbers of primes up to x that are congru-
ent to 3 mod 4 and to 1 mod 4, we find that for most
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values of x, the primes congruent to 3 are more nu-
merous than those congruent to 1. Similar “biases”
have also been observed, notably by Shanks [1959],
for moduli ¢ other than 4; in particular, the num-
bers of primes in nonsquare residue classes modulo
q tend to exceed the numbers of primes in square
residue classes. We refer to inequities of this type
as “Chebyshev biases”.

These observations lead naturally to the study of
inequalities of the type

ﬂ-(x;(L al) > ﬂ-(x;(L a2) > > ﬂ-(x;(L 0/7-), (1_1)

where 7(z; ¢, a) denotes the number of primes p < x
such that p = a mod ¢. Littlewood [1914] showed
(unconditionally) that the inequalities

m(x;3,1) > m(x;3,2) and w(x;4,1) > 7(x;4,3),

as well as the opposite inequalities, each hold for
infinitely many integer values of x. A number of
additional results on single inequalities of this type
were subsequently derived under certain hypothe-
ses by Knapowski and Turdn in a series of papers
beginning with [Knapowski and Turdn 1962], and
Kaczorowski wrote several papers concerning the
multiple inequalities (1-1), the most recent of which
is [Kaczorowski 1996].

A major advance was made recently by Rubin-
stein and Sarnak [1994] who showed (conditionally)
that for any modulus g and for any distinct re-
duced residues ay,...,a, mod ¢ (i.e., integers rela-
tively prime to ¢), the system of inequalities (1-1)
holds for infinitely many integers x. More precisely,
they worked under the assumption of the General-
ized Riemann Hypothesis for Dirichlet L-functions,
which we shall abbreviate as GRH, and an addi-
tional assumption (their “Grand Simplicity Hypoth-
esis”), which we abbreviate as LI:

Hypothesis LI. The nonnegative imaginary parts of
the nontrivial zeros of Dirichlet L-functions corre-
sponding to primitive characters are linearly inde-
pendent over the rationals.

Rubinstein and Sarnak studied the quantities

5Q§a17---aar’

defined as the logarithmic density of the set of posi-
tive real numbers = for which the inequalities (1-1)

hold. (The logarithmic density 6(A) of any subset
A of the real numbers is defined as

1 dt
0(A) = lim / —,
z—=00 10T Janp.e) T

provided that this limit exists. Suffice it to say here
that logarithmic densities are more appropriate for
these problems than ordinary densities; in this pa-
per, by “density” we shall always mean logarithmic
density.)

Under the hypotheses above, Rubinstein and Sar-
nak proved that the densities d,.,,,.. ., exist and are
positive for any integer ¢ > 2 and for any distinct
reduced residues ay,...,a, mod gq. They obtained,
for several small moduli ¢, numerical values for the
density of those x for which the primes up to = that
are quadratic nonresidues mod ¢ outnumber those
that are quadratic residues. Rubinstein and Sarnak
also proved that 0y, = 0gara = 3 if @ and o’ are
both squares or both nonsquares mod ¢, and other-
Wise 04,0 1s greater than or less than % according to
whether a or o’ is the nonsquare mod ¢, thus bearing
out the biases of the type observed by Chebyshev.

It was generally suspected for r > 2 as well that
whenever the a; are all squares or all nonsquares
modulo g, the densities dy,, .. ., are invariant un-
der permutations of the a; (and thus equal to 1/r!).
However, Rubinstein and Sarnak showed that cer-
tain distributions p4.4, ..., on R" that are associated
naturally with the densities .4, . o, are not sym-
metric under permutations of the a; when r > 3,
except in the special case when » = 3 and there
exists p # 1mod ¢ with p> = 1 mod g such that
a; = a;p mod g and a3 = a,p® mod ¢q. (Note that
since p = p* mod q is a square, it follows that such
{ay,ay, a3} are all squares or all nonsquares mod g.)
This result suggests, but does not imply, that the
dg:a1.....a, are generally asymmetric under permuta-
tion of the a;.

In this paper, we rigorously establish a number of
asymmetries of this type, under the two aforemen-

tioned hypotheses. Triples of nonsquares and triples
of squares occur for the moduli ¢ = 7 and ¢ = 9,
but these triples fall under the special case that has
just been mentioned. Thus the smallest moduli for
which such asymmetries of the 4.4, ,4,,4, could arise
are ¢ = 8 and ¢ = 12, each of which has three non-
squares (and a single square), and ¢ = 11, which
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has five squares and five nonsquares. Our main the-
orem provides results for the cases ¢ = 8 and ¢ = 12
showing that these asymmetries do in fact exist:

Theorem 1. Assume GRH and LI. Let 0y, .. o, de-
note the (logarithmic) density of the set of positive

real numbers x for which the system of inequalities
(1-1) holds. Then

0s:3,5,7 = 0s.7,5,3 = 0.1928013 £ 0.000001,
0s:3,7,5 = 0s:5,7,3 = 0.1664263 £ 0.000001,
0s;5,37 = Os;7,3,5 = 0.1407724 £+ 0.000001,
and
012:5.7,11 = O12.11,7,5 = 0.1984521 £ 0.000001,
012:5.11,7 = 12,7115 = 0.1215630 £ 0.000001,
012:7511 = O12,11,5,7 = 0.1799849 £ 0.000001,
where the indicated error bounds are rigorous.

The pairwise equalities among the §’s in Theorem 1
are not numerical coincidences, but are provably ex-
act. In fact there are several situations in which we
can establish symmetries of this sort. To state these
results, we first need to define

c(g,a) = -1+ #{1<b<gq:b*=amodq} (1-2)

for coprime integers a and gq. Note that when ¢ is an
odd prime, ¢(g, a) simply equals the Legendre sym-
bol (%) Note further that ¢(q, a) can take only two
possible values for a given ¢: certainly ¢(g,a) = —1
for every nonsquare a mod ¢, while ¢(q,a) = ¢(g,1)
for every square a mod g. We can interpret ¢(g,1)
as the ratio of the number of invertible nonsquares
to the number of invertible squares mod gq.

We may now state our results concerning symme-

tries:

Theorem 2. Assume GRH and LI. Let q,v > 2 be
integers and let ay, ..., a, be distinct reduced residue
classes mod q.

(a) Letting aj_l denote the multiplicative inverse of
a; modulo q, we have by, a, = Ogia=t | 471

(b) If b is a reduced residue class modulo q such that
c(q,a;) = c(q,ba;) for each 1 < j < r, then
Ogiarsenar = Ogibanr,...bar- AN particular, this holds
if b is a square modulo q.

(c) If the a; are all squares modulo q and b is any
reduced residue class modulo q, then 0g4.q, ... 0. =

5q;ba17---7baw

(d) If the a; are either all squares modulo q or all
nonsquares modulo q, then 6q.q,. .o, = 0ga,. .. a:-

(e) If b is a reduced residue class modulo q such that
c(q,a;) # c(q,ba;) for each 1 < j < r, then
Og:ar.....ar = Ogibar,...bar- 1IN particular, this holds
if q is an odd prime power or twice an odd prime
power and b is any nonsquare modulo q.

The pairwise equalities in Theorem 1 are special
cases of part (d) of Theorem 2, which generalizes
the previously mentioned result of Rubinstein and
Sarnak that 0,4, = 4,0, if @ and a’ are either both
squares or both nonsquares modulo q. Their other
symmetry result, that 0,4, 4,4, 1S invariant under
permutations of the a; when there exists p # 1
(mod ¢) with p*> = 1 (mod q) such that ay = a;p
(mod ¢) and a3 = a;p* (mod q), is also a conse-
quence of Theorem 2 (specifically parts (b) and (d),
the former applied with b = p and b = p?).

To complement Theorem 2, we can also establish
several inequalities concerning the densities d:

Theorem 3. Assume GRH and LI. Let ¢ > 2 be an
integer, let N and N' be distinct (invertible) non-
squares mod q, and let S and S’ be distinct (invert-
ible) squares mod q. Then:

(@) Og;n,N7,5 > Ogi, N7, N
(b) Og;n,8,50 > 0g;57,5,N3
(C) Og;n,5,N" > Ogsnv,s,n if and only if dg;n s > Oginv 55
(d) 6q;S,N,S’ > (5,1;517]\[75 ’Lf and only ’Lf (5,1;57]\[ > 6,1;5/,]\/.

Parts (c) and (d) of Theorem 3 are further exam-
ples that the predisposition towards some orderings
of {m(z;q,a1),...,m(z;q,a,)} over others cannot be
explained solely in terms of the Chebyshev bias that
encourages nonsquares to run ahead of squares in
the prime number race. (See also the discussion of
“bias factors” in Section 6.)

The most general result in this paper is an explicit
formula for an arbitrary density d,.4,,..... Because
of the amount of notation involved, we have deferred
the statement of this result (Theorem 4) to Section
2E. We have used this general formula to calculate
the densities given in Theorem 1, and also a number
of the 0g4.4,,.. 4. in many interesting cases involving
q < 12 and r < 4. For instance, we verify that for
q = 11, which is the smallest interesting case not
covered by Theorem 1, there are again asymmetries
in races among triples of squares and among triples
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of nonsquares. In these additional computations we
have not undertaken to rigorously bound the error
terms; nevertheless we believe, from numerical con-
siderations, that the results given in Section 4 are
accurate to the number of decimal places indicated.

We shall assume GRH and LI throughout this pa-
per. In Section 2 we provide our main analysis lead-
ing to Theorem 4, the general formula for d .4, . 4, -
The rigorous bounding of the error terms incurred
during the calculation of the densities in Theorem
1 is carried out in Section 3. Details of the com-
putations and the additional numerical results are
collected together in Section 4. The proofs of Theo-
rems 2 and 3 are given in Section 5, while in Section
6 we provide concluding remarks, noting some pos-
sible directions for further work.

2. ANALYTIC DETERMINATION OF THE DENSITIES
6Q?ah~--,ar

The goal for this section of the paper is to derive
Theorem 4 (see Section 2E), a general formula for
the densities d,.4,.....4,. We begin by developing some
notation and citing the relevant results of Rubin-
stein and Sarnak in Section 2A. In Section 2B we
investigate the function Py, ... .. Which will figure
prominently in the arguments that follow, while in
Section 2C we establish some facts about Cauchy
principal values of multidimensional integrals; these
sections are technical rather than conceptual in na-
ture, and the reader may wish to examine these only
briefly on the first reading. Because the general for-
mula given in Theorem 4 and the arguments leading
to it are somewhat involved, in Section 2D we first
detail the derivation of this formula for the special
cases 0g.q p,c and 12,45, occurring in Theorem 1; the
derivation of the formula in the general case is then
carried out in Section 2E. We assume the hypotheses
GRH and LI throughout.

2A. Notation and Background Results

We begin by establishing the notation necessary for
discussing the results of Rubinstein and Sarnak. For
any coprime integers q and a and any real number
x > 1, define

log x

N3

E(x;q,a) = (e(q)7(x;q,a) — m(x)),

so that E(z;q,a) is an error term for the number
of primes congruent to a mod ¢, normalized so as
to vary roughly boundedly as z varies. Since the
inequalities 7(z;q,a,) > - -+ > m(z; ¢, a,) hold if and
only if E(z;q,a,) > --- > E(zx;q,a,), we wish to
study how often the vector

Eqmly---,ar(l‘) = (E(.l', q, a1)7 e ,E(J,’, q, a/r)) (2_2)

lies in the region {(z1,...,z,) e R" 1 2y > --- >z, }.
Notice that if r = ¢(q) then the a; form a complete
set of reduced residues mod ¢, in which case we see
from equation (2-1) that
l(z/g; p(9)w(a),
(2-3)

where w(q) denotes the number of distinct prime
factors of q.

Rubinstein and Sarnak showed, assuming GRH,
that the function E,,, .. (z) has a limiting distri-
bution fi.4,.....a,, i the sense that

/X P (Bgarsan (@)

T

/ /f:r;l,..., d/,LQO a

for all bounded, continuous functions f on R". Un-
der the further assumption of LI, they showed that
the distribution fi4,,, .4, is absolutely continuous
with respect to the ordinary Lebesgue measure on
R". (The exception is the case r = ¢(q), when equa-
tion (2-3) implies that the distribution g4, ., is
supported on the hyperplane z;+- - -4+, = 0; in this
case, [lg.a, .., 15 absolutely continuous with respect
to Lebesgue measure on this hyperplane.) Conse-
quently, the equation (2—-4) holds when f is the char-
acteristic function of any reasonable subset of R"
(specifically, a measurable subset whose boundary
has Lebesgue measure zero in R"). In particular, it
follows from the definition of §,.,,,.. 4, that

Ogiarsar = 5({:(: eR:7(z,q, al) > >7(z,q, ar)})
= figar,...a, ({z ER": +>x,})

/ /dMQ7a17 @ (2-5)

1> >Tp

E(z;q,a1) +-+- + E(x;9,0,) = —

)}1—>H<1>o log X

(2-4)

Another consequence of the absolute continuity of
Hg:ar,....a, 1S that the set of positive real numbers x for
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which 7 (z;q,a) = m(z;¢,a’) has density zero when
a and o are distinct reduced residues; indeed this is
even true of the larger set

{z:|n(z;q,0) — m(z5q,0")| < 2(x)}
for any function ® such that
d
lim (:v) = 0.

T 00 \/_/log T

Next we develop the notation needed to write
down Rubinstein and Sarnak’s seminal formula for
the Fourier transform fi,.,,, .. of the distribution

Hgiar,....a.- In this paper we use the normalization
f(glv .. 7§n / / TGzt

X f(z1,...,2,)dzy ... dz, (2-6)

for the Fourier transform of an integrable function
f on R™, so that the Fourier inversion formula (as-
suming that f is itself integrable) is

27( / / i(r1z14+Enzn)

nglv"'agn)dgl 5

f(xl,...,

Likewise we write

ﬂ($17 . 7§n) = / . / e_i(§1m1+"'+§n1’n) d'u

for the Fourier transform of a finite measure y on R",
so that the Fourier inversion formula (assuming that
[ is integrable with respect to Lebesgue measure) is

d/j, = (271')*?1 < / . / ei(£1z1+"'+§nzn)
X5 En) dEr - dfn> dz;...dz,. (2-7)

To write down the Fourier transform figq, ... .q,, We
recall the standard Bessel function of order zero,

Sy G
JO(Z):ZWZI_Z—l_ﬁ_ZI_ .
m=0
(2-8)
and then set
Fizx)= [ Joley2) (2-9)

>0
L(5+iv,x)=0

in terms of the Dirichlet L-function L(s,x) corre-
sponding to the Dirichlet character y, where we have
defined
2
=

(Since we are assuming GRH, the product in equa-
tion (2-9) is indexed by all the nontrivial zeros of
L(s,x) in the upper half-plane.) For later use in
numerical approximations of F'(z,x) we also define
the truncated version

FT(Z,X):( 11 Jo(avz))(ublz?) (2-11)

0<y<LT
L(5+iv,x)=0

(2-10)

for any positive real number 7', where

1
-y -

~>T 1

by = by (T, x) = (2-12)
The polynomial factor in the definition (2-11) of Fr
is motivated by the fact that, in view of the power
series expansion (2-8) of Jy, b; is the coefficient of
2% in the power series expansion of [[ ., Jo(a,2).

With this notation in place, we can now give Ru-
binstein and Sarnak’s formula [1994, equation 1.2]
for the Fourier transform iy, . ., of the distribu-
tion fig.q,,..q.- They showed, assuming GRH and
LI, that

r

ﬂq;al,...,a,« (517 s 7§T’) = €xXp (7’ Z C(Q7 aj)fj)

X HF(

xmodgq
XF#X0

3

, X) (2-13)

where ¢(q,a) was defined in equation (1-2). This
result will be used extensively in the sequel.

Since Jy(0) = 1 we clearly have

for any character x. It is known (see for instance
the arguments in [Davenport 1980, Chapters 15-16])
that for a fixed character x, the number of zeros of
L(s,x) with imaginary part between 0 and T has
order of magnitude T'log7. From this it can be
shown that the product (2-9) defining F(z,x) con-
verges uniformly on bounded subsets of the complex
plane, and hence F' is an entire function. For later
use we will need bounds for the decay rate of F(z, x)
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and its derivatives F'™Y)(x,x) on the real axis; this
is the subject of the following lemma.

Lemma 2.1. Given a modulus ¢ > 2 and a nonnega-
tive integer N, there exist positive constants (B, and
B2 such that

[F™ (@, )] < Bre™
for all real numbers x.

Warning. In the next three sections, the constants
61 and (B, will not necessarily have the same val-
ues at different occurrences; each statement should
be interpreted as holding for some suitable positive
values of (; and [s.

Proof. In this proof we will use the symbol ~, with or
without subscript, exclusively to denote a positive
imaginary part of a nontrivial zero of L(s,x). We
also use I' to denote an ordered N-tuple (7y,...,7n),
and we let mr() denote the number (possibly zero)
of coordinates of I' that equal 7. When convenient
we can also assume that x > 1, since F' is an even,
smooth function. From the definition of F(z,x) in
equation (2-9), an N-fold application of the product
rule gives us the expression

Z Qo ve Oy H J O (o)

T=(v1,-yYN) v

=> &, T)F(z,x,T)

for the N-th derivative of F(z,x), where we have
set

FM(z,x) =

(2-14)

®(z,T) = H aTF(W)JémF(v))(avx) (2-15)
yel
and
(z,x,T H Jo(oyx)

v¢T

We can show that F'(z,x) decays rapidly on the
real axis by using the standard bound [Rubinstein
and Sarnak 1994, equation 4.5]

()] < min{l,\/% }

for the Bessel function on the real axis. This bound

implies that

.
J
2
<
_]Hl 71-|a')’,7$|
J
= (ala) PTIE+42)"" -6
j=1

for any positive integer J, where the v; have been
indexed in increasing order. Choose J = J(z) to be
the number of zeros of L(s, x) up to height /2. For
any 0 < v < /2, it is easily verified that the fac-
tor (m|z|)~"/?(% +~%)"/* does not exceed ;. There-
fore the upper bound (2-16) implies that |F(:U x)| <
277, Since the order of magnitude of J is x log z, this
argument shows that as x tends to infinity, |F'(z, x)|
decreases at least as fast as a function of the form
c®1°8® for some constant ¢ depending on .

The same conclusion holds for F(z,y,T), since
removing the indices j in equation (2-16) for which
v; € I' changes J by at most N and thus does not
affect the order of magnitude of J. Certainly then
there exist positive constants 3; and [, (depending
only on N and x) such that |F(z,x,T)| < Be Pl
for all real numbers z. Since this implies from equa-
tion (2-14) that

|F(z,x)| < Bre I 2-17)

the lemma will be established (possibly with differ-
ent values of 3; and (3;) if we can show that this last
sum is bounded by some polynomial function of |z|.

To this end, we employ the crude bounds |J{(t)| <
t/2 and |J™ (t)| < 1 for the derivatives of the Bessel
function, which follow easily from the integral rep-
resentation

2 7|'/2
Jo(t) = —/ cos(tsin @) df.
0

T

Again supposing that > 1, the definition (2-15) of
®(z,T') leads to the bound

|® $F|<< 11 a2|az|)( 11 a;nm)).
~er ~er

mr(y)=1 mr(y)>1
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It follows that
S|@(,T)| < [V S azestme2)
r r

<|zVNJA+e2+ad+- - +ad).

Y

Since the j-th constant o, has order of magnitude

1 log j

—_—~

Vi i’
this last product converges to some constant de-
pending only on x. Combining this bound with the
inequality (2-17) establishes the lemma. O

Of course it also follows from the first line of equa-
tion (2-16) that |F'(x, x)| is bounded above by 1 on
the real axis.

In Sections 3A and 3E we will need to make use of
the fact that p,.,,, ... can also be thought of as the
joint distribution of a certain set of r real-valued
random variables, and it is convenient to exhibit
these random variables explicitly at this time. For
given values of ¢, r, and a4, . .., a,, define the vector

b = —(C(q,al),...,c(q,ar)).

q301,-0,0r

Next, for any character y mod g, define both the
vector

Vgsag,onar (X) = (x(a1), .-, x(a,))

and the random variable

Xx)= >

v>0
1.
L(5+iv,x)=0

a., sin(27U,), (2-18)

where the a, are as in (2-10) and the U, are in-
dependent random variables uniformly distributed
on [0,1]. Note that by the hypothesis LI, the «’s
corresponding to different L-functions are distinct,
so that a given U, appears in the definition of only
one of the X (); consequently the random variables
{X(x)} are mutually independent. Then Rubinstein
and Sarnak showed that the distribution jig,q, . a, is
in fact the same as the probability measure corre-
sponding to the random vector

bgarear T D X ()01, (X)-

xmodgq
X#X0

(2-19)

2B. The Function p., . .

In this section we introduce the function pg.q, .. . :
R"' — C, which we define by the formula
Paiar,....ar (Tha e a77r—1)

= fgsareoan (M1 M2 =115 - - -
so that

anrfl_nrfb _777‘71), (2_20)

ﬁq;ah---,ar(nla s 777r—1)

= exp (TZE (clg, a;) — (g, aj+1))77j)

j=1
r—1
X H F< Z(X(aj) _X<aj+1))77j ,X) (2-21)
xriodq Jj=1
X7F#Xo

from the formula (2-13) for fis.4,...4,. We will see
in Sections 2D and 2E that p,., ... 4, is the Fourier
transform of a certain measure pg,, .. on R™!
associated with fig.q,, ... We remark that in the
special case where the a; are all squares or all non-
squares, we have c(q,a;) = --- = ¢(qg,a,) and so
the exponential term in the formula (2-21) is iden-
tically 1, so that pgq,,... ., is real-valued and sym-
metric with respect to reflection through the origin.

The function pg.q,, .., Will feature significantly in
the remainder of this paper, and it will be impor-
tant to establish some of its smoothness and decay
properties. To avoid frequent repetition of the same
properties, we shall say that a function f on R" is
well-behaved if it has continuous derivatives of all or-
ders and if there exist positive constants 3; and [
such that, for every subset {j,...,jx} of {1,...,n},

k

97 satisfies the

the mixed partial derivative 5——5—
Tjy ... 0T,

inequality
o f

(937]'1 . 6.’Ejk

where ||z|]| = |[(z1,...,2,)|| = Va2 + -+ 22 is
the Euclidean norm of z. This criterion must also
be satisfied for the empty subset of {1,...,n}, so
that the actual values of f must also be bounded
by the right-hand side of (2-22). Certainly any
well-behaved function is integrable as well. We re-
mark that all of the functions shown to be well-
behaved below in fact satisfy an inequality analo-
gous to (2-22) for partial derivatives of all orders;
however our proof of Lemma 2.4 below requires this

(T1,...,2,)| < Bre Pl (2-22)
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assumption only on the mixed linear partial deriva-
tives.

It is easily seen that finite sums and products
of well-behaved functions are again well-behaved.
If f and g are well-behaved functions on R™ and
R"™, respectively, then fg is a well-behaved func-
tion on R™""; conversely, the restriction of a well-
behaved function on R"™ to any subspace defined
by setting certain variables equal to zero is a well-
behaved function on that subspace. Also, if L :
R™ — R"™ is an injective linear map and f is a well-
behaved function on R", then the composite func-
tion f o L is a well-behaved function on R™: the
partial derivatives of f o L will just be linear combi-
nations of the partial derivatives of f, and the fact
that L is injective means that ||L(z)|| is bounded
below by a constant multiple of ||z, so that the es-
timate (2-22) for f on R" can be converted to a
similar estimate for f o L on R™.

The following two lemmas establish the important
fact that the functions pg, ..., are well-behaved.

Lemma 2.2. For every subset {ji,...,jx} C{1,...,7},

" -
Y _F N
oz, ... 01, < ;X(GJ)% aX)

< Brexp (—ﬁ2 ZX(%’)%’

j=1

> (2-23)

for some positive constants 3, and [3;.

Proof. Define

H(xl,...,xr;x):F<

Z:X(aj)xj ,X)-

The argument of F' on the right-hand side of this
definition involves a modulus and hence implicitly a
square root, which could potentially cause disconti-
nuities in the derivatives of H when this argument
equals zero; however, the Bessel function .J; is even,
whence the function F'(z, x) involves only even pow-
ers of x in its power series expansion about the ori-
gin. Consequently, H has continuous derivatives of
all orders. Note also that it suffices to establish the
upper bound (2-23) when

ZX(%)%’

> 1,

since the bound on the complementary set follows
immediately from continuity, with some value of [3;.

If we write F(z,x) = F(y/]z], x), then it is easy
to check by induction that the n-th derivative of F
equals

FO (z,x) =Y aniF® (/2] x) o] 72
k=1

for some constants «, ;. In particular, when |z| > 1
we see from Lemma 2.1 that

FO @) < preViL a2

for some positive constants 3; and S,.
In this notation we have

H(zy,...,2:5%) ) 5
:F(<Re2x(aj)$j) +(Imzi:1X(aj)xj>’X>'

Suppressing the details, we note that the mixed par-
tial derivative
oO*H

Oxj, ...0x,
can be computed using the product rule as a combi-
nation of three types of expressions: derivatives of
F evaluated at
2

bl

ZX(%’)%‘

linear factors of the form 2 Re(x(ax) > 7, x(a;)z;),
and constants of the form 2 Re(x(ax)x(ax)). From
equation (2—24), the expressions of the first type can
be bounded above by B exp(—Ba| Y., x(a;)z;l),
while the expressions of the other types grow only
as fast as a polynomial in | Y7, x(a;)z;|. This es-
tablishes the lemma for suitable positive values of

/61 and /82 . O

Lemma 2.3. The function pgq,,...q,. 15 well-behaved
for any integers q,7 > 2 and any distinct reduced
residues {ay,...,a,}.

Proof. From (2-13), the function fig.,,, ., certainly
has continuous derivatives of all orders (see the proof
of Lemma 2.2), and thus the same is true of py.q,. 4.
We begin by examining the behavior of the mixed
partial derivatives of the function fi,,, ... Let
S = {ji,.-.,Jr} be a subset of indices from the set
{1,...,r}, and let % denote the result of taking
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the partial z;-derivatives for every j in S. The prod-
uct rule applied to the formula (2-13) for fi4.q, . 4,
yields

k T

o 0 .
8—%/’6%041,...,@1«(6) = Z <8ISO exXp (Z ZC(Q7 aj)gj)

So,{Sx} J=1
" :
< I P F(‘Zx(aj)gj,x> , (2-25)
xmodgq X j=1
XF#Xo

where the outer summation is taken over the finitely
many partitions of the index set S into

SoU (Uyna S1)-

Each mixed partial derivative appearing in the expo-
nential term is bounded, while from Lemma 2.2 each
mixed partial derivative of F(| Y ", x(a;)&l, x) is
exponentially decaying as a function of its argument.
We conclude from equation (2-25) that there exist
positive constants (; and (3, such that

or "
2 @] <0 T o0 (-] Sxtas )
o XH;Odq j=1
X7FXo

— lglefﬁzQ(E)l/z, (2-26)

)2.

where we have defined

T

Zx(aj)fj

=1

QE) = Quun@= (T

xmodgq
XFXo

We thus seek a lower bound on Q(§).
We may certainly write

2

UEDY ﬁ;xmj)@-
o
- zijlx<aj>£j2—(§i;5j)2.
Now o
2; i;xmj)@-::i;% Z; x(ai)x(a;)

= ¢(q) i&?

by the orthogonality of the characters x. Therefore

Q) > sO(Q)i;é“? - (Zg)

We assume for now that r is strictly less than ¢(q),
commenting at the end of the proof on the slight
differences in the case r = ¢(q). The quadratic form
on the right-hand side of the inequality (2-27) turns
out to be positive definite when r < ¢(q), and so we
can write

(2-27)

Q&) > ()M ll€l,

where ), is the smallest eigenvalue of that quadratic
form. From the inequalities (2-26) and (2-28), it
follows that
ok
0. < —B|I€ll
2 ]

(2-28)

for some different positive constants 3; and (3. Since
the index set S C {1,...,r} was arbitrary, this
shows that the function fi.q, . .., is well-behaved.

Furthermore, from its definition (2-20) the func-
tion Pg.a,,....q, 1S simply the composition of fig.4,.... a.
with the injective linear transformation

(nl; e 77]7’—1) — (77177}2_7]17 e 77]7‘—1_7]7‘—25 _777‘—1)

from R"! to R". As mentioned before, this implies
that pga,,...,q, is itself a well-behaved function.

When r = ¢(q), the function fig.,,, . ., is invari-
ant under translation in the direction of the vec-
tor (1,...,1), and so it is not well-behaved even
though it has the required decay properties on the
hyperplane orthogonal to (1,...,1) (one can check
that the quadratic form on the right-hand side of
the inequality (2-27) is positive semi-definite when
r = ¢(q), with its zero set being the multiples of the
(1,...,1) vector). However, the image of the linear
transformation

(Mo Mre1) = (M M2 =115 o1 — M2y —T)p—1)

lies within this hyperplane, so we can still deduce
that pg.q,...a, is well-behaved even when r = ¢(q).
This establishes the lemma. [l

Of course we also have the trivial bound

|lalI§a17~~~aar‘ S 1'
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Lemma 2.3 implies in particular that pg., ... 4, i in-
tegrable, and consequently the Fourier inversion for-
mula (2-7) is valid for pg.q,. . a,, becoming

dpq;ah-..,aT = (271-)—7‘(/. . / ei(§1z1+...+§rzr)

X Pasarsa €1y &) dEyL . dgr> dz, ... dz,.
(2-29)

2C. Multidimensional Cauchy Principal Values

In one dimension, the Cauchy principal value

F ), f(z)

is a familiar object. For our purposes it will be nec-
essary to make use of the multidimensional analogue

P.V./---/del...dxn
r1...Tp

= lim f@y s )darl...da:n; (2-30)
e—0 L1...Tp
min{|z1 ..o |z} >

in particular, we would like to know that this limit
exists. The purpose of this section is to establish the
existence of these multidimensional Cauchy princi-
pal values for well-behaved functions, a class which
by Lemma 2.3 includes the functions pgq, . 4, dis-
cussed in the previous section. We remark that
while the lemmas in this section could certainly be
obtained under somewhat weaker hypotheses, they
suffice for our purposes as stated.

Lemma 2.4. Let f be a well-behaved function on R"™
that vanishes whenever any of the first k coordi-
nates xi, ..., T equals zero. Then the function
f(xy,...,x,) /21 ...z, extends across the coordinate
hyperplanes to a continuous integrable function sat-
isfying the upper bound

f(zq,...

y Tn)
r1...T

< lgle—ﬁzllmﬂ (2-31)

for some positive constants 3, and [3,.

Although this lemma holds in one dimension with-
out any assumptions on the derivatives of f, al-
ready in R? one can construct an exponentially de-
caying, smooth (even real-analytic) function f(z,y)
that satisfies f(0,y) = 0 for all y but for which
f(z,y)/x is not integrable.

Proof. That f(z)/z; ...z, extends across the coor-
dinate hyperplanes to a continuous function follows
from the fact that f has continuous derivatives of
all orders; therefore only the upper bound (2-31)
remains to be proved, since integrability is a conse-
quence of this bound. Furthermore, by continuity
it suffices to establish this upper bound when none
of the variables equals zero. Also, if all of the |z;]
are bounded by 1 then the function f(z)/z;...x
is uniformly bounded; therefore we may assume (af-
ter inflating the constant f; if necessary) that there
exists an x; with |z;| > 1.
Permuting the first k& variables if necessary, we
can choose an integer 1 < m < k such that
0<|zi|, e oy |xm| <1 and |zpmyals--., |z > 1.

Since f vanishes when z; equals zero, there exists a
number t; with |¢;| < |z;| such that

f(wla"'amn):f(xlv"'amn)if(07x27"'

= .’I,'l—(t]_7l'2, . ,mn)

8(31

) Tn)

by the mean value theorem in the variable x;. Simi-
larly, f vanishes whenever z, equals zero, so in par-
ticular 0f/0x; equals zero when z, = 0. Therefore,
there exists a number ¢, with |t3]| < |zo| such that

of
8$1 (t17$27 L 7$n)
_of of
- 8I1(t17$27'-'7xn) aml(tlvoax37"'7$n)
o f
= $2m(t17t27$37 e 7$n)

by the mean value theorem in the variable x,. Con-
tinuing in this way, we find numbers ¢; with [t;| <
|z;| for each 1 < i < m such that

f($15"-7mn)
omf
:Il---xmm(tla-”;tm7$m+1;---7$n)
It follows immediately that
f(z) o f
< Tiyeeestomy Tty e ve s Ty
Ty...Tp| axl...amm(l’ oty Tty Tn)
(2-32)
since |Zpi1ly ..., |2k > 1.
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Since f is well-behaved, there exist positive con-
stants 8; and (3, such that

omf
———(t1y o by Tt 1y - - - 5 Ty
Bml...amm(l +1 )
5ﬁleXP(_ﬁz\/ﬁ—i—'--—i—tfn—i—x;H—|—---+g;§l)_

(2-33)

But notice that

Since we are working under the assumption that at
least one of the |z;| exceeds 1, we can use this fact
in the inequality (2-33) to see that

o f

8x1...8xm(t1"" ' n)

,tm,xm+1, e

< Bye el /v

Combining this bound with the inequality (2-32),
this establishes the lemma (upon replacing £,/+/n

by ﬂQ) 0

For the proof of the next lemma, as well as for
(Theorem 4 in Section 2E), we require the following
notation: for a function f on R™ and a subset B of
{1,...,n}, define

f(B) = f(B)({z;:j € B}) = f(bs,...

where 0; = z; if j € B, and 0; = 0 otherwise. For
example, if n = 6 and B = {2,4,5} then f(B) is a
function of the three variables x», 24, and x5, namely
f(B) = f(0,22,0,24,x5,0); in general f(B) will be
a function on the appropriate |B|-dimensional sub-
space of R", where |B| denotes the cardinality of
B. In the case B = @ we simply have f(B) =

£(0,...,0).

Lemma 2.5. If [ is a well-behaved function on R",

then
P.V./---/del...dxn
T1...Tp

is well-defined; i.e., the limit in equation (2-30) ex-
15ts.

,0,), (2-34)

Proof. Let g,(z) be an even, well-behaved function
on R" with g,(0) = 1 (for instance, we might have
in mind g,(z) = e *), and let

g(x1, ... zn) = g1(z1) ... g1(zn).

Define an operator G on well-behaved functions f

by
= > (=)™ F(B)g(B)

Bc{1,...,n}

(2-35)

in the notation of equation (2-34), where B denotes
the complement {1,...,n}\ B of B. Since f and g
are well-behaved functions, the same is true of G(f).

Consider the term in (2-35) corresponding to some
particular proper subset B of {1,...,n}. Provided
we choose [ ¢ B, the term f(B)g(B) can be written
as g(x;) times a function independent of z;. Thus
f(B)g(B) is an even function of z;, and hence in-
tegrates to zero against any odd function of z;. In
particular,

7f(B)g(B) dxy...dr, =0

Ti...T

min{[z1],...,|zn |} >e
for any proper subset B of {1,...,n} and any posi-
tive €. Since the term in the sum (2-35) correspond-
ing to B = {1,...,n} is simply the function f itself,
we see that

[z, 20) dz, ...dz,

L1...Tp
min{|z1][,..., |zn|}>e
G
— - i dry...dz, (2-36)
r1...Tp
min{|z,..., |zn|}>e
for any € > 0.

On the other hand, we claim that G(f) evalu-
ates to zero when any of the variables x; equals
zero. To see this, let B be a subset of {1,...,n}
not containing [. When z; = 0 we see that the
term (—1)"~'BIf(B)g(B) corresponding to B in the
sum (2-35) reduces to

(~1)"PIF(B)g(B\ {1}).
The term
(—n) 1P (B U {i})g(BU{l})
= (=) BB U{I)g(B\{1})
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corresponding to B U {l} reduces to

(—1)"1PLE(B)g(B\A{1})

when x; = 0. It follows that when x; = 0, the terms
in (2-35) will cancel pairwise in the natural pairing
between the subsets of {1,...,n} not containing [
and those containing .

Because of this, Lemma 2.4 tells us that the func-
tion G(f)/x; ...x, is integrable, whence the domi-
nated convergence theorem implies

G

- G

e—0 T1...Ty
min{|z1],..., |zn|}>e

/ / d:vl ...dz,.
Zy.

This together with equation (2736) shows that the
principal value (2-30) exists—in fact it equals the

integral on the right-hand side of equation (2-37).
]

dry...dx,

(2-37)

Lemma 2.6. If [ is a well-behaved function on R",
then for any 1 < k < n,

. $1 iU1 - Lk
lim "% oo 5 Sy dzy ... dr,
c—0+ C C +x )

:Wn_kPV//f Il,...,.’L'k,O,...,O
o L1...Tp
Rk

Proof. We proceed along lines similar to the proof of
Lemma 2.5. Analogously to the definition (2-35) of
the operator G(f), define the operator

Gk(f) = Gk(f)(xla s 7xn)

= Y (-D)FPIF(BU{E+,...,

Bc{l,....k}

)darl...dxk.

(2-38)

n})g(B),

so that G (f) is itself a well-behaved function. The
arguments leading to the validity of equation (2-36)
in the proof of Lemma 2.5 show that the function
Gr(f) — f integrates to 0 against any function that
is odd in each of the variables x4, ..., x; separately.
In particular,

.1'1... xl T
ek o o 5 sy dzy ... dxy,
(c c—l—a:)

- k Gk xl, xn)xl...xk
02

v (@ +22)

Making the change of variables z; — cx; for k <
J < n and rearranging terms, we see that

T )T . T

Ti,..
/ /chz 1’ (1) dzy...dx,
T1,. xk,c:vkﬂ,...,cxn)xf...xi
//02+$ cg—i-:ck)(l—i—xﬁﬂ)...(l—i—x%)
X dxy...dx,, (2-39)

where we have defined

As in the proof of Lemma 2.5, we can check that
Gi(f) evaluates to zero whenever any of the first
k variables equals zero, and thus by Lemma 2.4 the
function Gy (f) is continuous and integrable and sat-
isfies an upper bound of the form

1GL(f)(@)| < Bre~Pelel

for some positive constants 8; and ;.
Now define S.(zy,...,zx) to be equal to

(2—40)

By Paellal

if ||z|]| > 1/4/c and to

Gr(f) (21, ..
I+z5,,)...

if [|z|| < 1/4/c. One can check that the integrand on
the right-hand side of equation (2-39) is bounded
in absolute value by S.(z1,...,2;) when 0 < ¢ < 1.
Moreover, the continuity of G (f) implies that S, is
bounded on the set {z € R* : ||z|| < 1/\/c}, and
therefore S, is integrable. Furthermore, both S,
and the integrand on the right-hand side of equa-
tion (2-39) tend pointwise to the function

ék(f)(mla )

(I+zp). ..

as ¢ tends to zero, and this function is also integrable
by the exponential decay (2-40) of Gi(f). There-
fore, taking limits on both sides of equation (2-39)

and using the generalized dominated convergence
theorem, we conclude that

Gk .fCl ..
lim ¢ * ;
c—0+ 02

,mk,tk+1, e ,tn)
(1+22)

[tht1l,-tn]< Ve

.’L'k,O,...,O)
(1+22)

B 1

NCEY) dzry...dz,
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/ /Gk 1‘1, . xk,O,...,O) de de
1+wk+1 S(Laaz) Tt
W21, .2k, 0,...,0)

:ﬁnfk Gk i
I1...-Tk

But just as in the proof of Lemma 2.5, this last
integral equals the principal value of the integral
of f(xy,...,2,0,...,0)/x; ...z}, which establishes
the lemma. Il

dry...dzy.

Of course, the lemma would also hold if both occur-
rences of the product z; ...z, in equation (2-38)
were replaced by any product z,, ...x; of k dis-
tinct variables (and the variables of integration on
the right-hand side adjusted accordingly).

2D. Analysis for the Special Case

In this section we derive analytic expressions for the
logarithmic density ds.3 57 of the set

{r e R :7(x;8,3) > n(z;8,5) > m(x;8,7)}

and for the other densities in Theorem 1. These for-
mulas are special cases of Theorem 4, which will be
established in the next section; however, we present
a complete analysis in these special cases to illus-
trate and motivate the techniques in the general
case.

We begin by noting the special case

58;3,5,7 = /// d/~1/8;3,5,7(x7yaz)

T>Y>z

of equation (2-5). Making the change of variables
u=z—y,v=y—2z and w = z gives

58;3,5,7 = dV8;375,7(U7 v, w),

u>0v>0 weR

where the measure v ,, .. is defined, in obvious
notation, by

Vg;357(u, v, w) = pgss7(utv+w, v+w, w),

(2-41)
or equivalently
MS;S,S,?(ma Y, Z) = V8;3,5,7(I*ya Yy—=z, Z)'
Integrating out the w variable, we obtain
0s:357 = / / dps;s,5,7(u,v), (2-42)

u>0v>0

where we have defined, again in obvious notation,

P8;3,5,7(U,U): /dl/s;s,w(%%w)-

weR

(2-43)

It is easily checked that the Fourier transform of
psi3,5,7 is related to that of us;3 57 via

,68;3,5,7(€a 77) = ﬂ8;3,5,7(§, n—E§, _77)7

which is a particular case of equation (2-20).

We can appeal to the formula (2-21) for pg.a, ... 4.
to write ps.357(£,m) explicitly. Recall that a dis-
criminant is an integer congruent to 0 or 1 mod 4,
and a fundamental discriminant D is an integer that
cannot be written in the form D = dn? for some dis-
criminant d and integer n > 2. For any fundamental
discriminant D, let xp denote the character

win- (2)

where we use Kronecker’s extension of the Legen-
dre symbol [Davenport 1980, Chapter 5|. Then the
three nonprincipal characters mod 8 are simply x_s,
X—4, and xg. In this setting, equation (2-21) be-
comes

ﬁ8;3,5,7(§7 77)
= F(|2¢], x—s) F(12n—2&], x-4) F (|—2n], xs),

showing that ps;357 is real-valued and symmetric
with respect to reflection through the origin. The
same argument gives formulas for d,,, 5 . for any per-
mutation {a,b,c} of {3,5,7}, where the arguments
of the F(-,x) functions in equation (2-44) simply
are permuted accordingly. Since each F(z,x) is an
even function, we can omit the absolute value signs
in these arguments. Similar remarks hold for the
modulus 12, where the three nonprincipal charac-
ters are (induced by) x_4, X—3, and xi2.

Using the monotone convergence theorem and the
Fourier inversion formula (2-29), equation (2-42)
becomes

0s;3,57 = lim / /ec(uH) dps;3,5,7(u, v)

(2-44)

c—0+
u>0v>0

1 .
= i —e(uto) 2 i(ug+on)
i [ ()]

u>0v>0

X pg:3,57(&,m) d§ d77> du dv.
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We next use Fubini’s theorem to write

083,57

1
:47r cl_lgl //,08357577
( / / eu(7c+i£)+v(fc+in) dudv> d§ dn

u>0v>0

1 . Ps;3,5,7(6,m)
=1 dd
4 ci%i//czg )(c—in) §dn

1 Ps;3,5,7(5 ) (S H-ic(§+n)—En)
T 4n? c—>0+ // (c24+£2)(c2+n?) 4 dn
1

l\')

[V}

= i —5(Gsas7tiHsz 57— Is357), (2-45)
where we have defined
Gassr = lim ¢ // P51 (8,m) dedn, (2-46)
e c—0+ cz—|—§2 02+77 ) ’
. Ps;3,5,7(&, 1) (E+n)
Hs. =1 i d¢ dn, (2-47
83,57 = [ € // (@48 (+17) 3 )
T Ps;3,57(§,m)EN
Iyzs57= cl_lgl_i_ // (@+€2) () dé dn. (2-48)

In equation (2-46) we make the change of vari-
ables a = £/c and (3 = n/c to obtain
Ps;3,57(ca, cB)

G8357—1_1)1’51+// 1+ a2) 1+B2)dfd77

9835700) 2
dadf =
// Tta2)(1+ g7 0=

where we have again used the dominated conver-
gence theorem together with the trivial bound

8;3,5,7(§,m)| < Psi3,5,7(0,0) = 1.

Next, we note that Hs3 57 equals zero since the in-
tegrand in equation (2-47) is odd under reflection
through the origin. Finally, we observe that equa-
tion (2-48) may be written as

I8357 = hm
c—0+

(,08;3,5,7(§a n)— ,08357(5 0),08357(0 n))én
/] e ded

since the term introduced is odd in either variable
separately and so integrates to zero. This is the
same as

Igs57

~ m Ps:3,57(&,m) — Ps;as,7(§50)Ps:35.7(0,1)
c—0+ 6’[]
£2n?

e+

Note that the expression

dé dn.

Ps;3,5,7(€,M) — Psia,5,7(€,0)Ps3,5,7(0,7m)

is well-behaved by Lemma 2.3, and since

ﬁ8;3,5,7(0> 0) =1

it evaluates to zero when either £ or 7 equals zero.
Therefore, the first fraction in the integrand can be
extended across the & and 7 axes to a continuous
integrable function by Lemma 2.4. We may thus
use the dominated convergence theorem to see that

I35 7

_ // ﬁ8;3,5,7(§a77) —ﬁS;Bg,?(fa0)ﬁ8;3,5,7(07U) de dn.
g (2—49)

This integral may be written as the multivariate
Cauchy principal value

Isz57=P.V. / / m%n(fﬁ) d¢ dn

as discussed in Section 2C, since ps.357(£,0) and
ps.3.57(0,m) are even functions and hence the term
omitted in passing from (2-49) to (2-50) is odd in
either variable. (Of course, we could have arrived at
(2-50) directly from the definition of Ig3 57 by in-
voking Lemma 2.6; however, not only is this deriva-
tion more concrete, in keeping with the spirit of this
section, but we will also need the formula (2-49)
during our error analysis in Section 3.)

It follows that the right-hand side of (2-45) can
be evaluated to give

(2-50)

08,357 = — — —4 218-3 5,7

47r2 //Pssmfﬁ de¢ dn

(2-51)

»-lklr—*»-lklr—‘
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where fpg.357 is given explicitly in equation (2-44).
The identical argument, of course, applies for evalu-
ating ds.q 5 . for any permutation {a,b, c} of {3,5,7}

to yield
1 pSabcgn
- — —P
4 472 V. // d dn,

(2-52)
where pg., 5. is defined via obvious analogy to (2-41)
and (2-43), and similarly

plZabc 57
47r2Pv// d¢ dn,
(2-53)

58;a,b,c =

512;a,b,c =

for any permutation {a,b,c} of {5,7,11}.

We remark that the numerator of the integrand in
(2-49) may be viewed as a “measure of dependence”
in the Fourier domain for the bivariate distribution
of a random vector (X,Y) in R® having density
ps.3.57- In fact, the integrand in (2-49) is the Fourier
transform of the natural dependence measure based
on factorizability of the bivariate cumulative distri-
bution function corresponding to ps.s 5 7. This inter-
pretation is important in Section 3A, where a ran-
dom vector (X,Y) of this type is analyzed to yield
bounds for the tail of the measure ps;3 5 7.

2E. Analysis for the General Case

We are now at the point where we have the notation
and tools needed for the statement and proof of a
general formula for the densities 0,4, . q,-

Theorem 4. Assume GRH and LI. Let q,r > 2 be in-
tegers, and let a1, ..., a, be distinct reduced residue
classes mod q. Then

Z i\ | Bl
6(1;‘117---7“7‘ = 27(7‘71) <1+ <i>
s

Bc{1,...,r—1}
BAD

dn;
x P.V. /---/ﬁq;almar(B) —”), (2-54)

where Py.a, ... (B) uses the notation of (2-34) ap-

plied to the function
ﬁQ;ala---va'r‘ (771a e anr—l)

= exp <§(C(q, aj) —

j=1

XH<

xmodgq
X7#X0

a2 )

Z (a;)

Jj=1

—x(a;-1))n;

)

Proof. We follow the strategy used for the special
cases in Section 2D. For notational simplicity we
use the abbreviations

0= 6q;a1,...,ara P =

p‘ﬁalv---aar’

and so on.
Our starting point is equation (2-5),

// du(zy, ..., x,).

LT1>T2> >y

We make the change of variables vy = x; — xy, ...,

Up_1 = Typ_1 — Ty, U, = T, to obtain

0= // dv(ug, ..., u,),
u1>0, ..y Upr—1>0
uprER

where the measure v is defined, in obvious notation,
by

V(ula"'aur) = /’L(u1+"'+urau2+'"+ura"'aur)a
or equivalently
Wy, ..., x,) =v(x—Toy ..., Tp_1— Ty, Tpr).
Integrating out the w, variable leads to
0= / / dp(uy, ..., upr_y), (2-55)

u1>0 ur_1>0

where we have defined (again in obvious notation)

p(Uyy .. Up_q) :/du(ul,...,u,_l,v).

vER

It is easily checked that the Fourier transform of p
is related to that of y by the identity (2-20).

At this point, our goal is to evaluate the integral
on the right-hand side of equation (2-55) in terms
of the Fourier transform p of p. The correct final
formula could be obtained by writing this as the in-
tegral of dp against the characteristic function of the
region of integration, and using Parseval’s identity
in the context of the theory of generalized functions;
the following analysis derives this final formula rig-
orously.
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Using first the monotone convergence theorem and
then the Fourier inversion formula (2-29), equation
(2-55) becomes

c;>0+ / o / e ety dp(uy, ..., ur—1)

6 = lim
u1>0 up_1>0

— lim 676(u1+---+uT_1)
c—0+
u1>0 up_1>0

X ((QTF)(TI) / . / et(wi&ittur_1ér 1)
X (s &) dEy . dgrl)
X d’u,l - dur,l.

Then by Fubini’s theorem this becomes
(2m)" Y % §

ch_i}&/"'/ﬁ(fl,---,ﬁrl)
(o] -

—c+ib1)+ A ur 1 (—c+iér 1)

©1>0 upr—1>0
X du1 . dur_l) dgl . dgr—l
. 517 o 757‘ 1)
=1 coadé_
ci‘%i/ / (i) (e—ity_y) B B
— lim / . / p 517 s ,&«,1)(0—’-7:51) e (C+i§r71)
0+ (c2+E€2) ... (2+E2)
xd&y ... d€ 1,
and expanding the product (¢ + i&;)...(c + i&—1)
leads to
§=@2m) N PIIB), (256
BC{1,2,...,r—1}
where we have defined
I(B) = lim ¢~ '71#
c—0+
617 .. 757‘ 1)(HjeB g]) d
> 5 L dE_y.
C +§1 ( ‘|‘§r—1)

Appealing to Lemma 2.6 withn = r—1 and k = |B|,
we see that

I(B) =7~ B'PV/ / IT 2,
0

JGB

which includes the special case I(@) = 7"~!. Using
this fact in equation (2-56) establishes the theorem.
O

The measure pg,q, ...,
the vector

pl@logz
\/E ( ( 1 4, 1)

a, 1s the limiting distribution of

7'((17; q, a2)7 RN

(%34, a,))
in R"™", so its usefulness to the investigation of those
x with 7(x;q,a,) > -+ > m(x;q,a,) is not surpris-
ing.

To conclude this section, we consider two special
cases of Theorem 4. In the case r = 2 (in other
words, when we are comparing simply a pair ay, as
of residues modulo ¢) the formula (2-54) reduces to

L ' asar.an (1)
Ogaras = 5 (1 +ilpv. / w)
T n

ﬂ-(m’ q, arfl) -

— 1 _ i sin({c(g, a1) — c(q, a2)}n)
2 27 n
< TT Fullx(ar) = x(as)ln) dn, (2-57)

the corresponding cosine term in the last integral be-

ing omitted by virtue of symmetry. When ¢(q,a;) =

(g, az), the integrand is identically zero and hence

0giar,as = 3, as was proved by Rubinstein and Sar-

nak. In fact, our formula (2-57) is analogous to one

of theirs [Rubinstein and Sarnak 1994, equation 4.1].
In the case r = 3, Theorem 4 becomes

611@1,@27!13 -

1 d
_+_PV / pqa1 az, as(n70)+an1 az, ‘13(0 77)) 7;7

4
dnd
_—PV//pqa1a2a3 771aTI2) o nz'
M2

If the a; are all squares or all nonsquares, the one-
dimensional integral again vanishes due to symme-

try, yielding a generalization of the formulas (2-52)
and (2-53) of Section 2D.

3. RIGOROUS ERROR BOUNDS

In this section, we describe how the densities in The-
orem 1 were calculated and provide a rigorous anal-
ysis bounding the error between the calculated and
true values.

Suppose that we wish to evaluate dg.357. Accord-
ing to equation (2-51), we need only to evaluate

PV//p8357£7 dé‘dn,
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which in turn by formula (2-44) equals

F(2¢,x_s)F(2n—2&,x_4)F(—2n, xs)
P.V. // & d§ dn.

-1
We shall approximate this integral by sampling the
integrand on the (symmetrically offset) grid of points

(e

for some approprlately small € > 0 and some ap-
propriately large C' > 0. In fact the quantity we
actually compute is 45535 7(¢,C,T), where we de-
fine

Ss.357(6,C.T) =
Fr(me,x_s)Fr((n—m)e, x_4)Fr(—ne, xs
Dy (me,x—s)Fr((n—m)e,x_a)Fr(—ne, xs)

mn ’

ne

‘<C mnodd}

|m|,|n|<2C/e
m,nodd

(3-2)
here Fr(z,x) is the approximation to F(z,x) de-
fined in equation (2-11), and as before yp is the
character given by the Kronecker symbol

Xp(n) = <2>

n
The quantity Ss.357(¢,C,T) is a discrete, trun-
cated approximation to the integral (3—1) involving
an approximated summand as well. The overall er-
ror incurred in evaluating (3-1) by means of (3-2)
thus consists of three components: error due to dis-
cretizing the integral, error due to truncating the
resulting infinite sum, and error due to approximat-
ing the summand. In Sections 3A to 3C we obtain
rigorous bounds for each of these sources of error,
and in Section 3D we combine these bounds to es-
tablish Theorem 1. Section 3E provides some tech-
nical bounds that are required for our arguments
in Section 3A. While in the sections to follow, all
of the specific expressions we write down (such as
Ss.357(,C,T)) are those that arise in the calcula-
tion of the single density ds;3 5 7, the given constants
and error bounds were chosen so as to apply also to
the analogous quantities arising during the calcula-
tion of any of the densities listed in Theorem 1.

3A. Error Due To Discretization

The first step is to discretize the calculation of g3 5 7
by converting the integral defining I35 5 7 into a sum;
we may bound the error incurred by doing so using

the Poisson summation formula, as we now explain.
Let f(&,7m) be a continuous, integrable function on
R? such that both f and f decay rapidly enough
near infinity (for instance, exponential decay cer-
tainly suffices). Then f satisfies the Poisson sum-
mation formula

€169 i i f(ker + a,les + B)

k=—ocol=—c0
(27'('/4/ 27TA) e2mi(ka/e1+AB/e2)

=Y Y

K=—00 A=—00

(see for instance [Stein and Weiss 1971, Corollary
2.6 of Chapter VII], although we are using a Fourier
transform (2-6) with a different choice of constants).
In this formula, set ¢, = e, = ¢ and a = = ¢/2,
and make the change of variables m = 2k 4+ 1 and
n = 2l + 1 on the left-hand side, to obtain

“X 3 (%%)

m,neZ
m,n odd
2 2 A
0,00+ 3 f( Ul )(—1)'@“. (3-3)
KyAEZ
(k,2)#(0,0)
Now let
f(§ 77) Ps; 3,5,7(5 77) ﬁ8;3,5,7(§a0),58;3,5,7(0a77)

&n ’
which can be extended continuously over the coordi-
nate axes as was noted in Section 2C. This function
f is integrable and has exponential decay near infin-
ity by Lemmas 2.3 and 2.4, and its Fourier transform
can be seen to equal

f(uv ’U) =

where
P(u,v):/ / dps;3,5,7

is the upper cumulative distribution function of the
measure pg.3 57 and P, (u) = P(u, —00) and Py(v) =
P(—o00,v) are the corresponding “upper marginals”.
(Note that f(u,v) is a dependence measure of the
type mentioned at the end of Section 2D.) At the
end of this section we will show that the function f
decays exponentially as well, so that we are justified
in applying the form (3-3) of the Poisson summation
formula to f.

—47%(P(u,v) — Py(u)Py(v)), (3-4)
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Now observe from equation (2-49) that

Iyz57 = / f(&m)dEdn = f(oao)a
so applying equation (3-3) to f we have

18;3,5,7 =
,08 :3,5 7(

2 Ps3,5,7(%, %) — 5
“20 (=5)(%)

m,ne”
m,n odd

,0)Ps:3.5.7(0, %)

+Err;, (3-5)

where Erry, the error due to discretization, is given

by

Err, — dr? ZZ ( (27m 27r)\)

K,AEZ
(k. N)#£(0,0)

P ()P (P ) -0 o

Defining
( P, (2mu)Py(27v)) +
(=2mu, 2mv) — Py(—2mu)Py(27v)) +
P(2mu, —2mv) — Py(2mu)Py(—27v)) +
(P( Py (—2mu) Py (—21v)),

and grouping the terms on the right-hand side of
equation (3—6) analogously, we obtain

e = art( £ 20(%3)

KAEZT

+5 2 Q(50) +5 X -e(0.2)),

KEZT ezt
so that

27w, 2mV) —

—27u, —27mv) —

|Erry| < 4n? ZZ

K,A>0
(5, \)#£(0,0)

a2 e

Now let (X,Y’) denote a pair of real-valued ran-
dom variables whose joint distribution is given by
ps.3,5,7 (these random variables are given explicitly in
equation (3-33) below, though their explicit form is
not needed here). Then P(u,v) = Pr(X >u, Y >v)
and hence P, (u) =Pr(X >u) and Py(v) =Pr(Y >v).
With this interpretation, and using the fact that
Ps:3.5.7 1s symmetric about the origin, the identity

= Pr(X >27mu,Y >27v)

Q(u,v)
— Pr(X >27mu,Y <—27mv) (3-8)

is easily verified. Clearly
0 < Pr(X>wu, Y>v) <min{Pr(X >u),Pr(Y >v)}.

Moreover, since ps. is symmetric about the ori-
) 8:3,5,7

gin, each component X and Y is a symmetric ran-
dom variable, so that

0 <Pr(X>u,Y<—v) <min{Pr(X>u), Pr(Y<—v)}
= min{Pr(X >u), Pr(Y >v)}.
It therefore follows from the identity (3—8) that
|Q(u,v)| < min{Pr(X >27u), Pr(Y >27v)}.
In Section 3E we shall establish the bounds
Pr(X > u) < exp(—0.04(u — 3)?)
Pr(Y > u) < exp(—0.04(u — 3)?)

3-9)

(3-10)

for any u > 3. Hence by the inequality (3-9),
|Q(u,v)| < exp (—0.04(2r max{u,v} — 3)?)

if either u or v exceeds 1, so that by equation (3-7),

|Err1|§4ﬂ2<z Z exp< 004(@—@2

£=0 A\=max{x,1}
2
0.04( == - 3) ))

A=0 k=max{\,1}

<wy Y

k=0 A=max{k,1}

+ Z Z exp <
27r/\

exp( 004
311

if € < 1, say. Now, for any positive integer Ao,
- 27\
3 exp (—0.04<i _ 3) )

€

e 27y N\
< 2exp (-0.04( el —3) >
e

since each term of the sum is at most half of the
preceding term. Applying this inequality twice in
succession to the bound (3-11) gives

|Err, | < 872 <2exp( 0. 04(— . 3) )
—I-QZeXp( 004(2”—" —3) )

< 487T26Xp< 0. 04(— — 3) )
€

‘We therefore conclude that

|Err, | < 5 x 107" (3-12)
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for any choice of £ <
for our purposes.
To conclude this section, we return to the mat-
ter of showing that the function f given in equa-
tion (3-4) decays exponentially. In terms of the ran-
dom variables X and Y, the formula (3—4) becomes

f(u,v)
= —47*(Pr(X >u, Y >v) —

%, which is more than adequate

Pr(X >u)Pr(Y >v)).

By an argument similar to the one used for the func-
tion @, we see that

|/ (u,0)|
< 47® max{Pr(X >u, Y >v),Pr(X >u) Pr(Y >v)}
< 47 min{Pr(X >u), Pr(Y >v)}. (3-13)

On the other hand, elementary considerations yield

f(—u, —v)
= 4n*(Pr(X>—u,Y>—v) — Pr(X>—u) Pr(Y>—v))
=47%((1 = Pr(X<—u) — Pr(Y<-v)

+ Pr(X<—u,Y<-wv))

—(1 = Pr(X<—u))(1 - Pr(Y<-v)))
= 4n*(Pr(X<—u, Y <—v)—Pr(X<—u) Pr(Y <—v)).
By the same argument as in equation (3-13) we get

‘f(—u, —v)| < 47* min{Pr(X <—u),Pr(Y <—v)}
= 4r? min{Pr(X >u),Pr(Y >v)},
since X and Y are symmetric. We can therefore
apply the bounds (3-10) to conclude that

‘f(—u, —v)| < 47* exp (—0.04(max{|ul, |[v[} — 3)?)

if either |u| or |v| exceeds 3. In particular, the func-
tion f decays (faster than) exponentially, as claimed.

3B. Error Due to Truncating the Infinite Sums

From equation (3-5) we have

18357_422( "567"26)

m,neZ
m,nodd ) —570 ) 0’ ne
_p(5,0)p(0, 5 )) + Frry
mn
= 458;3,5,7(6) + EI'I'l, (3-14)
where p = ps.357 and we have defined
Psi3,5,7( %5, %)
Sa. — i 227 3_15
5:3.5.7(€) Z Z i ( )

m,nE”L
m,n odd

(The term that has been omitted in the latter
equality in equation (3-14) equals zero, since

0) psis,5,7(0, %) (mn)

is odd in either variable separately due to the sym-
metry of the functions pg;s 5,7( %=, 0) and pg;3,5,7(0,%)
through the origin.) At this point we have accom-
plished the first step of converting our integral Is.5 5 -
into a discrete sum, with a manageable error; the
next step is to truncate the ranges of summation so
that the resulting sum has only finitely many terms.

From the formula (2-44) for pg.;57, the defini-
tion (3-15) becomes

A me
P8;3,5,7(7a

Ss~357(€)
_ ZZ F(me, x—s)F((n—m)e, x—4) F'(—ne, Xs)
mn
m,ne’l
m,n odd

= Sg;3,5,7(¢, C) + Erry, (3-16)

where we have defined the truncated series
SS-B 5 7(5 C) =
F(me, x s)F((n—m)e, x_4)F(—ne, xs)

>y n

|m|,|n|<2C/e

(3-17)

(the primes indicating that the sums are taken over
only odd values of m and n) and the error due to
truncation

Err, =
' —' F(me,x_g)F((n—m)e, x_4)F(—ne, xs
Y (me, x—s)F((n—m)e, x_a)F(=ne, xs)

mn

max{|m|,|n|}>2C/e

We rewrite this as

m/2

-2 Y Y Y Y

m>2C/e n=—m m>2C/e n=m/2
n/2

Y Y YY)

n>2C/e m=—n  n>2C/e m=n/2

F(me, x—s)F((n—m)e, x—4)F(—ne, xg)

, (3-18)

where the factor of 2 comes from grouping together
the terms corresponding to (m,n) and (—m, —n) by
the symmetry of the summand through the origin.
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To bound Err,, we will certainly need explicit es-
timates for the functions F'(z,x) on the real axis.
We recall the upper bound (2-16),

J
Fe,)] < ()2 T (2 +49)""
j=1
where J is any positive integer and 0 < v, < 7, <
. are the imaginary parts of the nontrivial zeros of
L(s,x). Any particular choice of J gives an upper
bound of the form

|F(z,x)| < d(x)|z| ¥ (3-19)

for some positive constants d(x) and e(y). For any
fixed x the optimal choice of J is the largest integer
such that (7z)® >  + 73; but for our present pur-
poses, we obtain sufficiently good results that are
easy to apply uniformly in x by choosing J so that
v is just less than 30. Table 1 lists, for each of
the five characters x relevant to the densities mod 8
and mod 12, the values of J chosen and the resulting
values of d(x) and e(x) in the bound (3-19), which
we computed from the lists of zeros of the L(s, x)
supplied to us by R. Rumely.

X J d(x) e(x)
x.g 56 1.3 x10% 28
Xs 56 2.1 x 1032 28
X—4 46 85 x102%6 23
X—3 42 7.5x10% 21
X12 62 3.0 x 10% 31

TABLE 1. Allowable constants in the bound (3-19)
for |F(z,x)|-

Since |F'(z,x)| is also bounded by 1 on the real
axis, we can estimate the first double sum in equa-
tion (3-18) by

Z’ %/2’ F(me,x_s)F((n—m)e,x_4)F(=ne, xs)

mn

m>2C/en=—m
m/2

< > D

m>2C/en=—o0

S d(ng)d(szl)g_e(X—s)—e(X,4)
m/2

% Z Z mfe(xfs)*l(m_n)*e(xal) (3-20)

m>2C/en=—o0

F(me,x_g)F((n—m)e, x_4)

using the bound (3-19) for x g and x_4.

Now we claim that

m/2

Z Z m=*(m—n)"" = Z Z m~=n~"

m>M n=—o00 m>M n=m/2

< 9P lpptmeh (

2 n M )
a+p-1 (a+p-2)(6-1)
(3-21)

for any real numbers «, 3 > 1. The equality is clear
upon making the change of variables n — m — n,
while the inequality follows from the elementary ar-
gument

<o ((3) 5 (3)7)

m>M
s [T —as 201 (% ass
<2 t dt + t dt
M =1 Ju

B B-1
_ P s, 2
a+6-1

2—a—0

@ Dets o

this last expression being equivalent to the right-
hand side of (3-21).

For the rest of this section we use the abbrevia-
tions ep = e(xp) and dp = d(xp). Applying the
upper bound (3-21), with a =e_g+1 and f =e_4,
to equation (3-20) gives

’ m/2/F me, X —g)F((n—m)e, x_4)F(—ne, xs
ZZ( X-s)F((n—m)e, x_4) F(—ne, xs)

mn

m>2C/en=—m

2 —€_g—€_4
< d,8d74676_878_426_471 (g)
2 2C /e
vt )
e_s+e_ys (e_g+e_y—1)(e_s—1)

= d_sd_427678 076787674

Cle
(6_8 + 6_4—1)(6_4—1) ) )
(3-22)

1
x( +
€_gt+€_4

Substituting the appropriate values from Table 1, we
find that this last expression is less than 1.85 x 10~7

when € = % and C = 15.
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The second double sum in equation (3-18) may
be similarly bounded as

Z/ zm:/F(ma,X_S)F((n—m)gaX—4)F(_n5vX8)

mn

m>2C/en=—m/2

3D

m>20/6n m/2

oo
< d_gdge 87 g E m eI Tos,

m>2C/en=m/2

me » X—8 F(_n€7X8)

Applying (3-19) to bound this last expression yields
just the right-hand side of equation (3-22) except
with x_4 replaced with yg; upon substituting values
from Table 1 we find that this expression is also less
than 1.85x 1077 when ¢ = 5= and C' = 15. The third
and fourth double sums in (3-18) are treated the
same way, and so we conclude from equation (3-18)
that

|Erry| < 8(1.85x 1077) <1.5x10°°  (3-23)

whens-%andC-lS

3C. Error Due to Approximating F(z, x) by Fr(z, x)

We have accomplished the second step of approxi-
mating the infinite sum Ss 3 5 7(¢) by the finite sum
Ss.3.5.7(g, C); however, this latter sum is still unsuit-
able for computation, since it involves the functions
F(z,x) which are infinite products. The last step is
to replace the functions F'(z,x) by their truncated
counterparts Fr(z, x) defined in equation (2-11).
Recall the definition (2-12) of b,

1
bl = bl(TaX) = - Z 1T, _90
Srat?
and put
[L,o7 Jo(,2)

From the definitions (2-9) and (2-11) of F' and Fr
we see that

F(Z,X) = FT(z’X)(l + AT('Z7X))'

Making this substitution in equation (3—-17) for x_s,
X_4, and xg, we then obtain

Ss;3.5.7(€,C) = Ss.357(¢,C,T) + Errs, (3-25)

where Sg.557(¢,C,T) is as defined in (3-2) and
Err; =
Z’ Z’ Fr(me, x_s)Fr((n—m)e, x_4)Fr(—ne, xs)

mn

[m|,[n|<2C /e
X ((1 + Ar(me, x_5))(1 + Ar((n—m)e, x_4))
X (14 Arp(—ne, xs)) — 1).

Regarding the size of the function Ap, Rubinstein
and Sarnak [1994, Section 4.3] established that

b24
‘(HJOOZ,Y ) (1+b2%)| <
>T

2(1 — [ba]?)
for real numbers x satisfying |b;|2? < 1. From the
definition (3-24) of Ar this immediately yields

‘H7>T Jo(a,z) — (1+b1$2)‘
|]. + b1$2|

(3-26)

|Ar(z, x)| =

biz*
_ if |by|2? < 1.
< 2(1_ |bl|[172)2 1 | 1|$ <
(3-27)

The quantities b; can be computed if we know all
the zeros of L(s,x) up to height 7', since

1 1
h=> T2 1.
0<7<TZ+,Y >04+7
and we have the formula [Davenport 1980, p. 83]

1 1 1
2Ty T3l Ty

>0 1

log 2 n L'(1,x)
2 L(1, x)
28)

1 q Yo
— —logt - _(1 1
5108 — (14 x(-1)) .
3-

2

for a real primitive character y mod q, where v, =
0.577215... is Euler’s constant. The values L(1, x)
can be calculated in closed form by classical for-
mulas [Davenport 1980]; the values L’(1,x) can be
calculated in closed form using a formula of Selberg
and Chowla [1967] for the odd characters and a for-
mula of Deninger [1984] for the even characters. The
former formula expresses L'(1, x) in terms of the log-
arithm of the I'-function, while the latter expresses
L’(1,x) in terms of a function R(x) defined as

9?¢(s, z)
R(z) = ( ds? )
here ((s,z) is the Hurwitz zeta function, defined
when > —1by ((s,2)=> """ (n+z) * for Res>1

)
s=0
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and extended by meromorphic continuation to the
complex s-plane.

Mathematica can calculate logI'(z) and R(z) to
arbitrary precision, and thus by the formula (3-28)
the sums >, 1/(%+~?) can also be so calculated.
Table 2 contains the results of such calculations for
the five characters relevant to the densities mod 8
and mod 12. (The third column actually lists the
values of L'(1, x) — (yo+log 27) L(1, x), to save space
in the individual entries.)

For all five of these characters, when we choose
T = 10,000 we find that |b;| < 0.000173. The upper
bound (3-27) can then be written more simply as
|Ar(z,x)| < D(z) for |z| < 74, where we’ve set

1.5 x 10~8z*
(1 — 0.00018z2)2"

Consequently, the definition (3—26) of Errz implies

D(z) = (3-29)

|Errg| <
;IZ;/ FT(m&X—s)FT((n*WTL’:L)EaX—4)FT(*n5,X8)
X ((1 + D(me))(1 + D((n—m)e))(1 + D(—ne)) — 1).

(3-30)

The quantity on the right-hand side of this inequal-
ity was computed at the same time as Ss.3 5 7(¢, C, T)
was computed, and we obtained the bound

|Errs| < 5.5 x 107°. (3-31)

3D. Conclusion

From the relationships (3-15), (3-16), and (3-25)
among the various intermediate sums Sg;357, we
have

18;3,5,7 = 458;3,5,7(57 C, T) + EI'I'1 + 4EI'I'2 + 4EI‘I'3.
Using this identity in equation (2-51) yields
1 1

) = -]
8:3,5,7 8:3,5,7
472

4
1 1
Z - H(458;375,7(57 C, T)

+Err; + 4Err, + 4Err3),

whence it follows that
5 (1 Ss3,5,7(,C,T)
83,5,7 i 2
< |Erry|  |Erry| + |Errs|
~ A4r? 2 '

Thus by the inequalities (3-12), (3-23), and (3-31),
we conclude that

1 Ss c,T
A (_ _ 8:3,5,7(¢, C, )> <8x%x10°7

4 2

when € = %, C =15, and T = 10,000. Using these
values for ¢, C, and T', the sum Ss;357(¢,C,T") was
calculated and found to equal 0.5645285..., and

therefore we have rigorously that

Ssi357 = 0.1928013 £ 9 x 1077,

which is slightly stronger than the first assertion of
Theorem 1.

The error analysis in Sections 3A-3C can be re-
peated for each of the densities in Theorem 1; the
constants mentioned in the error analysis have been
chosen to apply to all of these densities. Therefore,
the densities calculated for Theorem 1 are all cor-
rect to within the same margin 9 x 10~7, which is
enough to establish the theorem.

3E. Appendix: Probability Bounds

In this section we establish the bounds (3-10) for
Pr(X > u) and Pr(Y > u) which were used for the
computations in Section 3A.
To do so, we first recall from Section 2A the ex-
plicit form of the random variables having the dis-
,,,,, . Specializing the representation
(2-19) to the case ¢ = 8 and {a;,aq,a3} = {3,5,7},
we find that jis.3 5 7 is the distribution of the random
R>-vector

(17 17 1) + X(X—S)(L _17 _1)

+ X(Xf4)(_17 17 _1) + X(XS)(_la _17 1)
Next, recalling the changes of variables (2-41) and
(2-43) that took us from p to v and then to p, we

observe that pg.s 5 7 is the distribution of of the ran-
dom R2-vector

X<X78)(27 0) + X(X*4)(_27 2) + X(XS)(07 _2)'
(3-32)

Now define the two real-valued random variables

X =2 Z a, sin(27U,) — 2 Z a., sin(27U,),

>0 v>0

L(3+iv,x-5)=0 L(3+i7,x-4)=0 (3-33)

Y =2 Z a, sin(27U,,) — 2 Z a., sin(27U,).
v>0 ¥>0
L(3+iv,x-4)=0 L(3+iv,xs)=0
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, 1
X L(1,x) L'(1,x) — (70 + log 2m)L(1, x) >
v>0 4 +7
m T TEITE)
_ — 1 8 8 0.158037
REYE 2/2 T ()I()
log(1 +/2) 1
w et SR R - RE) < RE) o
T T F(E)
_ — —1 4 : 4
X—4 1 5 ng(%) 0.07778
m m . T@3)
_ — —1 3 0.056615
S Ve V3 PT(d)
log(2 +v/3) 1
X12 7 55 (R(z) — RB(55) - B(33) + R(35)) 0165083
TABLE 2. Values of L(1,x), L'(1,x), and 3> .1/ (3 +7°)
We see from the definition (2-18) of the X (x) that w 2 =
the random vector (X,Y) equals the random vec- Pr(W2>w) < exp __(E a 7"1) /kz;(r’“
tor (3-32). 3w — 2r))? -
The following lemma gives information about the < exp ( 6R ! ) O

tails of random variables of this type.

Lemma 3.1. Let ry > ry > ... be a sequence of
positive real numbers such that Y, r, = oo but
Yoo i = R < oco. Let Uy, Us, ...be independent
random variables uniformly distributed on [0, 1], and
define the random variable

W = Z i, sin(2wUy,).

k=1

Then, for any real number w > 2ry,

—3(w — 2r1)2)
16R '

Proof. By [Montgomery 1980, Section 3, Theorem 1],
under the assumptions of this lemma, we have

HUE 22) <eo(-5(2n) /2 02)

k>K
(3-34)
for any integer K > 1. Since the r, are decreasing
and Y ;- 7y = 00, it is clear that for any w > 2r,
there exists a K > 1 such that
K
—rp < T <
k=1

With this choice of K| inequality (3—34) simplifies to

Pr(W > w) < exp (

K

D

k=1

OIS
ro| 8

We now apply this lemma to the random variables
X and Y defined in equation (3-33). (Note that be-
cause each variable U, is uniformly distributed on
[0,1], we may replace the U, in the second sum on
each line with U, + £; this has the effect of changing
the subtraction signs in the equations (3-33) to ad-
dition signs, thus rendering X and Y into the form
to which Lemma 3.1 applies.) For the variable X,
the sequence corresponding to 7 is

{20, : L(5 +iv,x-s) = 0,7 >0}
U{2a, : L(3 + iv,x-4) =0, v > 0}.

For this sequence, the largest element r; is less than
1.5, and the sum R of the squares of the elements
does not exceed 4.5. Therefore an application of
Lemma 3.1 gives

Pr(X > u) < exp(—0.04(u — 3)?)

for any u > 3. One shows similarly that Y satisfies
the same estimate, establishing the upper bounds
(3-10). In fact, the constants mentioned above will
work for every pair of characters that arises in the
computations of ps.q, 45,45, Where {as,aq2,a3} is a
permutation of {3,5,7}, and in pi12.4;,40,05, Where
{ay,a,,a3} is a permutation of {5,7,11}.
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4. COMPUTATIONAL RESULTS

The mathematical and numerical computations de-
scribed in this paper were implemented on an SGI
Challenge computer using Mathematica, which has
the capability to perform computations to arbitrary
and verifiable precision. A typical quantity to be
calculated is the expression Ss;357(¢,C,T") defined
in equation (3-2), which depends on the functions
Fr(z,x) defined in equation (2-11). In order to
compute these functions we needed, for the Dirich-
let L-functions corresponding to characters to the
moduli g < 12, lists of the zeros whose imaginary
parts are bounded by T = 10,000. These lists of
imaginary parts of zeros (accurate to twelve deci-
mal places) were kindly supplied to us by R. Rumely
[1993]. For the estimation of Err; in Section 3C it
was also necessary to compute quantities typified by
the right-hand side of equation (3-30), which is no
harder than computing Ss.3 57(e, C,T') itself.

In addition to the results reported in Theorem 1,
further computations were carried out involving cer-
tain cases with ¢ < 12 and r < 4. In these addi-
tional results, which are presented below, we report
only the numbers of decimal places in which we have
some degree of confidence; specifically, we expect the
entries to be correct to within one or two units in
the last decimal place reported.

Table 3 shows the calculated densities d,,,,,4, for
the two-way races between 7(z; ¢, a;) and 7(z; g, az),
for the moduli ¢ = 3, 4, and 5. For example, the first
line of the table indicates that d3.1 = 0.9990633
(rounded to seven decimal places). Throughout this
section we use the symbol N to stand for any non-
square mod ¢ and S to stand for any square mod ¢

q a1a2 (5q;a1,a2
3 NS: 21 0.9990633
SN: 12 0.0009367
4 NS: 31 0.9959280
SN: 13 0.0040720
NS: 21,24,31,34  0.952140
s | NN: 23,32 1
SS: 14, 41 2
SN: 12,13, 42,43  0.047860

TABLE 3. Two-way races for the moduli ¢ = 3,4, 5.
N and S stand for nonsquare and square (mod g).

(although distinct occurrences of N or S in a single
entry stand for distinct residues) to make the Cheby-
shev biases more clearly evident where appropriate.

Of course, since p(3) = ¢(4) = 2, the two-way
races shown are the only possible races for the mod-
uli 3 and 4. The densities for these moduli were
calculated by Rubinstein and Sarnak, and our calcu-
lations agree with theirs to six decimal places. (Al-
though they were only reported in [Rubinstein and
Sarnak 1994] truncated to four decimal places, they
had in fact been calculated to higher accuracy.)

For the races modulo 5, it turns out that the den-
sities 4.4, 4, depend only on whether or not a; and
as are squares mod 5, due to the symmetry results
given in Theorem 2. (In fact this is true for the races
between multiple residues mod 5 as well.) For in-
stance, applying Theorem 2(b) with a; =2, ay =1,
and b = 4 shows that d52; = J5.3,4; then apply-
ing Theorem 2(a) to each of these expressions shows
further that 0521 = 0531 and 05,34 = 05,0,4. Since
the two nonsquares mod 5 are {2,3} while the two
squares are {1,4}, these equalities show that all four
densities represented by Js.n s are equal, as indi-
cated in Table 3.

The fact that d,nvn = 0455 = 3, as shown in
the penultimate entry of the table, was proved by
Rubinstein and Sarnak, and it also follows from our
Theorem 2(d). We calculated these densities any-
way, and the calculated answers differed from % by
at most 10716, which is the default machine preci-
sion for our Mathematica calculations. This degree
of accuracy is not unexpected in this instance, as
the integral in the formula (2-57) is identically zero
when a; and a, are both squares or both nonsquares
mod gq.

Table 4 provides the calculated densities 6.4, 45,05
for the three-way races modulo 5. Again, in this case
the densities only depend on whether aq, as, and a3

a1a20as3 65;a1,a2,a3
NS o1s oa1 grg g 049678
NS 121 131 Aot dzy 003899
GON: 11>, 13, 112, 41y 000464

TABLE 4. Three-way races modulo g = 5.
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are squares mod 5, by the symmetry results (a) and
(b) of Theorem 2. In addition, each density matches
two different types of permutations: for instance,
Theorem 2(e) with a; = 2, a; = 3, a3 = 1, and
b = 2 asserts that 05231 = 05,2,1,4, as indicated in
the first entry of the table.

As mentioned at the beginning of this section, we
are confident from numerical considerations that the
numbers reported in Table 4 are accurate to the five
decimal places given there, with a possible error of
one or two units in the fifth decimal place. Thus, for
instance, if we choose a particular triple of residues
such as {1,2,3} and add up the densities from Ta-
ble 4 corresponding to the six permutations of that
triple, the result is 1.00002. Moreover, the three or-
dered triples {3,2,1}, {2,3,1}, and {2,1, 3} are the
three permutations in which 2 is ahead of 1, and so
we have the identity

05:21 = 05321 + 05.231 + 05,2135 (4-1)

compare equation (5-1). Table 3 gives 0.952140 for
the left-hand side of this identity, while adding the
appropriate entries from Table 4 gives 0.95215 for
the right-hand side.

There are two reasons why our calculations of the
densities in three-way races for moduli other than 8
and 12 are less accurate than the full six-decimal-
place accuracy proven in Theorem 1, both stem-
ming from the fact that there are complex-valued
Dirichlet characters associated with the other mod-
uli. First, when we calculate the function Fr(z,x)
we do so only on a discrete set of points, evenly
spaced at intervals of €/2. These points are the only
ones needed to evaluate sums such as Ss.3 5 7(¢,C, T),
as we see from the definition (3-2), but for the sums
corresponding to other moduli we need to know the
value of Frr(z, x) at irrational multiples of . We es-
timated this value by interpolating linearly between
the two nearest values, and this estimation intro-
duces an additional error into the calculations.

Second, the zeros of L-functions corresponding to
complex characters are not symmetric with respect
to the real axis, and so the quantity y°__1/(3+7%),
needed to compute b(7,x), cannot be evaluated
in closed form. Since we can evaluate b,(T,x) +
b1 (T, x) in closed form, we used half of this quan-
tity in place of both b, (T, x) and b, (T, x); this gives
the correct first-order approximation to the tail of

F(z,x)F(z,x), but the absolute error in our cal-
culations can be somewhat higher as a result. For
higher moduli, the sheer number of characters will
also play a role, as the product of the ¢(g) — 1 func-
tions Fr(z, x) required for the evaluation of py.q, . 4.
will gradually erode the accuracy of the calculated
number.

Since there are exactly four reduced residues mod-
ulo 5, it is natural to look at the complete four-way
race mod 5; Table 5 shows the calculated densities
for this four-way race. Here again, the densities only
depend on whether a;, as, a3, and a4 are squares
mod 5, by the symmetry results from parts (a) and
(b) of Theorem 2, with the added symmetry be-
tween the densities in the third and fourth lines of
the table following from Theorem 2(e). Once again
we can estimate the accuracy of these densities by
comparing the sum of all twenty-four densities to 1,
and also by comparing the values here to those in
Table 4 using identities such as

05:1,2,3 = 05:4,1,2,3 + 05:1,4,2,3 + 05.1,2.4,3 + 05,1,2,3,4.

In all cases, these sums of densities from Table 5
are precise to within a few units in the fifth decimal
place.

In the calculation of these four-way densities, the
general formula given in Theorem 4 involves a three-
dimensional integral which must be computed nu-
merically. Performing this calculation with a rea-
sonable degree of accuracy lies at the limit of the
computing capabilities of the method used for the
calculations in this paper; in particular, we found
it necessary to reduce the value of C' and increase
the value of € somewhat to make the computations
feasible.

Since the distribution of the primes into residue
classes modulo 6 is fully determined by their distri-
bution mod 3, the next modulus of interest is ¢ = 7.
Table 6 shows the calculated densities 67,4, 4, for the
two-way races modulo 7. Here, for the first time,
we see that the density does not depend merely on
whether a; and a, are squares mod 7: the squares
mod 7 are {1,2,4}, so the first and third lines of the
table list densities of the form d7,y s, while the sec-
ond and fourth lines list densities of the form 7.5 n.
In other words, Chebyshev’s bias is not the only fac-
tor causing asymmetries in the Shanks—Rényi race
games. (For a somewhat more precise discussion of
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aiazazay 05501 ,a2,a3
NNSS: 2314, 2341, 3214, 3241 0.21136
NSNS: 2134, 2431, 3124, 3421 0.02985
NSSN: 2143, 2413, 3142, 3412 0.00424
SNNS: 1234, 1324, 4231, 4321 0.00424
SNSN: 1243, 1342, 4213, 4312 0.00028
SSNN: 1423, 1432, 4123, 4132 0.00007

TABLE 5. The full four-way race modulo ¢ = 5.

a1a2 57;a1,a2

31; 51; 32; 62; 54; 64 0.874349

13; 15; 23; 26; 45; 46 0.125651

61; 52; 34 0.845210

16; 25; 43 0.154790
12,21;14,41;24, 42; 35, 53; 36, 63; 56, 65 :

TABLE 6. Two-way races modulo g = 7.

Chebyshev biases for r-tuples with r > 3, see the
discussion of bias factors in Section 6.) The bottom
row of the table again indicates the known fact that
all densities of the form 7,y and d7,5 s equal 3.
Table 7 gives the calculated densities for the three-
way races modulo 7. Because the number of dif-
ferent values for the densities in Tables 6 and 7 is
larger than in the previous cases, we have not orga-
nized them strictly by decreasing size, but rather
we have grouped together the values correspond-
ing to isomorphic race games. We will say that
two r-tuples {ay,...,a,} and {by,...,b,} of reduced
residue classes mod ¢ have isomorphic race games if
there exists a bijection 7 from the set {1,...,n} to
itself such that each residue a; acts exactly like the

corresponding residue b,(;), that is, if
) =4

for any permutation o of {1,...,n}.
For instance, Theorem 2(a) tells us that 7125 =
07,1,3,4 and similarly for the corresponding permuta-

tions of {1,2,5} and {1,3,4}. Therefore the bijec-
tion 7: {1,2,5} — {1, 3,4} given by

7(a)=a™" (mod 7)

shows that these triples have isomorphic race games.
Table 7 shows that there are ten triples whose race
games are in the isomorphism class determined by
{1,2,5}; the six densities for the race games in this
class are all distinct. In addition, there are five
triples in the isomorphism class of {1, 2, 3}; the race
games in this class have only three distinct densities
due to an internal symmetry generated by Theorem
2(a). Finally, the two special triples {S,S,S} =
{1,2,4} and {N,N,N} = {3,5,6} each give com-
pletely symmetric race games; this is the smallest
modulus to which parts (d) and (e) of Theorem 2
can be applied, since three distinct squares or non-
squares are needed. The complete symmetry for
these two race games was also proven by Rubinstein
and Sarnak. We remark that our computations of
these densities yielded % to five decimal places. We
did not proceed further with computations modulo
7, since there is no natural four-way race and races
with five or more residues are beyond the present
capabilities of our computing set-up.

Table 8 shows the calculated densities for the two-
way races modulo 8. Because only one fourth of the
residues mod 8 are squares (that is, ¢(8,1) = 3),
in contrast to the lower moduli, there are fewer

Q305 (1)y--r 0o (r) @5br (o (1)) 907 (o (r))

a10a2a3

57§a17a2703

0.4038

512; 314; 631; 651; 621; 324; 532; 562; 641; 542; 354; 364
521; 341; 361; 561; 612; 342; 352; 652; 614; 524; 534; 634
251; 431; 316; 516; 162; 432; 325; 625; 164; 254; 543; 643
152; 134; 613; 615; 261; 234; 523; 526; 461; 452; 345; 346
215; 413; 136; 156; 126; 423; 235; 265; 146; 245; 453; 463
125; 143; 163; 165; 216; 243; 253; 256; 416; 425; 435; 436

0.3678
0.1027
0.0736
0.0295
0.0226

312, 321; 351, 531; 514, 541; 362, 632; 624, 642; 564, 654
132, 231; 315, 513; 154, 451; 326, 623; 264, 462; 546, 645
123, 213; 135, 153; 145, 415; 236, 263; 246, 426; 456, 465

0.3943
0.0857
0.0200

124, 142, 214, 241, 412, 421; 356, 365, 536, 563, 635, 653

1

6

TABLE 7. Three-way races modulo ¢ = 7.
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a1a2 58;111 ,a
31 0.9995688
13 0.0004312
51 0.9973946
15 0.0026054
71 0.9989378
17 0.0010622
35, 53; 37, 73; 57, 75 i

TABLE 8. Two-way races modulo ¢ = 8.

symmetries among the densities. (This is some-
what counterintuitive, since the multiplicative group
modulo 8 is highly symmetric.) This higher value of
¢(8,1) also causes a larger bias towards nonsquares,
as can be seen by the fact that the values in Table 8
are more extreme than those in Tables 3 and 6.

Table 9 shows the densities we calculated for the
three-way races modulo 8, including the values for
ds.n,~,n highlighted in Theorem 1. Since all of the
characters mod 8 are real, the additional sources of
computational error mentioned in the discussion of
Table 4 are not present here, and so we feel justified
in reporting these figures to seven decimal places; in
fact note that the appropriate three-way densities
sum to the two-way densities in Table 8 in a man-
ner analogous to equation (4-1), with the sums all
agreeing to within one or two units in the seventh
decimal place.

As with the modulus 5, it is natural to look at the
complete four-way race modulo 8; Table 10 shows
the calculated densities for this four-way race, listed
in the lexicographical ordering on the permutations
of {1,3,5,7}. Despite the need to use slightly cruder
values of C and ¢ in the calculations of the three-
dimensional integrals that arise in the formulas for
these densities, the sum of all 24 densities and nu-
merical checks against Table 9 suggest that these
densities are also accurate to within one or two units
in the seventh decimal place.

Tables 11 and 12 show the calculated densities for
the two-way and three-way races modulo 9. Since
the multiplicative group mod 9 is isomorphic to the
multiplicative group mod 7 (both are cyclic of or-
der 6), the various symmetries present in Tables 11
and 12 mirror those found in Tables 6 and 7, with
the squares mod 9 being {1,4,7}.

Again, the distribution of the primes into residue
classes modulo 10 is determined by their distribution

aiaz 69;0,1,0,2
21; 51; 24; 84; 57; 87 0.881584
12; 15; 42; 48; 75; 78 0.118416
81; 27; 54 0.864230
18; 72; 45 0.135770
14,41;17,71;25, 52; 28, 82; 47, 74; 58, 85 :

TABLE 11. Two-way races modulo ¢ = 9.

aiazas3 08:a1,az,a3 aiazas3 08:a1,a2,a3
531 0.4996015 731 0.4995765
351 0.4974123 371 0.4989440
315 0.0025550 317 0.0010483
513 0.0003808 713 0.0004173
135 0.0000327 137 0.0000077
153 0.0000177 173 0.0000062

a1a2063 084 a2,a5 aiazas 08:a1,a2,a3
571 0.4990135 357 0.1928013
751 0.4974474 753 0.1928013
715 0.0024769 375 0.1664263
517 0.0009337 573 0.1664263
175 0.0000757 735 0.1407724
157 0.0000528 537 0.1407724

TABLE 9. The four three-way races modulo g = 8.

41020304 58;a1,a2,a3,a4 11020304 58;a1,a2,a3,a4
1357 0.0000014 3157 0.0000500
1375 0.0000029 3175 0.0000696
1537 0.0000007 3517 0.0007972
1573 0.0000006 3571 0.1919526
1735 0.0000023 3715 0.0015371
1753 0.0000009 3751 0.1648170

11020304 58;a1,a2,a3,a4 41020304 58;a1,a2,a3,a4
5137 0.0000027 7135 0.0000261
5173 0.0000023 7153 0.0000154
5317 0.0001315 7315 0.0008983
5371 0.1406374 7351 0.1398456
5713 0.0000848 7513 0.0002910
5731 0.1663386 7531 0.1924939

TABLE 10. The full four-way race modulo g = 8.
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a1a2a3

69;0«17027113

514; 217; 821; 851; 841; 247; 524; 584; 871; 574; 257; 287
541; 271; 281; 581; 814; 274; 254; 854; 817; 547; 527; 827
451; 721; 218; 518; 184; 724; 245; 845; 187; 457; 572; 872
154; 127; 812; 815; 481; 427; 542; 548; 781; 7T54; 275; 278
415; 712; 128; 158; 148; 742; 425; 485; 178; 475; 752; 782
145; 172; 182; 185; 418; 472; 452; 458; 718; 745; 725; 728

0.4010
0.3814
0.0992
0.0819
0.0194
0.0172

214, 241; 517, 571; 251, 521; 284, 824; 847, 874; 587, 857
124, 421; 157, 751; 215, 512; 248, 842; 487, 784; 578, 875
142, 412; 175, 715; 125, 152; 428, 482; 478, 748; 758, 785

0.3965
0.0885
0.0149

147, 174, 417, 471, 714, 741; 258, 285, 528, 582, 825, 852

1

6

TABLE 12. Three-way races modulo ¢ = 9.

mod 5, so the next modulus of interest is ¢ = 11.
In Table 13 we show the calculated densities for the
two-way races modulo 11, the symbol T representing
the residue 10 mod 11.

We do not include the calculations of the three-
way races mod 11 for reasons of space. Using The-
orem 2 it can be checked that of the 120 distinct
(unordered) triples of residues mod 11, the twenty
triples of the form {ab™' a,ab} withb=3or b=5
(mod 11), in which ab™!, a, and ab are all non-
squares or all squares mod 11, comprise two iso-
morphism classes of race games of ten triples each;
a race game in either of these isomorphism classes
has only two distinct densities, one taken by four
permutations of the triple and the other taken by
the other two permutations. The twenty triples of
the form {ab™',a, ab} with

b=2orb=7 (mod 11),

in which ab~! and ab have the opposite quadratic

a1a2 511;a1,a2

71; 81; 23; 25; T3; 64; T4; 75; 69; 89 0.761121
17; 18; 32; 52; 3T; 46; 4T; 57; 96; 98 0.238879
21; 61; 24; 63; 73; 84; 85; Th; 79; T9 0.731135
12; 16; 42; 36; 37; 48; 58; 5T; 97; 9T 0.268865
T1; 29; 83; 74; 65 0.713943

1T; 92; 38; 47; 56 0.286057

NN; SS 3

TABLE 13. Two-way races modulo ¢ = 11. The entry
“NN; SS” refers to the forty pairs {a;,as} where
a; and ay are either both among the nonsquares
{2,6,7,8, T} or both among the squares {1, 3,4, 5,9}
mod 11.

character mod 11 from a, also form two isomor-
phism classes with ten triples in each class; a race
game in one of these classes has three distinct densi-
ties. Finally, the remaining eighty triples form four
isomorphism classes of twenty race games each; a
race game in one of these classes has all six densi-
ties distinct. There are 34 densities that remain to
be calculated after these symmetries from Theorem
2 are taken into account, and the calculations reveal
that these 34 densities are indeed distinct.

As mentioned previously, determining the densi-
ties in a five-way race game lies beyond the scope
of the computing methods used for the calculations
in this paper (though this barrier is only techno-
logical, as Theorem 4 is valid for arbitrarily large
race games). If this barrier were overcome (for ex-
ample, by recoding in a lower level computing lan-
guage), the five-way race among the squares mod 11
and the five-way race among the nonsquares mod 11
would be natural and interesting questions to con-
sider, especially in light of the nearly-cyclic behavior
of the leaders in these five-way race games reported
by Bays and Hudson [1983]. Because of the sym-
metries of Theorem 2, it turns out that only eight
distinct densities would need to be calculated for
both of these five-way race games to be completely
determined.

Tables 14-16 show the two-way, three-way, and
four-way race games modulo 12, using the symbol
E to represent the residue 11 mod 12. Since the
multiplicative group mod 12 is isomorphic to the
multiplicative group mod 8 (both groups being iso-
morphic to the Klein group of order 4), the vari-
ous symmetries present in Tables 14-16 mirror those
found in Tables 8-10. As with the modulus 8 case,
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a1a2 512;a1,a2
51 0.9992059
15 0.0007941
71 0.9986061
17 0.0013939
E1l 0.9999766
1E 0.0000234
57, 75; 5E, E5; 7E, E7 1

TABLE 14. Two-way races modulo ¢ = 12.

all the characters mod 12 are real-valued, and so we
feel justified in reporting seven decimal places of the
numbers in these tables.

Notice from Table 15 that the densities d12.511,1
and d12.7,11,1 only differ by one unit in the sixth
decimal place, and that there are several other en-
tries that differ by similarly small amounts owing
to their small sizes. Nevertheless, we see no rea-
son to believe that any of the twenty-one densities
in Table 15 is equal to any other. Similar remarks
hold for the twenty-four densities in Table 16 and
for the corresponding Tables 9 and 10 for the race
games modulo 8. One observation supporting our
view is that whenever the symmetries of Theorem
2 imply that two densities are equal, the computed
densities agree to within a few multiples of the de-
fault machine precision rather than to only five or
six decimal places.

5. EQUALITIES AND INEQUALITIES BETWEEN
DENSITIES

We will now establish Theorem 2, concerning sym-
metries of the densities g4, ... 4, under certain per-
mutations of the residue classes {ay,...,a,}, and
Theorem 3, giving some strict inequalities in the
same setting. We first present the proof of Theo-
rem 3 since it is simpler than that of Theorem 2.

Proof of Theorem 3. Let aq, as, and a3 be distinct re-
duced residue classes mod q. We begin with the sim-
ple observation that if x is a real number such that
m(x;q,a1) > 7(x;q,aq), then the quantity 7(x; g, as)
must either equal one of 7(z;q,a;) and 7(z;q, as),
lie between them, exceed both, or be exceeded by
both. This observation leads to the density identity

(5-1)

5%0’110’2 = 6‘1;"/35&1’@2 + 5‘1;“1"’/3’“2 + 5‘1§a17a27a37

since the set of real numbers z such that
m(z;q,a3) = m(z;9,a1) or w(z;q,a3) = 7(z;q,az)

has density zero, as mentioned in Section 2A. Tt fol-
lows that

511;a1,a2,a3 - 511;337(12,@1 - 5‘1;a17a2 - 5(1;%7&2? (5-2)

by using the appropriate identity of the type (5-1)
on both terms on the right-hand side of (5-2) and
simplifying.

Now we can use our knowledge of the two-way
densities to study the difference on the left-hand

a10a2a3 512;a1,a2,a3 a10a2a3 512;a1,a2,a3 a10a2a3 512;a1,a2,a3 a10a2a3 512;a1,a2,a3
751 0.4992728 5E1 0.4999772 TE1 0.4999780 57E 0.1984521
571 0.4986582 E51 0.4992062 E71 0.4986066 E75 0.1984521
517 0.0012750 E15 0.0007931 E17 0.0013919 E57 0.1799849
715 0.0006751 51E 0.0000225 71E 0.0000214 75E 0.1799849
157 0.0000668 1E5 0.0000006 1E7 0.0000015 5ET7 0.1215630
175 0.0000521 15E 0.0000003 17E 0.0000006 TE5 0.1215630
TABLE 15. The four three-way races modulo g = 12.

1020304 512;a1,a2,a3,a4 a1020a30a4 512;a1,a2,a3,a4 a1a2a304 512;a1,a2,a3,a4 a1a2a304 512;a1,a2,a3,a4
157E <1077 517E 0.0000004 715K 0.0000001 E157 0.0000664
15E7 0.0000001 51E7 0.0000010 71E5 0.0000002 E175 0.0000519
175E <1077 571E 0.0000152 751K 0.0000059 E517 0.0011332
17E5 <1077 57E1 0.1984364 75E1 0.1799788 E571 0.1787850
1E57 0.0000002 5E17 0.0001403 7TE15 0.0000243 E715 0.0006505
1E75 0.0000001 5ET71 0.1214216 TE51 0.1215384 E751 0.1977496

TABLE 16. The full four-way race modulo ¢ = 12.
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side of (5-2). In particular, if c(g,a:1) = ¢(q,az)
then 64,0, = 3, and hence 0ya, 05,05 —
+ — 0gsas,a2> an expression whose sign is known from
the work of Rubinstein and Sarnak. More specifi-
cally, if N and N’ are nonsquares mod ¢ while S is a
square mod ¢, then d,,n n s —0gs. v/ N = 5 —0gs.n7 >
0; therefore 0, n n1,s > 0g4:5,n7,n, Which establishes
part (a) of the theorem. Similarly, if N is a non-
square mod ¢ while S and S’ are squares mod g,
then 0.5/, 58 < 04 n,5,5', which establishes part (b)
of the theorem.

Another application is to the difference 64,y 5,8 —
dg:n7,s,n when N and N’ are nonsquares mod g while
S is a square mod ¢. In this case equation (5-2)
becomes

5‘1;&37&27'11 -

Og;N,5,N" — Og;N71,5,N = Og;n,5 — Og;n, s,

which immediately implies part (c) of the theorem.
The analogous observation about the difference

5q;S,N,S’ - 5q;S’,N,S

when S and S’ are squares mod ¢ while N is a non-
square mod q establishes part (d) of the theorem. O

We remark that the identity (5-2), applied when
ai, as, and as are all nonsquares mod ¢, becomes
Ogia1,as,05 — Ogsas,as,ar = 0; this is another way of see-
ing that the densities calculated in Theorem 1 are
equal in pairs as indicated.

Our next goal is to establish Theorem 2. Before
doing so, it will be helpful to recall the relation-
ships between the density 4.4, ..., and the measures
Haar.....ar @A pg.q. o . We begin by recalling from
equation (2-5) that

Ogiar,..ar = / : / dlgiay,....a, -

r1>-->Tp

(5-3)

We remark that if o is a permutation of the in-
dices {1,...,r}, then we can express the density
) in two different ways: we have

Q500 (1)1 G0 (r)

5(1;%(1)7---,%(?) :/"'/dﬂq;%(1),---7%(r)

1> >Tr

corresponding to the formula (5-3), but we also have
the alternate form

6q;ao(1)7"'7ao(7‘) = /' ° '/ duq;a17~~~7a’l‘

To(1)> " >To(r)

since figq,,...,a, is the limiting distribution of the vec-
tor (E(z;q,a1),...,E(x;q,a,)), whose coordinates
are ordered by size exactly as the coordinates of the
vector (m(z;q,a1),...,7(x;q,a)).
If we make the change of variables u; = x; — o,
vey Up_y = Tp_1 — X, U, = x, and integrate out
the variable u,, as in Section 2E, the formula (5-3)
becomes

u1>0,...,up_1>0

For the special permutation o that reverses the set
{1,...,n}, we see that

To(1) > > To(p) = Tpr > " > X1
— U1 <0, ...,u; <0.
Consequently, we have
6‘1;‘17‘:---7‘11 = / ) / dpq;ah---,ar (5-5)

w1 <0, .00y upr—1<0

as a companion formula to equation (5-4).
As a final prerequisite to the proof of Theorem 2,
we recall from equation (2-13) the explicit formula

/“Al’qulh---,ar(gla e 757‘)
3

= exp <ii0(q, aj)§j> II F(
3=l (5-6)

Zx(aj)fj

xmodgq
X#Xo

for the Fourier transform of fi,.4,,. 4,, and the re-
lated formula (2-21)

ﬁth---,ar (7717 R 7777’—1)

= exp (Tzi(c(q7 a;) — c(q, aj+1))771)

j=1
r—1
x H F< Z(X(aj) —x(aj-1))n;|, X> (5-7)
xmodgq j=1
X7FX0

for the Fourier transform of pg.q, ... a,-

Proof of Theorem 2. Let a;l denote the inverse of
a; mod g. We will show that the Fourier trans-
forms fig.a,, . .4, and ﬁq;a;l -1 are the same func-
tion. This is enough to establish part (a), since the

’!‘ yreey@
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densities fig.q,,....a, and Pgsaz?,...ar? will then be iden-
tical, which by equation (5-3) will imply

/' : / dﬂq;al,...,aT

T1>T2>->Tp

= / ) / duq;af17---,ar_1 = 5q,a1 Lart

LT1>T2> >y

g =

q;01;5---,0r

We use the formula (5-6) for fig.q,,. ., and the
analogous formula for fi -1 ,-1. Notice that the

square roots of aj_l are precisely the inverses mod q
of the square roots of a;. In particular, ¢(g, aj_l) =
¢(q,a;), and so the exponential term in (5-6) is un-
changed if we replace each a; by a;l. Moreover, we

see that for each character x mod g,

71 —

Xaj

Z x(a;)&;

since the &; are real, so that each term F'(-,x) in
(5-6) is also unchanged by replacing all of the a;
with the a;l. This shows that

—1

~ ~
Uq: =M, -1
q;Q1,..,Qr [ H PP S

which establishes part (a) of the theorem.

We use a similar strategy to prove part (b). Let b
be a reduced residue class mod ¢ such that ¢(q, a;) =
¢(q, ba;) for each 1 < j < r. Because of this hypoth-
esis, the exponential term in the formula (5-6) is
unchanged if we replace each a; by ba; as above.
Moreover, for each character x mod g,

3005 = () Y- x(a)g

Z x(a;)§;

x(a;)&;1, (5-8)

so that each term F'(-, x) in (5-6) is also unchanged
by replacing all of the a; with the ba;. This shows
that fig.a,.....a, = Hgbas,...,ba,, Which establishes part
(b) of the theorem.

The proofs of parts (c) and (d) rely on the for-
mula (5-7) for the function pg.qa,,.. ... When the q;
are all squares mod ¢, then the exponential term
in (5-7) is identically 1. Moreover, if b is a square
mod g then each ba; is also a square, while if b is a

nonsquare mod g then each ba; is a nonsquare; in
either case we have c¢(q,ba,) = --- = ¢(q,ba,), so
that the exponential term in the analogous formula
to equation (5—7) for pg.pa, ... ba, is also identically 1.
Since the chain of equalities (5-8) again shows that
each term F(-,x) is unchanged upon replacing the
a; with ba;, we see that pg.q, 4. = Pgbay,... b, and
80 0g:ay.....ar = Og:bay,...ba, DY Virtue of equation (5-4),
which establishes part (c) of the theorem.

For part (d) we begin with the formula (5-5) for
0g:a,....a;- As noted above, the exponential term of
Pgian.....a, 15 identically 1 when the a; are all squares
mod g, so that pg.q,... ., Will be real valued. Since
Pgiar....a, 15 real-valued as well, we conclude that
Pgiar....a, 18 symmetric through the origin. Hence
making the change of variables u; — —u; for each
1 < j <r in equation (5-5), we obtain

/ / dpq,au “ar — 611,@1, Gy

u1>0,...,ur_1>0

5q;ar,m,a1 -

which establishes part (d) of the theorem.

To establish part (e), we first consider the rela-
tionship between py.q,. . o, and fyba, ... e, (ROte that
the residue classes ba; have not yet been reversed in
the second subscript). Again, equation (5-8) shows
that replacing each a; with ba; does not change the
terms of the form F(-,x), and so we only need to
consider the exponential term. Because the quan-
tity c(q,a) can only take the two values —1 and
¢(q,1), we see that if ¢(q, a’) # ¢(q, a) then ¢(q,a’) =
¢(q,1) —1—c¢(q,a). It follows, under our hypothesis
that c(g,ba;) # c(q,a;) for each 1 < j < r, that we
also have

c(g,ba;) = —(c(q,a;41) — c(q, a;)),

and so the imaginary expression in the exponential
term in equation (5-6) is negated upon replacing
each a; by ba;. The end result is that

(,ba;41) —

Pgspay,....ba. = Pgai,...,ar>

which implies that when the measure pg.pq,,... ba, 18
reflected through the origin, the resulting measure

is identical to pg.qa, ... q, -
/' : / Pq;bay,....ba

Since we can express
u1<0,...,u,._1<0

5q;bam--~7ba1 =
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as in equation (5-5), we can make the change of
variables u; — —u; for each 1 < j < r — 1 to see
that

Ogibar,....bay = / : / Pagsar,.mar = Ogiar,.a,-

u1>0, ..., up_1>0

This establishes the final assertion of the theorem.
O

6. REMARKS, QUESTIONS, AND OPEN PROBLEMS

In this final section, we collect together several ob-
servations, unanswered questions, and conjectures
concerning the results of this paper.

Systems of Inequalities with One Equality

Since we know that ¢,.,, and ¢, are both positive
(assuming GRH and LI), each inequality 7 (z;q,a) >
m(xz;q,b) and 7w(x;q,b) > m(x;q,a) has arbitrarily
large solutions, and therefore m(z;q,a) = 7(x;q,b)
for infinitely many integers x. However, knowing
that dg.qp,c and 0y 4, are both positive—i.e., that
each string of inequalities

m(x;q,a) > w(x;q,b) > m(w;q,c)

and

m(x;q,b) > w(x;q,a) > w(x;q,c)

has arbitrarily large solutions — does not imply that
there are necessarily any solutions to m(z;q,a) =
m(z;q,b) > m(x;q,¢). Undoubtably, the equality
m(x;q,a) = 7w(x;q,b) should hold infinitely often
both when their common value exceeds 7 (z;q,c)
and when their value is exceeded by m(z;q,c). We
conjecture more generally that for any given integer
1 < j < r and reduced residue classes ay, ..., a,
and aj; mod g, the conditions

W(I;Q7al) > > ﬂ-(x;q7aj) > > Tr(w;q7ar)

m(z;q,a})

should be satisfied for infinitely many integers .

Multiple Equalities

Another question along these lines involves solutions
to
(6-1)

ﬂ-(x;(Lal) = 7T($, q, (12) == W(x;(b ar)

when r > 3. If we consider the vectors

Vq;ahmaar (TL) = (”T(pn; q, al) - W(Pn; q, a2)7
7T(pna q, a2) - 7T(pna q, CL3), trey

T(Pui ¢ ar1) — (D3 g ar)),  (6-2)

where p,, denotes the n-th prime, then the sequence
of vectors {V,.q,.. .4, (n)} might reasonably be ex-
pected to resemble a random walk on Z"~', where
the possible steps at each stage are (1,0, ...,0),
(-1,1,0,...,0), ..., (0,...,0,—1,1), and (0,...,0,
—1) and are chosen with roughly equal probabilities.
(Even though the Chebyshev bias will cause a drift
in the mean behavior of the vectors (6-2), this drift
has the same order of magnitude as the standard
deviation of the random walk).

Since random walks on Z" return to any point in-
finitely often with probability 1 when n = 1 or 2 but
fail to do so with probability 1 when n > 3 [Polya
1921], this heuristic leads to the prediction that the
system of equalities (6-1) has infinitely many solu-
tions when r» < 3 but only finitely many solutions
for r» > 4. Similar reasoning suggests that any pair
of equalities

’/T(x;Q7 al) = 71'(33'; q, a2)7 ’/T(x; q, a3) = 7T($; q, a4)

with aq, ..., a4 distinct should simultaneously hold
for arbitrarily large values of z, but three or more
equalities will hold simultaneously only finitely many
times. Further, we might expect that the conditions

m(@;q,a1) > -+ > w(wiq,a5) > - > w(w;q,a,)

W($;|q,a§)
m(z;q,a})
and
m(x;q, a})
I
m(@;q,a1) > -+ > w(xiq,a:) > -

> 7(z;q,a;) > -
I

m(x;q,a})

> (x5 q,ar)

should hold for infinitely many integers x, but that
analogous conditions involving three or more equal-
ities would not.
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Bias Factors

To try to quantify the Chebyshev biases for r-tuples
of reduced residue classes a; mod g for all r > 2, let
us define the “bias factor” f,.,,,... 4, to be the differ-
ence between the number of nonsquares preceding
squares among the a; and the number of squares
preceding nonsquares:

Brnnne =4 <3+ 0 0, 0, =0}
—#{i<j:a; =0, a; #0O}

->

1<i<j<r

- Y @i—r—1)e(gay).

q,ag c(q,a;)
c(g,1)+1

(6-3)
For instance, when r = 2 the possible bias factors
are Bgns = 1, Bynn = Bgss = 0, and By sy =
—1. Rubinstein and Sarnak proved that the sign of
0giap — 5 equals the sign of By, in this notation,
thereby showing that

/Gq;a,b > ﬁq;a’,b’ = 5q;a,b > 5q;a’,b"

The converse to this statement is false: the first two
lines of Table 6 show that d4,4, and d44 » can be
different even when (., = 8,4, for instance.
We might hope that the bias factors 3,.,,,....., would
provide some information about the relative sizes of
the 64.4,.....a., perhaps in the form of the implication

ﬁq;al,...,ar > ﬂq;bl,...,br — 5q;a1,...,ar > 6q;b1,...,br

(6-4)
for any fixed r. In this regard, it is worth remarking
that all of the symmetries in Theorem 2 are equali-
ties between two r-tuples of residues with equal bias
factors. Examining the densities computed in Sec-
tion 4, we observe that the implication (6—4) holds
most of the time, but we do note the following two
anomalies:

® Bs5137 = 0Bs51,7,3 =—1>—3 = Bs1375, but it
appears from Table 10 that ds. 375 slightly ex-
ceeds both dg.5 1,37 and 0s;5,1,7.3;

o Bioriis = Bioggrasin = —1 > =3 = Bz,
but it appears from Table 16 that 01.1,11,57 is
slightly greater than both d12.7.1.11,5 and d12.7.1.5.11-

It would therefore be of interest, in connection with
determining whether the implication (6-4) is always

valid, to compute more precisely the densities just
mentioned in order to verify the apparent inequali-
ties.

Unfortunately, the computation of the densities
to arbitrary precision is not simply a matter of re-
ducing ¢ and increasing C' and letting a bigger com-
puter run for a longer period of time. The major
source of error in these computations is the effect
of truncating the infinite product defining the func-
tions F'(z,x) to form the approximations Fr(z,x)
(see Section 3C); to decrease this error it would
be necessary to compute zeros of the relevant L-
functions to a height greater than 10,000, and per-
haps to greater precision than twelve decimal places
as well.

It is certainly conceivable that some definition
of bias factor different from (6-3) might be better
suited to the role of ;.. . 4., although it is hard
to imagine what natural definition would be able
to explain the apparent anomalies noted above. It
might also be the case that the implication (6-4) is
valid in more limited settings— for instance, when
we restrict to r-tuples {ai,...,a,} and {by,...,b.}
where exactly half of the a; are nonsquares and half
squares, and similarly for the b;.

Convergence to Unbiased Distribution

Rubinstein and Sarnak [1994, Theorem 1.5] proved
that for a fixed integer r > 2,

-1/) =0 (6-5)

(,max |r1dga,.a,
[P

as q tends to 1nﬁn1ty (where the maximum is taken
over all r-tuples of distinct reduced residue classes
mod ¢), so that biases of any sort become less and
less evident with increasing moduli. Thus although
the biases in the two-way races mod 8 and mod
12 are more pronounced than those in the two-way
races mod 4, 5, and 7 owing to the larger values
of ¢(8,1) = ¢(12,1) = 3, these sorts of extreme
biases will not continue (even with a sequence of
moduli such as g, = 4p,ps . . . P, say, which satisfies
c(qn,1)=2"—1).

On the other hand, it might happen that an ex-
tremely negatively biased density such as

051,15 N1 ..o Ny

might tend to zero much more rapidly than 1/(2n)!
as n increases, while an extremely positively biased
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density such as 04N, ,....N,,s,,...,s,, might behave more
like 1/(n!)?. In general, one could investigate the
uniformity of the statement (6-5), i.e., attempt to
show that the statement holds uniformly for all r» <
ro for some integer-valued function 7y = 7¢(g) sat-
isfying 2 < ry < ¢(q). For instance, is it the case
that

lim sup( max 71! 5q;a1,...,aro) = 00,

1:;Tnf (mm 7ol § = ©-0)
minf (i 7o!d0,) =0
if ro = ro(q) grows sufficiently quickly, and if so, how
quickly must ry grow with ¢ for these phenomena to

emerge? We certainly conjecture that

lim ( max 5(1;@17---7%0) =0 (6-7)

q—00 " a1,...,Qrg
for any arbitrary function ry = 79(q) tending to in-
finity with ¢, but at this point it seems nontrivial to
prove this modest result even for rq = p(q) itself.

Race-game Symmetries, Isomorphisms, and Order
Equivalences

Another question of interest is whether there exist
more symmetry results of the type arising in The-
orem 2. Reviewing the proof of Theorem 2, we see
that all of the symmetries therein are consequences
of provable equalities between two distributions of
the type Lgas.....ar OF Pgiar,....a. (POssibly after reflect-
ing one of the distributions through the origin). We
can then ask

(1) whether there exist any equalities between these
distributions other than those used in the proof
of Theorem 2;

(2) whether there can be numerical “coincidences”
between two densities even though their under-
lying distributions are not related.

An answer to question (1) might be forthcoming
from a careful analysis of the Fourier transforms
Pa:ay.....a, Of the distributions p,.q, ... 4. As for ques-
tion (2), it seems reasonable to believe the phe-
nomenon addressed therein can never occur, but
proving such a claim seems very difficult.

In support of the possibility that Theorem 2 ac-
counts for all numerical equalities between the den-
sities 04.q1,...,a,, We remark that among the densities
computed in Section 4, each time a symmetry from

Theorem 2 was applicable the corresponding com-
puted densities were equal to within a small multi-
ple of the machine precision. Conversely, all such
numerical equalities observed among the computed
densities are accounted for by the symmetries al-
ready asserted in Theorem 2.

Symmetries among individual densities .4, q,
are of course closely related to isomorphisms be-
tween complete race games of r-tuples. Theorem
2 implies that the following bijections between -
tuples induce isomorphisms of race games:

e the map 7(a;) = a;' (mod q) between the r-

Sa.yand {a7',...,a '}

e the map 7(a;) = ba; (mod q) between the r-
tuples {ai,...,a,} and {ba,...,ba,}, if either
c(q,a;) = c(q,1) for each 1 < j < r or ¢(q,a;) =
c(g,ba;) for each 1 < j <r;

e the map 7(a;) = ba,41_; (mod g) between the r-
tuples {ai,...,a,} and {ba,,...,bas}, if c(q,a;) #
c(g,ba;) for each 1 < j <r;

e cither bijection 7 : {a,b} — {a’,b'}, if ¢(q,a) =
c(q,b) and ¢(q',a’) = c(q',b');

e any bijection 7 : {a,b,c} — {da’,V',c'}, if there
exists p Z 1 (mod q) with p*> = 1 (mod ¢) such
that b = ap (mod ¢q) and ¢ = ap? (mod ¢) and
an analogous p’ (mod ¢’).

tuples {a,..

(Our definition of isomorphic race games required
that the r-tuples consist of reduced residues to the
same modulus, but the definition has an obvious ex-
tension to two r-tuples of residues to different mod-
uli which encompasses the last two isomorphisms.)
We conjecture that any isomorphism between two
race games is induced by a composition of bijections
from this list; in particular, the only isomorphisms
between race games of distinct moduli are those race
games with complete internal symmetry, which were
determined by Rubinstein and Sarnak.

A weaker relationship than isomorphic race games
is order-equivalent race games, where there exists a
bijection 7 on the set {1,...,n} such that

5q;ao(1)7"'aao(7‘) > 6‘1;0’0"(1)""70‘7’(7‘)
5Q’;br<a(1>)v---vbr<a<r>> > 5‘1’#’7(0’(1))’---vbﬂa'(r» (6-8)
for any two permutations o, ¢’ of {1,...,n}. Order-

equivalent race games seem common for small val-
ues of r. For instance, any two race games both
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of the form {N, S} are order-equivalent by Rubin-
stein and Sarnak’s results. The tables in Section 4
indicate many three-way race games that are order-
equivalent. The triples { /N, N’,1} mod 7 with NN'#
—1 mod 7, the triples {N, N’,1} mod 8, the triples
{N,N’,1} mod 9 with NN’ # —1 mod 9, and the
triples {IV, N’,1} mod 12 are all order-equivalent
to one another. Also, the triples {N, N ! S} mod
5, the triples {N,N ', S} mod 7, and the triples
{N,N~' S5} mod 9 are all order-equivalent as well
(but note that these are not order-equivalent to the
triples {N, N, N} mod 8 and mod 12).

We remark that, in view of the values in Tables 10
and 16, the bijection

T(1)=1, 73)=11, 7(5)=7 7(7)=5

is quite close to inducing an order-equivalence be-
tween the full four-way race games modulo 8 and 12,
respectively (in the sense that the values in these ta-
bles would only have to be modified by at most 6 x
107° in order for the condition (6-8) to always hold).
It would certainly be interesting to try to establish
(or even classify) order-equivalent race games, espe-
cially for larger values of r and between r-tuples to
different moduli.

Another Problem of Knapowski and Turan

Knapowski and Turdn [1962] posed a number of
problems in comparative prime number theory, sev-
eral of which have been answered in [Rubinstein and
Sarnak 1994] and in this paper. In their Problem 9
they ask whether, for any r-tuple a4,...,a, of re-
duced residue classes mod ¢, the inequalities

©(q)’

simultaneously hold for arbitrarily large values of
z. Each individual inequality is unbiased if a; is a
nonsquare mod ¢ and biased negatively if a; is a
square mod g. We remark here that if we apply the
method of Rubinstein and Sarnak to the error term

m(x;q,a;) > fori=1,...,r, (6-9)

log

7 (w(@)7 (259, a) —1i(2)),

El(x; q, a) =

which has been centered in a slightly different way
than in the definition (2-1) of E(x;¢q,a), we can see
that this question of Knapowski and Turdn is an-
swered in the affirmative, and in fact the set of real

numbers z satisfying the inequalities (6-9) has pos-
itive density as well.
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