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LAGRANGE INTERPOLATION SET ALONG LINEAR PIECEWISE

ALGEBRAIC CURVES∗

REN-HONG WANG† AND SHAO-FAN WANG‡

Abstract. This paper discusses the Lagrange interpolation problem in continuous bivariate
spline spaces over regular triangulations. By using the so-called Lagrange interpolation set along
piecewise algebraic curves, we develop a new approach of constructing the interpolation set for
continuous spline spaces. We show the property of this set on star region, and construct the interpo-
lation set for continuous bivariate spline spaces over arbitrary triangulations. The construction only
depends on the number of points on the piecewise algebraic curve in each cell.
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1. Introduction

Let D be a bounded simply connected domain in R2 and let ∆ be a regular
triangulation of D with a polygonal boundary, i.e., a finite set of closed triangles such
that any pair of triangles intersect only at a common vertex or along a common edge.
Let k,µ be integers with k >µ≥0. The space of bivariate splines of degree k and
smoothness µ is defined by

Sµ
k (∆) :={s∈Cµ(∆) :s|∆i

∈Pk, i=1,... ,T},

where ∆i, i=1,... ,T are all the cells of ∆ and Pk denotes the space of bivariate
polynomials of total degree k.

We say that a set of points A={Qi, i=1,2,... ,d}⊂D, where d=dimSµ
k (∆), is a

Lagrange interpolation set for Sµ
k (∆) if for any given data y1,... ,yd ∈R there exists

a unique spline function s∈Sµ
k (∆), such that

s(Qi)=yi, i=1,... ,d.

We are interested in the Lagrange interpolation problem in the space of bivariate
splines, that is, determining the interpolation set for any spline spaces. While in uni-
variate spline spaces, the interpolation set can be characterized by the Schoenberg-
Whitney condition, it is more difficult to determine the interpolation set in the mul-
tivariate case. Davydov et al. showed the characterization of the interpolation set on
arbitrary triangulations in [3] by investigating the zero set of bivariate linear spline.
Other scholars, e.g., Chui, He, Hecklin, Nürnberger, Schumaker and Wang, did much
research on this topic [1, 2, 4, 7, 10]. Nürnberger and Zeilfelder gave a summary of
interpolation methods on bivariate spline spaces in [8].
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We call the zero set

Z(s) :={(x,y) :s(x,y)=0, s∈Sµ
k (∆)}

a piecewise algebraic curve of degree k and smoothness µ in ∆. By linear algebra, a
set of points A={Qi, i=1,2,... ,dimSµ

k (∆)} is an interpolation set for Sµ
k (∆) if and

only if a non-trivial piecewise algebraic curve s(x,y)=0 such that A⊂Z(s) does not
exist. Therefore, the Lagrange interpolation problem is equivalent to discussing the
property of piecewise algebraic curves. Our main idea comes from the work proposed
by Liang et al. in [5, 6, 11], who discussed the Lagrange interpolation problem in
multivariate polynomial spaces. Wang and Zhu extended this method to consider
the interpolation problem in bivariate spline spaces [13]. In this paper, we develop a
method to construct the interpolation set for continuous spline spaces, by using the
so-called Lagrange interpolation set along piecewise algebraic curves. The paper is
organized as follows. In section 2, we introduce the so-called Lagrange interpolation
set along piecewise algebraic curves. By using the Bezout theorem for piecewise
algebraic curves in section 3, we show an interesting property of the interpolation
set along linear piecewise algebraic curves over star regions. A new approach for
constructing the interpolation set for bivariate continuous spline spaces over arbitrary
triangulations is given in section 4.

2. Preliminaries

Throughout the paper, we use the following important notation. Let V be an in-
terior vertex of a triangulation ∆ and denote St(V ) :={∆i ∈∆:V ∈∆i, i=1,2,... ,N}
to be the set of triangles sharing V as a common point, which is called a star region
of V . Let p,q be two polynomials of positive degrees. If there exists a natural number
k≥2, such that pm|q holds for m=1,2,... ,k, then p is said to be a multiple factor
of q. We denote S−1

k (∆) to be the space of piecewise polynomials of degree k. We
denote IN(f,g) to be the number of intersections between two curves f =0 and g =0.
We denote #(A) to be the number of elements of a set A.

We shall give the definition of the Lagrange interpolation set along piecewise
algebraic curves in this section. Before doing this, we need to introduce the so-called
WELL piecewise algebraic curve, which plays an important role in our interpolation
method.

Definition 2.1. ([13]) Let k,µ be integers such that 0≤µ≤k. Let q(x,y)∈Sµ
k (∆)

be a spline function such that for each cell δ∈∆, the polynomial q|δ has no multiple

factors, and none of the interior edges lies on the curve q =0. Then the curve q =0
is called a WELL piecewise algebraic curve (WPAC).

We give the definition and property of the so-called Lagrange interpolation set
along a WELL piecewise algebraic curve as follows. In the following Definition 2.2
and Theorem 2.3 we shall let n,k be natural numbers and µ be an integer such that
0≤µ≤n−k. Let q(x,y)∈Sµ

k (∆) be a spline function such that the curve q(x,y)=0
is a WPAC on ∆. Denote eµ

n(k) :=dimSµ
n(∆)−dimSµ

n−k(∆) to be the difference
between the dimensions of Sµ

n(∆) and Sµ
n−k(∆). Let B={Qi, i=1,2,... ,eµ

n(k)} be a
set of distinct points on the WPAC q =0.

Definition 2.2. ([13]) If for any spline function s(x,y)∈Sµ
n(∆) with s(Qi)=0,

i=1,... ,eµ
n(k), there exists a piecewise polynomial r(x,y)∈S−1

n−k(∆) such that s= qr,
then the set B is called a Lagrange interpolation set along the WPAC q =0 with respect

to the spline space Sµ
n(∆). For short, we say B∈ Iµ

n,k(q).
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Theorem 2.3. ([13]) Let A be an interpolation set for Sµ
n−k(∆) such that none of

points of A lies on the WPAC q =0. Then A∪B is an interpolation set for Sµ
n(∆) if

and only if B∈ Iµ
n,k(q).

Remark 2.4. If the piecewise algebraic curve q(x,y)=0 is not a WPAC, the con-
clusion is not valid because for any spline function s(x,y)∈Sµ

n(∆) such that the
curve s=0 passes through all the points of A∪B, there exists a piecewise polyno-
mial r(x,y)∈S−1

n−k(∆) such that s= qr. However r(x,y) is not a spline function of
smoothness µ if one or some interior edges of ∆ lie on the curve q =0. In that case
we have r 6≡0 although it passes through all the points of A, and A∪B is not an
interpolation set for Sµ

n(∆).

Theorem 2.3 tells us that once we have an interpolation set for spline spaces of
lower degree, we can construct an interpolation set for spline spaces of higher degree
by using the so-called Lagrange interpolation set along a WPAC. At the end of this
section, we propose the Bezout theorem and AF +BG theorem for piecewise algebraic
curves, which are essential for the proof of our main results (Theorems 3.1 and 3.2).

Theorem 2.5. ([9]) Let St(V ) be a star region of V and T be the number of cells of

St(V ). Denote

BN(m,r;n,t;∆) :=max
f,g

{IN(f,g)<+∞ :f ∈Sr
m(∆), g∈St

n(∆)}

to be the maximum number of intersections between two piecewise algebraic curves in

Sr
m(∆) and St

n(∆) whose common points are finite. Then BN(m,0;n,0;St(V ))=mnT
if mnT is an even number; otherwise, BN(m,0;n,0;St(V ))=mnT −1.

Theorem 2.6. ([12]) Let St(V ) be a star region of V and T be the number of cells of

St(V ). Let m,n,r be natural numbers such that max{m,n}≤ r and mnT is an even

number. Let F ∈S0
m(St(V )), G∈S0

n(St(V )), H ∈S0
r (St(V )) be spline functions such

that two curves F =0, G=0 have exactly mnT distinct intersections in St(V ). If the

curve H =0 passes through all these intersections, then there exist spline functions

A∈S0
r−m(St(V )), B∈S0

r−n(St(V )), such that H =AF +BG.

3. The Interpolation set along linear piecewise algebraic curve on a

star region

In the following Theorems 3.1, 3.2 and Lemma 3.5 we shall let St(V ) be a star
region and T be the number of cells of St(V ) which are denoted by ∆1,∆2,... ,∆T in
a counter-clockwise direction. Denote li to be the common edge between two adjacent
cells ∆i and ∆i+1, i=1,2,... ,T , where ∆T+1 =∆1. Let q(x,y)∈S0

1(St(V )) be a linear
spline function such that the curve q =0 is a WPAC on St(V ) with q(V ) 6=0. Let k
be a natural number and B be a set of kT distinct points on the WPAC q =0 such
that none of these points lies on any interior edge of St(V ).

We establish the main results of our paper as follows.

Theorem 3.1. Suppose that kT is an odd integer. Then B∈ I0
k,1(q) if and only if all

the sets Bi =B|∆i
, i=1,2,... ,T satisfy one of the following two conditions:

1. k−1≤#(Bi)≤k+1, i=1,... ,T and the indices i1 <i2 < ···<iα such that

#(Bim
)=k−1, 1≤m≤α and the indices j1 <j2 < ···<jα such that #(Bjm

)=k+1,
1≤m≤α satisfy two alternating inequalities: i1 <j1 <i2 <j2 < ···<iα <jα or j1 <
i1 <j2 <i2 < ···<jα <iα, with 1≤α≤ [T/2].

2. #(Bi)=k, i=1,... ,T .
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Theorem 3.2. Let Qi1,Qi2,... ,Qiti
be all the points of Bi =B|∆i

. Denote n(li), nij

to be the slopes of the straight lines li, V Qij respectively, j =1,2,... ,ti, i=1,2,... ,T .

Suppose that kT is an even integer. Then B∈ I0
k,1(q) if and only if one of the following

two conditions is satisfied:

1. k−1≤#(Bi)≤k+1, i=1,2,... ,T and the indices i1 <i2 < ···<iα such that

#(Bim
)=k−1, 1≤m≤α and the indices j1 <j2 < ···<jα such that #(Bjm

)=k+1,
1≤m≤α satisfy two alternating inequalities: i1 <j1 <i2 <j2 < ···<iα <jα or j1 <
i1 <j2 <i2 < ···<jα <iα, with 1≤α≤ [T/2].

2. #(Bi)=k, i=1,2,... ,T , and the slopes of the straight lines li, V Qij, j =
1,2,... ,k, i=1,2,... ,T do not satisfy the following equation:

T
∏

i=1

k
∏

j=1

(ni+1,j −n(li))=

T
∏

i=1

k
∏

j=1

(nij −n(li)), (3.1)

where nT+1,j =n1j.

Remark 3.3. When the index α in Condition 1 is equal to 1, it degenerates into the
following condition: there exist two indices 1≤ i1≤ j1≤T such that #(Bi1)=k−1,
#(Bj1)=k+1, and #(Bi)=k for each i 6= i1,j1.

Proof of Theorem 3.1.
Proof. Sufficiency. Suppose that Condition 2 is satisfied. We can check that

#(B)=kT =dimS0
k(St(V ))−dimS0

k−1(St(V )). Let s(x,y)∈S0
k(St(V )) be any spline

function such that the curve s=0 passes through all the points of B. For i=1,2,... ,T ,
denote si =s(x,y)|∆i

, qi = q(x,y)|∆i
to be the polynomials of s(x,y), q(x,y) restricted

on the cell ∆i, respectively. Because kT is an odd number and the piecewise alge-
braic curves s=0, q =0 have kT intersections, by Theorem 2.5 they have infinitely
many intersections in ∆. Without loss of generality, we assume that ∆1 is one of
the cells with infinitely many intersections between them. We consider the following
two cases. If the edge l1 and the straight line q1 =0 are not parallel with each other,
their intersection is also one of the intersections of two curves s2 =0 and l2 =0. Thus
the two polynomials s2 and l2 have k+1 common zeros in ∆2, which implies they
have infinitely many intersections in ∆2; if q1 =0 is parallel to the edge l1, by the
smoothness condition it is also parallel to the straight line q2 =0. By using a coor-
dinate transformation, we can express these bivariate polynomials l1,q1,q2,s1,s2 into
the following equations:

l1 =y, q1 = c′y−c, q2 =y−c, s1 =(c′y−c)r1(x,y), s2 =(c′y−c)r1(x,y)+yr2(x,y),

where c,c′∈R with c 6=0, c′ <0, r1(x,y), r2(x,y) are two polynomials of degree k−1.
Condition 2 indicates that the univariate polynomial s2(x,c) has k distinct roots, since
the degree of s2(x,c) is k−1, we have s2(x,c)≡0. Thus we show that in either case, the
polynomials s2 and q2 have infinitely many common zeros on the cell ∆2. Similarly
we can prove that two curves q =0 and s=0 have infinitely many intersections on
all the other cells of St(V ). Therefore, there exists a piecewise polynomial r(x,y)∈
S−1

k−1
(St(V )) such that s(x,y)= q(x,y)r(x,y), which proves that B∈ I0

k,1(q).
Suppose that Condition 1 is satisfied, that is, the indices i1 <i2 < ···<iα such that

#(Bim
)=k−1 and the indices j1 <j2 < ···<jα such that #(Bjm

)=k+1, 1≤m≤α
satisfy one of the two alternating inequalities. We repeat the former discussion from
each pair of two cells ∆jm−1

, ∆jm
to all the others. The approach is the same as

before and we omit the details.



REN-HONG WANG AND SHAO-FAN WANG 169

Necessity. Suppose B∈ I0
k,1(q). At first we consider the bound of the number

of points of B on each cell of St(V ). We assume that ∆1 is a cell of St(V ) such
that #(B1)≥k+2. Denote B={Q1,Q2,... ,QkT } to be all the points of B. Let
s1,s2,... ,sd be a basis of spline spaces S0

k(St(V )) where d=dimS0
k(St(V )). Let Mj =

(s1(Qj),s2(Qj),... ,sd(Qj)) be the vector whose elements are si(Qj), i=1,2,... ,d,
j =1,2,... ,kT . Then the vectors M1,M2,... ,MkT are linearly independent according
to the property of the set B. However, for any point Q1∈B1 and any spline func-
tion s(x,y)∈S0

k(St(V )), if the curve s=0 passes through all the points of B1\{Q1},
then P |∆1

=0 and q|∆1
=0 have infinitely many intersections and the curve s=0 also

passes the remaining point Q1. That means the column vector M1 can be generated
by M2,M3,... ,MkT . This is a contradiction, therefore #(B1)≤k+1. Next, we assume
that ∆1 is a cell of St(V ) such that #(B1)≤k−2. Because the total number of points
of B is kT and the number of points on each cell is no more than k+1, there exist two
cells ∆β , ∆γ with 2≤β <γ≤T , such that either β =γ−1 or #(Bβ)=#(Bγ)=k+1,
#(Bi)=k, ∀ β <i<γ. For any point Q1∈Bγ , let s(x,y)∈S0

k(St(V )) be a spline func-
tion on St(V ) such that s=0 passes through all the points of B\{Q1}. By the previous
proof, s=0 and q =0 have infinitely many intersections in each cell ∆i, ∀ β <i<γ.
In particular, s=0 passes through the point Q1. Again, we show that the vector M1

can be generated by M2,M3,... ,MkT , which leads to a contradiction. So we have
k−1≤#(B1)≤k+1.

Suppose neither of Conditions 1 and 2 is satisfied, i.e., the indices of the cells
with k−1 points and the indices of the cells with k+1 points of B do not satisfy the
alternating inequalities. Then there exist two cells ∆β , ∆γ , with 1≤β <γ≤T , such
that either β =γ−1, or #(Bβ)=#(Bγ)=k+1, #(Bi)=k, ∀ β <i<γ. By using a
similar approach, we can get a contradiction of linear independence of those vectors
Mi, i=1,2,... ,kT . Then we complete the proof.

The following lemma helps to prove Theorem 3.2.

Lemma 3.4. Let f ∈S0
k(St(V )), g∈S0

1(St(V )) be two spline function such that the

curves f =0, g =0 are WPACs with exactly kT intersections in St(V ), where k is a

natural number, T is the number of cells of St(V ). Suppose kT is an even number.

Then there exists a point among these kT intersections such that for any spline func-

tion h∈S0
k(St(V )), if the curve h=0 passes through other kT −1 points of these kT

intersections, then it also passes through the remaining one.

Proof. Let f ∈S0
k(St(V )), g∈S0

1(St(V )) be two spline functions such that the
curves f =0, g =0 have exactly kT intersections in St(V ), and let the set of these
kT intersections be denoted by A. Denote ∆1,∆2,... ,∆T to be all the cells of St(V )
in a counter-clockwise direction, and li to be the common edge between two cells
∆i and ∆i+1, i=1,2,... ,T . Denote Λ={h∈S0

k(St(∆)) :h(Q)=0,∀ Q∈A} to be the
collection of spline functions h such that the curve h=0 passes through all these kT
intersections. By Theorem 2.6, for any spline function h∈Λ there exist a constant A∈
P0 and a spline function B∈S0

k−1(St(V )) such that h=Af +Bg. Denote Λ0 ={B∈
S0

k−1(St(∆)) :f =Bg} to be the set of spline functions B∈S0
k−1(St(∆)) such that f =

Bg. Then Λ and Λ0 are linear spaces and dimΛ=dimP0 +dimS0
k−1(St(V ))−dimΛ0.

However, for each 1≤ i≤T two polynomials f |∆i
, g|∆i

have no common factors on
each cell St(V ) because they have finite intersections. That means a non-zero spline
function in the set Λ0 does not exist. Therefore we can calculate the dimension of Λ
as follows: dimΛ=1+dimS0

k−1(St(V ))=dimS0
k(St(V ))−(kT −1). The calculation

implies that there exists a point of A such that for any spline function h∈S0
k(St(∆)),
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if the curve h=0 passes through other kT −1 points of A, it also passes through the
remaining one. The proof is finished.

To prove Theorem 3.2, we only need to consider the case when the number of the
interpolation set along linear WPACs is the same in each cell, which is given in the
following lemma.

Lemma 3.5. Suppose #(B|∆i
)=k, i=1,2,... ,T , and denote Qi1,Qi2,... ,Qik to be

the points of B|∆i
in a counter-clockwise direction on the straight line q|∆i

=0 with

respect to V . Suppose that kT is an even integer. Then B∈ I0
k,1(q) if and only if the

slopes of these straight lines li, V Qij do not satisfy equation (3.1).

Proof. Necessity. We assume that the slopes of straight lines li, V Qij satisfy

equation (3.1). Denote s(x,y)∈S−1

k (St(V )) to be the piecewise polynomial such that
s(x,y) is the product of these straight lines V Qij , j =1,2,... ,k restricted on each cell

∆i. That is, s|∆i
= ci

∏k
j=1

(nijx−y), ci 6=0, i=1,2,... ,T . We choose c1 =1,

ci+1 = ci

k
∏

j=1

nij −n(li)

ni+1,j −n(li)
, i=1,2,... ,T −1.

By using the smoothness condition, it follows from equation (3.1) that s(x,y) is a
continuous spline function. That means we find a spline function s(x,y)∈S0

k(∆),
such that the curves s=0 and q =0 have exactly kT intersections on St(V ), which
implies B 6∈ I0

k,1(q). This proves the necessity.

Sufficiency. Suppose the slopes of these straight lines li, V Qij do not satisfy
equation (3.1). For any 1≤α≤T , 1≤β≤k, we consider equation (3.1) with the slope
of V Qαβ replaced by the variable x, that is,

C1(x−n(lα−1))=C2(x−n(lα)), (3.2)

where

C1 =
1

nαβ −n(lα−1)

T
∏

i=1

k
∏

j=1

(ni+1,j −n(li)), C2 =
1

nαβ −n(lα)

T
∏

i=1

k
∏

j=1

(nij −n(li)).

We choose the coordinate system such that the y axis does not pass through the in-
terior of the cell ∆α, and none of points of B lies on the y axis. Suppose the y axis
passes through the interior of ∆m1

, ∆m2
, the number of points of Bm1

with positive
x-coordinates and the number of points of Bm2

with negative x-axis coordinates are
k1,k2, respectively (see figure 3.1), where 1≤m1,m2≤T , m1,m2 6=α. By compar-
ing the values of n(li−1), n(li) and nij , we have sgn(C1)=(−1)k−k1+k−k2 , sgn(C2)=
(−1)kT−1−k1−k2 . As kT is even, sgn(C1)=−sgn(C2), and we see that equation (3.2)
has a unique solution, which is denoted by n′

αβ . Let s(c1,c2,... ,cT ;x,y)∈S−1

k (St(V ))

be a piecewise polynomial such that s|∆i
= ci

∏k
j=1

(nijx−y), i=1,2,... ,T , i 6=α,

and s|∆α
= cα(n′

αβx−y)/(nαβx−y) ·
∏k

j=1
(nαjx−y), with each ci 6=0. Again, it fol-

lows from the smoothness condition that there exist c1,c2,... ,cT , such that s(x,y)=
s(c1,c2,... ,cT ;x,y)∈S0

k(∆). Denote Q′
αβ to be the intersection between two straight

lines n′
αβx−y =0 and q|∆α

=0. Then Q′
αβ 6=Qαβ , and two curves s=0, q =0 inter-

sect at all the points of B∪{Qαβ}\{Q
′
αβ}. Let P (x,y)∈S0

k(St(V )) be any spline
function such that P =0 passes through all the points of B. According to Lemma 3.4,
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two curves s=0, q =0 have exactly kT intersections and P =0 passes through kT −1
points of them, then P =0 also passes through the remaining one, which is the point
Q′

αβ . Therefore, two curves P =0 and q =0 have k+1 intersections on ∆α, and k
intersections on other cells of St(V ). Again by using the method in the sufficiency
proof in Theorem 3.1, we can prove that P =0, q =0 have infinitely many intersections
on each cell of St(V ), thus there exists a piecewise polynomial r(x,y)∈S−1

k−1
(St(V )),

such that P = qr. So we have B∈ I0
k,1(q), and the lemma is proved. We have finished

the proof of Theorem 3.2.

Fig. 3.1. The locations of Bm1
,Bm2

on the curve q(x,y)=0.

Theorems 3.1 and 3.2 tell us whether a set of points is an interpolation set along
a linear WPAC on the star region depends on the number of points in cells under
most circumstances; when kT is even and the number of points of the set is the same
in each cell of the star region, the result also depends on the geometrical property of
the set. The reason is that the Bezout theorem for piecewise algebraic curves gives
different results under two different circumstances.

4. Interpolation set for S0
k(∆) on arbitrary triangulations

In this section, we propose a method to construct the interpolation set for contin-
uous spline spaces of any degree over arbitrary triangulations. The construction only
depends on the number of the points on the linear piecewise algebraic curves within
each cell.

In the following theorem, we shall let ∆ be a triangulation and T be the number of
cells of ∆. Let V be an interior vertex of ∆ which is adjacent to two boundary vertices
of ∆. For m=1,2,... ,k, let qm(x,y)∈S0

1(∆) be a spline function such that each curve
qm =0 is a linear WPAC on ∆ without passing through vertex V and no pair of
them has intersections. Let St1(V )=St(V )={∆1,∆2,... ,∆n} be the collection of all
cells with vertex V , and define Sti(V ) inductively to be the collection of all cells in ∆
which intersect with Sti−1(V ), i=2,3,... ,M :=max

v
{dist(V,v) :v∈V (∆)\{V }}, where

dist(V,v) denotes the smallest number of edges connecting V and v, V (∆) denotes
the set of all the vertices of ∆ (see figure 4.1). For 2≤ i≤M , denote Ci to be the
subset of Sti(V ) such that each cell of Ci either intersects at least two interior vertices
of Sti−1(V ), or intersects with a boundary vertex and an interior vertex of Sti−1(V )
and the boundary vertex is adjacent to the interior vertex in the counter-clockwise
direction with respect to V (i.e., the counter-clockwise angle from the connecting line
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between V and the interior vertex to the connecting line between V and the boundary
vertex, is no greater than π).

Fig. 4.1. The regions St(V ), St2(V ) and St3(V ) are marked dark gray, bright gray and white.

The construction of interpolation set for S0
k(∆) is given in the following theorem.

Theorem 4.1. Suppose B is a set of points on the curve
∏k

m=1
qm(x,y)=0 without

lying on any interior edge of ∆. For each cell δ∈∆, denote bδ ={#(B∩Z(qm)|δ) :
m=1,2,... ,k} to be the set of numbers of points of B on curves qm =0, m=1,2,... ,k
in δ. Suppose that bδ satisfies the following conditions:

A. b∆1
is a permutation of {2,3,... ,k+1};

B. bδ is a permutation of {0,1,... ,k−1} if δ∈∪M
i=2C

i
⋃

{∆n};

C. bδ is a permutation of {1,2,... ,k} if δ∈∆\(∪M
i=2C

i∪{∆1}∪{∆n}).

Then B∪{V } is an interpolation set for spline space S0
k(∆).

Proof. At first, we check that the number of points of B∪{V } is equal
to the dimension of spline space S0

k(∆). All the cells of ∆ are divided into
St1(V ),St2(V ),... ,StM (V ). Denote V I to be the number of interior vertices of ∆,
and IV i to be the collection of intersections between Sti−1(V ) and Sti(V ) which are
also the interior vertices of ∆, i=2,3,... ,M . It is easy to see that #(Ci)=#(IV i),

which indicates that #(
∑M

i=2
Ci)=V I −1. So the number of points of B is

#(B)=

(

k+2

2

)

−1+V I

(

k

2

)

+(T −V I −1)

(

k+1

2

)

=

(

k+1

2

)

T −kV I +k

=dimS0
k(∆)−1.

Let s(x,y)∈S0
k(∆) be a spline function such that the curve s=0 passes through

all the points of B∪{V }. The conclusion is valid if and only if s vanishes on all the
cells of ∆. Suppose ∆1,∆2,... ,∆n are arrayed in counter-clockwise direction with
respect to V . For j =1,2,... ,n, m=1,2,... ,k, denote sj =s|∆j

, qjm = qm|∆j
to be the

polynomials of the spline functions s, qm and Bj =B|∆j
, Bjm =B∩Z(qm)|∆j

to be the
subsets of B, B∩Z(qm) restricted on cell ∆j , respectively. According to Condition A,
there exists a permutation of {1,2,... ,k}, say {α1,α2,... ,αk}, such that #(B1αm

)=
m+1, m=1,2,... ,k. Then two curves s1 =0, q1αk

=0 have k+1 intersections in ∆1.
By using the Bezout theorem, they have infinitely many intersections in ∆1, which
implies that there exists a polynomial r1αk

∈Pk−1, such that s1 = q1αk
r1αk

. Because
of the property of WPACs, the curve r1αk

=0 passes through the vertex V and all the
points of B1\B1αk

. By using the previous discussion repeatedly, we can prove that
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there exists a polynomial r1α1
∈P0, such that s1 = r1α1

∏k
m=1

q1αm
, and the curve

r1α1
=0 passes through V . Because r1α1

is a constant, we obtain that r1α1
≡0 and

s1≡0.
To continue the discussion on ∆2, let lj be the common edge between two cells ∆j

and ∆j+1, j =1,2,... ,n, where ∆n+1 =∆1. It follows from the smoothness condition
that there exists a polynomial p2∈Pk−1 such that s2 =p2l1. Repeat the discussion
on polynomial p2, and it follows from Condition C that, the curve p2 =0 has 1,2,... ,k
intersections with these straight lines q21,q22,... ,q2k. Thus we obtain that s2≡0. The
same discussion is applied on ∆2,∆3,... ,∆n−1. For ∆n, the last cell of the star region
of V , we notice that sn is a polynomial of degree k such that ln−2ln−1|sn and the
curve sn =0 has 0,1,... ,k−1 intersections with those straight lines qn1,qn2,... ,qnk =0
in ∆n; thus sn ≡0 can be obtained in the same way, and s vanishes on St(V ).

Fig. 4.2. The construction of an interpolation set for S0
2(∆).

To consider the cells of Sti(V ), i≥2, our main idea is to find an ordering of
vertices of IV i, the set of intersections between Sti−1(V ) and Sti(V ) which are also
the interior vertices of ∆, such that s≡0 can be proved on the star regions of these
vertices one by one. We denote Ci

0⊂Ci to be the collection of cells which intersect
at three interior vertices with Sti−1(V ), 2≤ i≤M . Because each cell of C2

0 belongs
to the same star region as all the other cells in St1(V ), we can prove that s vanishes
on C2

0 . Moreover, each cell in C2
0 intersects with a cell in St2(V ) at two common

vertices, and the third vertex is not an intersection between them. We consider the
subset of vertices by omitting that vertex from IV 2. These vertices consist of one or
some sequences of adjacent vertices such that the starting and ending points of each
sequence are boundary vertices and others are interior vertices. Each edge connecting
those interior vertices and the ending point of a sequence is an edge of a cell in C2

(the sub-figure on the left hand side of figure 4.2 shows these edges with boldfaced
lines in ∆). As a result, in the star region of the first interior vertex of each sequence,
there is only one cell with 0,1,... ,k−1 numbers of intersections between s=0 and
q1,q2,... ,qk =0, which indicates that s vanishes on that star region. Then we repeat
the discussion on the star regions of other vertices along the sequence one by one,
and prove that s vanishes on St2(V ). Using this approach repeatedly on other star
regions of ∆, we can show that s≡0 on ∆, which finishes the proof.

An example of constructing the interpolation set for S0
2(∆) is given in figure 4.2.
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On the left hand side of the figure, we use dashed curves to mark Sti(V ), i=1,2,... ,6.
The cell with {2,3} points and the cells with {0,1} points are marked, the others
contain {1,2} points. On the right hand side, q1(x,y)=0, q2(x,y)=0 are two linear
WPACs with no intersections in ∆. Then the union of the points chosen on two curves
q1 =0, q2 =0, and the vertex V is an interpolation set for S0

2(∆).
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