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STABILITY AND TOTAL VARIATION ESTIMATES
ON GENERAL SCALAR BALANCE LAWS*

RINALDO M. COLOMBOT, MAGALI MERCIER}, AND MASSIMILIANO D. ROSINIS

Abstract. Consider the general scalar balance law d;u+ Divf(t,z,u) = F(t,z,u) in several space
dimensions. The aim of this paper is to estimate the dependence of its solutions on the flow f and
on the source F. To this aim, a bound on the total variation in the space variables of the solution is
obtained. This result is then applied to obtain well posedness and stability estimates for a balance
law with a non local source.

Key words. Multi-dimensional scalar conservation laws, Kruzkov entropy solutions.

AMS subject classifications. 35L65.

1. Introduction
The Cauchy problem for a scalar balance law in N space dimensions

Ou+Divf(t,z,u)=F(t,x,u) (t,x) € Ry xRN (1.1)
u(0,2) =uy(x) r € RN ’

is well known to admit a unique weak entropy solution, as proved in the classical
result by Kruzkov [12, Thm. 5]. The same paper also provides the basic stability
estimate on the dependence of solutions from the initial data, see [12, Thm. 1]. In the
same setting established in [12], we provide here an estimate on the dependence of
the solutions to (1.1) on the flow f and the source F', and recover the known estimate
on the dependence from the initial datum u,. A key intermediate result is a bound
on the total variation of the solution to (1.1), which we provide in Theorem 2.5.

In the case of a conservation law, i.e., where F'=0, and where the flow f is
independent of ¢t and x, the dependence of the solution on f was already considered
in [3], where other results were also presented. In this case, the TV bound is obvious,
since TV (u(t)) <TV(u,). The estimate provided by Theorem 2.5 slightly improves
the analogous result in [3, Thm. 3.1] (that was already known, see [6, 16]), which
reads (for a suitable absolute constant C)

(6) = 00| 2 v < 00— vollga vy +C TV (o) L (f — g) .

Our result, given by Theorem 2.6, reduces to this inequality when f and g are not
dependent on ¢t and z and FF =G =0, but with C'=1.

A flow also dependent on x was considered in [4, 9], though in the special case
flz,u)=1(x)g(u), but with a source term containing a possibly degenerate parabolic
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38 STABILITY AND TV ESTIMATES ON GENERAL SCALAR BALANCE LAWS

operator. There, estimates on the L' distance between solutions in terms of the
distance between the flows were obtained, but are dependent on an a priori unknown
bound on TV (u(t)) Here, with no parabolic operators in the source term, we provide
fully explicit bounds both on TV (u(t)) and on the distance between solutions. Indeed,
we remark that with no specific assumptions on the flow, TV (u(t)) may well blow up
to +00 at t=0+, as in the simple case f(x,u)=cosz with zero initial datum.

Both the total variation and the stability estimates proved below turn out to be
optimal in some simple cases, in which optimal estimates are known.

As an example of a possible application, we consider in section 3 a toy model for
a radiating gas. This system was already considered in [5, 8, 10, 11, 13, 14, 15, 17].
It consists of a balance law of the type (1.1), but with a source that also contains a
nonlocal term due to the convolution of the unknown with a suitable kernel. Using
the present results, we prove the well posedness of the model extending [8, Thm. 2.4]
to more general flows, sources, and convolution kernels. Stability and total variation
estimates are also provided.

This paper is organized as follows: in section 2, we introduce the notation, state
the main results, and compare them with those found in the literature. Section 3 is
devoted to an application to a radiating gas model. Finally, in sections 4 and 5 the
detailed proofs of theorems 2.5 and 2.6 are provided.

2. Notation and main results

Denote R, = [0,+00[ and R, =]0,+o00[. Below, N is a positive integer, Q=R x
RY xR, and B(z,r) denotes the ball in RY with center z € R and radius r >0. The
volume of the unit ball B(0,1) is wy. For notational simplicity, we set wg=1. The
following relation can be proved using the expression of wy in terms of the Wallis
integral Wy :

WN /2 N
=2Wn where Wi :/ (cos®)™ do. (2.1)
WN -1 0

In the present work, 14 is the characteristic function of the set A and §; is the Dirac
measure centered at t. Additionally, for a vector valued function f= f(x,u) with
u=u(z), Divf stands for the total divergence. On the other hand, divf, respectively
Vf, denotes the partial divergence, respectively gradient, with respect to the space
variables. Moreover, 9, and 0; are the usual partial derivatives. Thus, Divf=divf+
Ouf-Vu.

Recall the definition of weak entropy solution to (1.1), see [12, Definition 1].

DEFINITION 2.1. A function u€ L™ (R, x RV;R) is a weak entropy solution to (1.1)
1. for any constant k €R and any test function o € C (R xRV;R,),
R, JRN
xsign(u—k)dzdt > 0;

(2.2)

2. there exists a set £ of zero measure in Ry such that for t cR,\E the function
u(t,x) is defined almost everywhere in RY and for any r >0

lim / |u(t,$)—uo(a:)‘dx=(). (2.3)
t—0,t€R\EJ B(0,r)
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Throughout this paper, we refer to [1, 18] as general references for the theory of
BV functions. In particular, recall the following basic definition, see [1, Definition 3.4
and Thm. 3.6].

DEFINITION 2.2. Let u€Li (RM;R). Define

loc
TV (u) :sup{/RN udivypde : ¢ € CLRY;RY) and 191l Loo mv;mN) < 1}
BV([RV;R)= {ueLi‘oc(RN;R) . TV (w) <+oo}.
The following sets of assumptions will be of use below.

feC2(Q;RY) FeCYR)
(H1){ O,f €L>(Q;RY)
Oy (F —divf) e L>*(;R) F—divf e L>®(Q;R)

feC2(uRY) FeCYO;R)

VaufeL‘X’(Q;RNXN)// HV(F—divf)(t,x,-)HLM(R,RN)dxdt<+oo
(H2) Ry JRN ’

010, f EL®(LRY) 9, F e L>®(Q;R)

Odivf € L= (;R)

feCHOQ;RY) FeC’(Q;R)  9,FeL>®(Q;R)
(H3)

Ou f EL=(LRY) // ||(F—divf)(t,x,-)HLOO(RR)dxdt<+oo
Ry JRY ’

The quantity F'—divf has a particular role, since it behaves as the “true” source,
see (2.6). We note here that the assumptions above can be significantly softened in
specific situations. For instance, the requirement that f be Lipschitz, which is however
a standard hypothesis, see [3, Paragraph 3|, can be relaxed to f locally Lipschitz in
the case f= f(u) and F =0, thanks to the maximum principle [12, Thm. 3]. Further-
more, the assumptions above can be obviously weakened when aiming at estimates
on bounded time intervals.

Assumptions (H1) are those used in the classical results [12, Thm. 1 and Thm. 5].
However, we stress that the proofs below need less regularity. As in [12], we remark
that no derivative of f or F' in time is ever needed. Furthermore, f needs not be twice
differentiable in u, for the only second derivatives required are V.4, f and V2 f.

We recall below the classical result by Kruzkov.

THEOREM 2.3. (Kruzkov) Let (H1) hold. Then, for any u,€L>®(RY;R), there
(RN;IR{)) which is
right continuous. Moreover, if a sequence u” € L™ (RY;R) converges to u, in Llloc,
then for all t>0 the corresponding solutions u™(t) converge to u(t) in Li

loc*
REMARK 2.4. Under the conditions (H2) and

exists a unique weak entropy solution w to (1.1) in L*>® (EJF;L}OC

| P i) t.) g e < o6,
.
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see (H3), the estimate provided by Theorem 2.5 below allows us to use the technique
described in [7, Thm. 4.3.1], proving the continuity in time of the solution, so that

ueCe (R+;L1 (RN;R)).

loc

2.1. Estimate on the total variation. Recall that [9, Thm. 1.3] and [4,
Thm. 3.2] provide stability bounds on (1.1), in the more general case with a degenerate
parabolic source, but assuming a priori bounds on the total variation of solutions.
Our first result provides these bounds.

THEOREM 2.5. Assume that (H1) and (H2) hold. Let u, € BV(RY;R) be bounded.
Then, the weak entropy solution u of (1.1) satisfies u(t) €BV(RM;R) for all t>0.
Moreover, if

Ko=NWn ((2N+1) IV Oufllpe @y + ||auF||L°0(Q;R)) (2.4)

with Wy as in (2.1), then for all T >0,

T
TV(u(T))gTV(uO)e“"T—FNWN/ e”"(T_t)/ |V(F—divf)(t,@,)|| . dzdt.
0 RN
(2.5)

This estimate is optimal in the following situations:

1. If f is independent from = and F' =0, then x, =0 and the integrand in the right
hand side above vanishes. Hence, (2.5) reduces to the well known optimal
bound TV (u(T)) < TV (uo).

2. In the 1D case, if f and F are both independent from ¢ and w, then
ko =0 and (1.1) reduces to the ordinary differential equation d;u=F —divf.
Hence, (2.5) becomes

TV (w(T)) < TV (up) + TTV(F —div ). (2.6)

3. If f=0and F = F(t) then, trivially, TV (u(T)) =TV (u,) and (2.5) is optimal.
The constant NWy is related to the choice of the norm in R, see Lemma 4.1. If
N=1, then NWx =1 and this constant is optimal, for instance, in case 2 above.
On the other hand, if N >1, in the case where f =0 and F(u)=u, then we have that
ko=NWy >1 and the bound (2.5) reduces to TV (u(T")) < TV (u,)exp(k,T), whereas
TV (u(T)) =TV (uo)exp(T).
A simpler but slightly weaker form of (2.5) is

enoT _

TV (u(T)) <TV(up)e™ " + NWy ! sup/ ||V(F—divf)(t,x,')||Locd:v
RN

Ko telo,1)
when the right hand side is bounded.

2.2. Stability of solutions with respect to flow and source. Consider
now (1.1) together with the analogous problem

(2.7)

0w +Divg(t,z,v)=G(t,z,v) (t,x) € Ry xRN
v(0,2) =v,(x) r € RV,

We aim at estimates for the difference u—v between the solutions in terms of f—g,
F —G and u, —v,. Estimates of this type were derived by Bouchut & Perthame in [3]
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when f, g depend only on u and F'=G =0. Here, we generalize their result by adding
the (¢,2)-dependence. The present technique is essentially based on Theorem 2.5.
THEOREM 2.6. Let (f,F), (9,G) satisfy (H1), (f,F) satisfy (H2) and (f —g,F — Q)

satisfy (H3). Let u,,v, € BV(RY;R) be bounded. We denote k, as in (2.4) and
introduce

K:2N||Vauf||Loc(Q;RN><N) + ||auF||L°°(Q,R)
+ Ha’u(F—G)HLoC(QﬁR) and M = ||8ugHL°°(Q;]RN)'

Then, for any T,R>0 and z, €RY, the following estimate holds:
/ |u(T,x) —v(T,z)|dx
lz—zolI<R

< T /| - |to(x) — vo ()| dz
T—Tol||>
ercoT _enT

TV () |0 (f = 9)|

Ko — K

T eKO(T—t) _ en(T—t) )
ENW / = / IV (F—divf) (b2, )| dzdt ) [|0u(f —9)]]
0 Ro— K RN

T
+/ e'i(T*f)/ H((F—G)—div(f—g))(t,x,-)H dadt.
0 lz—a,|| <R+M(T—t) Lee

The above inequality is undefined for kK =k, and, in this case, it reduces to (5.17).
This bound is optimal in the following situations, where u,,v, € L*(RY;R).

1. In the standard case of a conservation law, i.e., when FF=G=0 and f,g are
independent of x, we have k,=x =0 and the result of Theorem 2.6 becomes,

see [2, Thm. 2.1],
||U(T> 7U(T)HL1(]RN;]R) S ”UO 7v0||L1(]R";]R) +TTV’(UO) Hau(f*g)HLoo(Q;RN)'

2. If 0,f=0,9=0 and 0,F=09,G=0, then k,=xk=0 and Theorem 2.6 now
reads as

HU(T) —o(T) ||L1(]RN;]R) <o _’UOHLl(]RN;]R)

+/OTH [(F—G)—div(f—g)] (t)‘

L1(RN;R)

3. If (f,F) and (g,G) are dependent only on x, then Theorem 2.6 reduces to

HU(T)_’U(T)HLl(RN;R) < HU‘O—’UOHLI(RN;R)
+ T||(F*G)7d1V(f*g)||L1(RN’R)

The estimate obtained in Theorem 2.6 also shows that, depending on the properties
of specific applications, the regularity requirement f € C2(£2;R") can be significantly
relaxed. For instance, in the case f(t,z,u)=1[(z)g(u) considered in [4, 9], requiring g
to be of class C! and [ to be of class C? is sufficient. Also see section 3 for a case in
which the required regularity in time can be reduced.
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In the case of conservation laws, i.e., when F'=G =0, one proves that « < k, and
the estimate in Theorem 2.6 takes the somewhat simpler form

/ |u(T,x)—v(T,x)‘dx
le—zol|<R

< e”"T/ |to(2) — vo(z)| da
|z—zo || <R+MT

T TV (uy) ||0u(f = 9)|[
FNWNT? T sup (/ HVdivf(t’ww)HLoodx) 197 =)~
t€[0,T] \JRN
+TeT sup / [div(f —g)(t, )| d2
t€[0,T]J ||z —a,|| <R+M(T—t)

when the right hand side is bounded. In the case considered in [3, Thm. 3.1], f = f(u),
ko =0 and we obtain [3, formula (3.2)] with 1 instead of the constant C' therein.

3. Application to a radiating gas model
The following balance law is a toy model inspired by the Euler equations for
radiating gases:

Ou+Divf(t,z,u)=—u+ K *, u. (3.1)

This has been extensively studied in the literature when f = f(u), see for instance [10,
11, 13, 15, 17] for the scalar 1D case, [5, 14] for 1D systems, and [8] for the scalar N
dimensional case.

The estimate provided by Theorem 2.6 allows us to present an alternative proof
of the well posedness of (3.1) proved in [8]. Furthermore, we add stability estimates
on the dependence of the solution from f and K, in the case where f is also dependent
t and z and with more general source terms.

THEOREM 3.1. Let (f,F) satisfy (H1), (H2) and (H3). Assume that
(K) Ke(C2nL®)(Ry xRY:R) and KeL™ (R+;W2’1(RN;R)).

Then, for any u, € (BVNLY)(RY;R), the Cauchy problem

{8tu+Divf(t,x,u):F(t,x,u)—i—K*mu (t,z) € Ry xRY (3.2)

u(0,2) =uo(x) reRN

admits a unique weak entropy solution u € C° (@+;L1(RN;R)). Moreover, denoting

k= ||K||L°°(R+;L1(RN;R))7 for all T'>0, the following estimate holds:
TV (u(T)) < et NWNRT TV (y,)

T

—i—NWN/ e(no—&-NWNk)(T—t)/ HV(F_diVﬁ(t’x")HLw dzdt.
0 RN

If F(t,2,0)—divf(t,2,0)=0 for all t€[0,T] and x €RY, then

1. ||’LL(T) ||L1(]RN;]R) < e(HJrk)THuOHLl(]RN;]R) :
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2. Let K satisfy (K) and call @ the solution to (3.2) with K replaced by K.
Then,
kT _ kT B
i HK—KH .
-k Leo (R ;L (RVSR))
(3.3)
Proof. Fix a positive T' (to be specified below) and consider the Banach space X =
C°([0,T;;L*(R";R)) equipped with the usual norm lull x = l[ullge 0,702 @ R))-
Define on X the map 7 so that 7 (w)=w if and only if u solves

HU(T) _’II(T)HLl(RN;R) < HUOHLl(RN;R)

{atu—i—Divf(t,x,u)=F(t,x,u)—|—K*ww (t,x) € Ry xRN (3.4)

w(0,2) =uo(x) r € RN

in the sense of Definition 2.1. Note that the source term does not have the regularity
required in (H1). However, by the estimate in Theorem 2.6 we can prove that (3.4)
does indeed have a unique weak entropy solution, see Lemma 3.2 for the details. The
fixed points of T are the solutions to (3.1). By Theorem 2.3 and Remark 2.4, Twe X
for all we X. We now show that 7 is a contraction, provided T is sufficiently small.
Note that

o= N W (N +1) IV 0 fllpw +110uF )
£ =2N|VOuf| g +[10uF |y
Moreover, by Theorem 2.6
d(Twy,Tws)= sup ||[Tw;—Twslp.

te[0,T]

)

et —1
< sup ( sup ||K(T)*m(w1—w2)(7)||m>
te[0,T) K refo]

erT -1
<

sup [ K (7)]|a || (wi —ws)(7)]| s
T€[0,T]

kd(wl,wg).

K

Therefore, 7 is a contraction as soon as 7' is smaller than a threshold that depends
only on [[0uF ||y (r): IVOufllp e mraxny, and on ||K|lpe g, ,p1@n.g))- Therefore,
we have proved the well posedness of (3.2) globally in time.

Consider the bound on TV (u(t)). By Theorem 2.5,

T
Tv(u(T))gTV(uo)+NWN/ e”o(T*ﬂ/ [V (F —divf)(t,2,)|| oo gz dzlt
0 RN ’

T
+NWy / e T=DETV (u(t)) dt
0
and an application of Gronwall Lemma gives the desired bound.
We estimate the L' norm of the solution to (3.2), comparing it with the solution
to

{8tu+Divf(t,x,u)=F(t,x,u)+K*Iu (t,z) € Ry xRY (3.5)

u(0,2)=0 z € RV,
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By assumption, the function wu(t,z)=0 solves the Cauchy problem (3.5), hence it
is its unique solution. Then, evaluating the distance between the solutions of (3.2)
and (3.5) by means of Theorem 2.6, we obtain

T
[T | o gy < Nt vy + /O et /R | u(t, )| dzat
and, using the Gronwall Lemma, we obtain:
(T v ey < €T ol v -
The final estimate (3.3) follows from Theorem 2.6:

e T || (u—a)(T) HLl(]RN;JR)

T T
S N R A [CR IO Y
5 6kT—1 B T ot ~
< HK—KHLOO(MLI(RN;R))IIuOIILl(RN;R) - +k:/0 €| (=) ()] vy I

and using the Gronwall Lemma, we obtain the result.
The continuity in time is proved as described in Remark 2.4. 1]

LEMMA 3.2. Let f,F satisfy (H1) and K satisfy (K). If we L= (R, x RV:R), then
the estimates in Theorem 2.5 and in Theorem 2.6 also apply to (3.4).

Proof. Fix positive T\, R and let w,, be a sequence of C* functions converging to
win L1 ([O,T] x RN ;R). Apply Theorem 2.3 to the approximate problem

(3.6)

Ou+Divf(t,x,u)=F(t,z,u)+ K *; wy, (t,z) € Ry xRV
u(0,2) =uo(x) r €RY

to ensure the existence of its weak entropy solution u,,. Apply Theorem 2.6 to estimate
the distance between u,, and u,_1:

T
”un_un—l||L°°([0,T];L1(RN;R)) S/O en(Tft) /RN ‘K*(wn—wn_l)(t,l‘)‘dﬂfdt

<e Tk llwn —wn_1 ||L1([0,T]xRN;R)

showing that the w, form a Cauchy sequence. Their limit u solves (3.2), as it fol-
lows passing to the limit over n in the integral conditions (2.2)—(2.3) and applying
the Dominated Convergence Theorem. The estimates in Theorems 2.5 and 2.6 are
extended similarly. 0

4. Proof of Theorem 2.5 o
LEMMA 4.1. Fiz a function py € CP(Ry;R4) with

1
— <0, p{M0)=0 for n>1. (4.1)

supp(y11) € (0,1, / N (1) dr
Ry

Define

) = (51, (42)
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Then, recalling that wg=1,

/}RNu(x)dle, (4.3)
2 w —1
[tk (el do= 5 2= [ (o) o, (14)

/ 1|V pa() de——/ lll sy (l]]) doe = N, (4.5)
RN

/ ] ﬂi(Ilwll)dx=—(N+1)/ 2l pa (l2]) da. (4.6)

RN RN

Proof. The first relation is immediate. Equalities (4.5) and (4.6) follow directly
from an integration by parts. Consider (4.4). The cases N =1,2,3 follow from direct
computations. Let N >4 and pass to spherical coordinates (p,61,...,0n_1),

x1=pcostn_1

To=psinfy_j cosOn_o

TN_1=psinfy_1sinfy_o---cosbt

Ty =psinfy_1sinfy_o---sinb,

with peRy, 61 €[0,27[ and ;€ [0,7] for j=2,...,.N—1. If N>4

[ Sl (el da

27 N-1
/ / / /|cos9N 11N () | I (sin6;)7 ™" | don—1dOy_o---dydp
]R+ j=2

27 T T N—
:/ / / H (sinf;)7 = | dfn_o---d6,
0 0 0 j=2

><</ |cos€N_1|(sin0N_1)N_2dHN_1>/ N (p)dp
0 R,

2 1
=(N-1Dwy_1——"—— d
(V= 1ovrgy e el (lel) do

2 wal/
_Z d
2 [l (1) i,

completing the proof. 0
Recall the following theorem (see [1, Thm. 3.9 and Rem. 3.10]):

(RV;R). Then u€BV(RY;R) if and only if there exists
and satisfying

THEOREM 4.2. Let u€ L,

a sequence u, in C®(RY;R) converging to u in Li,_

lim |Vun(2)||de=L  with L<oo.

n—-+oo RN

Moreover, TV (u) is the smallest constant L for which there exists a sequence as above.
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PROPOSITION 4.3. Fiz py as in (4.1). Let u€LL (RY;R) admit a constant C such
that for all positive A, R and with u as in (4.2)

1/ / |u(x)—u(x—z)‘u(z)dxdz§é. (4.7
A JrN JB(z0,R)
Then uwe BV(RY;R) and TV (u) <C/C1, where

Ci= [ lealm (o] o (4

Note that Cy €]0,1[. If moreover u€ C*(RY;R), then

TViw) a?ﬂ%x/ﬂw /RN —u(z—2)|p(z)dzdz. (4.9)

Proof. We introduce now a regularization of w: wup=wux*pp, with p,(z)=
pa (lz]|/h) /RN . Note that u, € C*°(RY;R) and w;, converges to u in Li,, as h—0.
Furthermore, for R and h positive, we have

/ / ‘uh —up(x—2 ’,u Ydxdz

RN (z0,R

g—/ / |u(z) —u(z - 2)| p(z) dedz
A Jry B2y R4R)

IN
(@)

and

up(x) —up(x—A2)
A

1
:/ Vup(x—Asz) - zds.
0

Using the Dominated Convergence Theorem, at the limit A — 0 we obtain

/ / |Vuh(x)~z{u1(||z||)dxdz§6'.
RY JB(,,R)

We remark that for fixed x € B(x,,R), when Vuy(xz)#0, the scalar product
Vup(x)-z is positive (respectively, negative) when z is in a half-space, say H, (re-
spectively, H ). We can write z=« %

H?=Vuy(z)+. Hence

+w, with a € R and w in the hyperplane

/RN e .Z‘ﬂl(”ZH)dZ:/Hivuh(x)'2/‘1(|z)dz‘*‘/HzVuh(m)-(—z)ﬂ1(||z||)dz
:Q/HJrVuh(a:).Zul(”Z”)dz
:2/11@ /OO‘HWh(ff)Hul( a2+ |w]?) dwda
:/R/HJMHVuh(x)HM( a2+ ||lw|*)dwda

= [Vun@)| [ Jalalela:
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Define C; as in (4.8) and note that C; €]0,1[. Then we obtain, for all R>0,

/B( HVuh(:c)deg(%. (4.10)

Finally, when R — oo we obtain f]RN HVuh(ac)Hdmgé/Cl and in the limit h—0, by

Theorem 4.2 we also have that TV (u) <C/C4, concluding the proof of the first state-
ment.

Assume now that u € C1(RY;R). Then, using the same computations as above,

1

lim

AﬁOX/RN /RN |u(z) —u(z —2)| p(z)dedz

= lim
A—0 JrN JRN

=C1 TV (u),

1
/ Vu(zx—Asz)-zds|u1(]|z]])dzdz
0

completing the proof. 0

In the following proof, this property of any function u € BV (R™;R) will be of use:
/ }u(x)—u(a:—z)|da:§Hz||TV(u) for all zeRY. (4.11)
RN

For a proof, see [1, Rem. 3.25].

Proof of Theorem 2.5.

Proof. First we assume that u, € C*(RM;R). The general case will be considered
only at the end of this proof.

Let u be the weak entropy solution to (1.1). Let u=wu(t,z) and v=wu(s,y) for
(t,x),(s,y) ER. xRN, Then, for all k,l€R and for all test functions ¢ =(t,z,s,y)

in C}! ((R+ X RN)2;R+), we have

[ [0 (Fa) = f.00) Vot (Pt ~divs..0) ]
’ xsign(u—k)dzdt >0

(4.12)

for all (s,y) Ry xRN, and

/R /RN [(v —0)dsp+ (f(s,9,0) = f(5,9,1)) Vyo + (F(5,9,0) —divf(s,y,l))go]
) xsign(v—1)dyds >0

(4.13)

for all (t,2) ERy xRY. Let #€ C®(Ry xRYV;R,), € CP(RxRM;R,) and set
o(t,z,8,y)=P(t,z)V(t—s,z—y). (4.14)
Observe that 0,0+ 050 =¥0,®, Voo=¥V, 2+ 0V, ¥, V,po=—®V,¥. Choose k=

v(s,y) in (4.12) and integrate with respect to (s,y). Analogously, take {=wu(t,z)
in (4.13) and integrate with respect to (¢,2). Summing the obtained inequalities, we
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obtain

/]R/RN/]R /]RSlgnu v [u V)W O,®+ (f(t,z,u)— f(t,x,v))- (V)
+(f(s,9,0) = f(5,9,0) = f(t,z,0) + [ (t,,0)) - (V) D (4.15)

+ (F(t,x,u) — F(s,y,v)+divf(s,y,u) fdivf(t,x,v)) cp] dxdtdyds >0.

Introduce a family of functions {Yy }y~o such that for any ¢ > 0:

Yo
1 t
Yy(t) = / Y;(s)ds
> t
!
0 v t *Y (19
Y/
9 y' c Coo (R;R) (4.16)
supp(Y”) € J0,1]
Y'>0
/Y’(s)ds ~1
\ ‘ R
0 U t

Let M = |[0uf (g (rv) and define for €,0,7,, R>0, z, €RY, (see Figure 4.1):

X (4
1

t x

0 € T T+e Ty a b

Fi1G. 4.1. Graphs of x, left, and of v, right. Here a= R+ M (T, —t) and b=R+ M (To —1t)+0.

MO =Ye(®) = Ya(t=T) and  (t,a) =1 Yo (|-l - R— M(T, 1)) >0,
(4.17)
where we also need the compatibility conditions T, >T and Me <R+ M (T,-T).
Observe that x — 1jo,7) and x’ —do—dr as ¢ tends to 0. On x and ¢ we use the
bounds

X<1lo714e and  1p(e, R+M(To—t) S <1B(2, Ry M(T,—t)+6)-

In (4.15), choose ®(t,x) = x(t)1(t,x). With this choice, we have

®=y'1)—MxY] and VO=-— Y(;ﬁ (4.18)
Setting B(t,x,u,v) = |u—v|M +sign(u—v) (f(t,z,u) — f(t,z,v))- T7%0_ the first

[l — ||
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line in (4.15) becomes
R

/ / / [(u—v)\lfﬁ’t@—k(f(t,x,u)—f(t,a:,v))(V(I))\If}sign(u—v)dxdtdyds
Ry JRNJR, JRN

:/R /RN/R /RN (Ju—v|x' v —B(t,z,u,v)xYy) Ydzdtdyds
+ +

g/ / / / |u—v|x" ¢ ¥drdtdyds,
R, JRY JR, JRN

since B(t,x,u,v) is positive for all (¢,x,u,v) € xR. Due to the above estimate and
o (4.15), we have

/1R+/RN/JR+/RN [ u—0) X'V

+(f(s.y.0) = f(s,y.u) = f(t,0) + f(ta,u) - (V)@
+ (F(t,x,u) = F(s,y,v) —div f(t,z,v) +div f(s,y,u)) ¢

xsign(u—v)dzdtdyds
>0.

Now, we aim at bounds for each term of this sum. We introduce the following notation:

:/ / / / lu—v|x" v ¥drdtdyds,
R, JRV JR,

Jy /RJr/RN/ﬂh/RN (t,y,v) = f(t,y,u )-i—f(t,x,u)—f(t,x’v)) (VT) D
x sign(u—v)dzdtdyds,

s [ U s s =) (Fe) @

x sign(u—wv)dzdtdyds,

L= [ [ [ [ (Faw) =g -divita) +dvsma) ¢
Ry JRN JR, JRN
x sign(u—v)dzdtdyds,

L :/ / / / (F(tvyvv) —F(S7y7'U) —dlvf(t,y7u)+d1Vf(s7y,u)) ¥
R, JRY JR, JRN
x sign(u—v)dzdtdyds.

Then the above inequality is rewritten as I'+.J; +.J;+ L, + Ly >0. Choose U(t,x)=
v(t) u(x) where, for n,A>0, p€ CP(R;;R,) satisfies (4.1)—(4.2) and

1 t —

V(t)—nm(n), /1/1(8)(218:1, v € CP(R;Ry), supp(vp)C]—1,0[. (4.19)
R

We have

I<l+1, where

Il_/R+ /RN /R+ /RN lu(t,z) —u(t,y)| (Y(t)=Y.(t—T)) ¢ ¥dzdtdyds,
:/]RJr /RN /]R+ /RN lu(t,y) —u(s,y)| (YZ(t)+Y.(t=T)) »¥dzdtdyds
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and we obtain

limsup I3 §/ / [u(0,2) — u(0,y)| p(z —y)dzdy
e—0 RN J||lz—z,||<R+MT,+6

- / / (T, 2) —u(T,)| u(— y) dedy,
RN |z—zo||<R+M(T,—T)

limsupl, <2 sup / |(t,y)7u(5,y)|dy.
e—0 ;E]{to;g,[ ly—zo| <RAA+M (To—t)+6

For J,, we have that by (H1), f€ C?(Q;R") and therefore
[£(ty,0) = f(ty,0) + f(ta,u) = ftav) || =

1
Vouf (tz(1—r)+ry,w) - (y—z)drdw
0

< ”vaufHLOC(Q;RNXN)”z_y” |u(3,y) _U(tax)|~

Then, using (4.5)

T2 <1V fll e / / / / o~y [u(t,z) —u(s.9)|| VY| xopdadidyds
R, JRN JR, JRN

<90t [ [ [ [ ta=alJutts = s |+ utte) —ute]

x|| V¥ xpdzdtdyds

<N[[VOfllg(T+2) sup

te 0,T+E,/ _ B
el el Jlly—ao | SRAXFM(To—1)+0

T+e
IO Sl / / / o~y |u(t,2) — u(t.y)|
0 RN JB(zo,R+M(T,—t)+6)

x|Vl dzdydt,
t pu

e[ [ L [ s
Ry JRN JRL JRN ||Js Jov

gnnataufan/R /RN/R /RN|u(t,x)—u(s,y)\||v\1/||<1>dxdtdyds.
+ +

For L., we obtain

‘U(ty) —U(S,y)|dy

V| ®drdtdyds

L,=L1+1Ls where
Ly 7/ / / / {/ (Oudivf(t,z,w) + 0, F (t,y,w)) dw] psign(u—v)dzdtdyds,
R+ RN ]R+ ]RN v

S

Then, recalling (4.14), the definitions W =vpu, ®=x, (4.1), (4.19) and (4.17), we

/0 V(F—divf) (t,ra+(1—r)y,u) -(:U—y)dr} ®

xsign(u—v)dxdtdyds.
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obtain
L < (N”VaufHLOO + HauFHLOO)

(T+e) sup / |u(t,y) —u(s,y)|dy
0 m el Jlly—wo | SREMM (To—1)+0

T+e
o Ju(t, ) —ult.)| ule —y)dwdydt |
0 RN J|z—zo || <R+M(To—t)+6

X

1
ng/ / / / / HV(F—din)(t,y—i—r(x—y),u)H||x—y||xwuudrdxdtdyds
Ry JRNJR, JRN 0

T+e
- </ / “V(F—divfxt,y,~>HLmdydt> / ellue)de
T+e
:AMl/O /RN||V(Ffd1vf)(t,y7.)||Lmdydt,

where

M= [ el (jo]) do. (4.20)

For the final term, Ly,

Ly <nwy (R+MTo)™ (T +¢) ([|0pdiv £l +[10:Fllp ) -

Letting €,77,0 — 0 we obtain
limsuph:/ / |u(0,x)—u(O,y){u(m—y)dxdy
RN J|z—zo||[<R+MT,

€,m,0—0
/RN/H |<R+M(T, T)|u( @) —u(Tyy) | u(z —y)dady,
z—z,|| <R+ L —

limsupl> =0,
€,n,0—0

T
limsuprSHV@ufHLm/ / / ||x—yH|u(t,x)—u(t,y)|
€,n,0—0 0 JRN JB(zo,R+M(T,—t))

><||Vu(x—y)||dzdydt,

limsup J; =0,
€,n,0—0

limsup L; < (N”VaufHLoo + ”auF”LOO)

e,n,0—0
T
<[] Ju(t,2) — u(t, )|l — y) dwdy
0 JRY Jz—a, | <RFM(T,—1)

T
limsupng)\Ml/ / |[V(F —=divf)(t,y, )| dydt,
e,m,0—0 0 RN

limsup Ly =0.
€,n,0—0
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Collating all the obtained results and using the equality ||Vu(z)|| = — 5514 <”i/\”),

x
/ / | (T,z)—u(T, y)| N <|| )\y||) dzdy
RN J||z—a,||<R+M(T,—T)

T
/ / ’ (0,z) —u(0, y)‘ v (H )\yH) dzdy
RN J||z—a,||<R+M(T,—T)

—|VOy, oo
V0. fll, / / / IR RG]

x
X/\NH“ (H /\yl) |z —y||dedydt (4.21)

T
+ (V[ VOuS g + 10 F g ) / / / fu(t, ) —u(t,)|
0 JRNS|jo—zo|| <R+ M(Ty—1t)
1 eyl

T
+>\M1// IV (F—divf)(t.y. )] dydt.
0 RN

If [VOufllre =|0uF|,=0 and under the present assumption that wu,e
C!(R™;R), using Proposition 4.3, (4.8) and (4.20), we directly obtain that

TV (u(T)) < TV (u, +—/ / |V (F =divf)(t,y,)|| - dydt. (4.22)
RN

The same procedure at the end of this proof allows to extend (4.22) to more general
initial data, providing an estimate of TV (u(t)) in the situation studied in [3].

Now, it remains to treat the case where |[VO, f||« #0. A direct use of Gronwall
type inequalities is apparently impossible, due to the term with Vu. However, we
introduce the function

T
f(T,A):/ / / |u(t,x)u(t,mz)|1Nu1<Z|>d dzdt
0 JRY Jjz—a, || <R+M(T,—t) A A

so that

N
3>\.7:: *Xf

1/T/ / w4 (I1=11/2)
—— u(t,x) —u(t,x— drdzdt.
AJo Jrw HmszHSRJrM(TOft)‘ (t,2) ~ul 2 AN Il

T
Denote C(T) :Ml/ / HV(F—divf)(t,y,-)HLwdydt and integrate (4.21) on [0,7"]
0o JrN
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with respect to T' for T” <T,. This results in

1 T
Lran<t / / |(0,2) — (0, )| sz — y) dary
A A JrN Jz—zo | <R+MT,

/

/ / T
TV Oufllpe AF (TN + 5 CNIVOuS oo+ [10uFllpe ) F(T', )
+T'C(T").

Denote a=(2N[|VOyflpw + 10uF |l — ) (|VOufllp) > so that limp oa=
—00. The previous inequality reads as, using (4.11) for u,,

F(T'A) 1
RF(T' N+ a2 — (MyTV (o) + C(T")) rom—s—
WF (T N+ a2 = (M TV () + (1) (i
@ / « ' .
O (NTF (T A)) 2 =A% (MATV (o) + C(T") 15—
U Loe
Finally, if 7" is such that o < —1, then we integrate in A on [A,4o00[ and we obtain
) 1
Lo < MyTV (1) + C(T")) 4.23
)\]:( , )_70&71( 1TV (u,) +C( )) 1VOufl1e ( )

Furthermore, by (4.1) and (4.2) there exists a constant K >0 such that for all z€ RY

(el < s (1), (1.21)

Divide both sides in (4.21) by A, rewrite them using (4.23), (4.24), apply (4.11) and
obtain

1/ / ! (”IZ/H)
1 u(Tyx) —u(T,y)| <o [ L) dady
AJr HT*950||SR+M(T07T)’ (T,2) —u(Ty) W 3

T2\ T\
gMlTV(uo)+%’A)2N+2K||vauf||w+f(A’ )

T
+M1/O /RN IV (F —divf) (£, )] dydt.

@N[VOufll~ +10uF Il )

An application of (4.23) yields an estimate of the type
1 .
7/ / |u(T,2) —u(T,x —2)| p(z)dadz < C, (4.25)
A JRN J B(wg, R+-M (T, ~T))

where the positive constant C' is independent from R and A. Applying Proposition
4.3 we obtain that u(t) e BV(RY;R) for t € [0,2T}[, where

1
2((142N)[VOufllgoe + 10 F Iy, )

T = (4.26)

The next step is to obtain a general estimate of the TV norm. The starting point
is (4.21). Recall the definitions (4.20) of M; and (4.26) of Ty. Moreover, by (4.6),

[ el el as == +1) s
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Divide both terms in (4.21) by A, apply (4.9) on the first term in the right hand side,
apply (4.11) on the second and third terms and obtain for all T € [0,7;] with T1 < T,

M,

TV (u(T)) STV (o) + (2N + D190 e 410 l) G [TV (ut) at

+Ml/T/ IV (F—divf)(tz, )|, . deds
Cl 0 i sy =S .

An application of the Gronwall Lemma shows that TV (u(t)) is bounded on [0,T].
Indeed,

T

TV (u(t)) ge""tTV(uo)—k%/ eﬁv<T-t>/ |V(F—divf)(t,z, )| . dedt (4.27)
C1 Jo RN

for te0,Ty], M;,Cy as in (4.20), (4.8) and Ko=[2N+1)[|VOuf| -+

[0uF |0 ] M1/ Cy.

We now relax the assumption on the regularity of u,. Indeed, let u, € BV (RY;R)
and choose a sequence u” of C*(RY;R) functions such that TV (u?) — TV (u,), as in
Theorem 4.2. Then, by Theorem 2.3, the solutions ™ to (1.1) with initial datum
satisfy

. Erfoou"(t) =u(t)inLi,, and TV (u(t))< liminf TV (u™(t)),
where we used also the lower semicontinuity of the total variation. Note that (4.27),
as well as the relations above, holds for all ¢t € [0,77], T1 being independent from the
initial datum. Therefore, the bound (4.27) holds for all BV initial data.

We remark that the bound (4.27) is additive in time, in the sense that applying
it iteratively for times Ty and ¢ yields (4.27) for time T +¢:

TV (u(T1 +t))

M Ty +t
Se”“tTV(“(Tl))Jr*l/ eNO(FS)/ [V(F—divf)(s,z,)||m deds
Ci Jrn, RN

M [T
<erot | groTn TV(uo)—FC—l/ e”"(Tﬁs)/ HV(F—divf)(s,:c,-)HLoc dxds
1 Jo RN

My [T

My emmt—s)/ [V (F—divf)(s,z,)| . deds
Cl T R

My

1

Ty+t
=" (MFD TV (14,) + / eKO(TIH_S)/ HV(F—divf)(s,x,~)HLoo dzds.
0 RN
The bound (4.27) can then be applied iteratively, due to the fact that T is independent

from the initial datum. An iteration argument allows us to prove (2.5) for ¢ €[0,7,].
The final bound (2.5) then follows by the arbitrariness of T,, due to (2.1). |

5. Proof of Theorem 2.6
The following proof relies on developing the techniques used in the proof of The-
orem 2.5.

Proof of Theorem 2.6. - -
Proof. Let @€ CP(Ry xRM:R,), Ve CP(RxRN:R,), and set p(t,z,s,y)=
O(t,x)V(t—s,x—y) as in (4.14).



R.M. COLOMBO, M. MERCIER AND M.D. ROSINI 55

By Definition 2.1, we have VI €R, V(t,z) e R, x RY

/]R /]RN |:(u_l)88§0+ (f(sayau)_f(sayvl)) 'vy90+ (F(s,y,u)—divf(s,y,l))cp}
! xsign(u—1{)dyds >0

(5.1)

and Vk€R, V(s,y) eRy x RY

/R /]RN {(v— k)Orp+ (g(t,x,v) —g(t,x,k)) -Vep+ (G(t,xm) —divg(t,x,k)) 4,0}
’ xsign(v—k)dzdt > 0.

(5.2)

Choose k=wu(s,y) in (5.2) and integrate with respect to (s,y). Analogously, take
I=v(t,xz) in (5.1) and integrate with respect to (t,z). By summing the obtained
equations, we obtain, denoting u=wu(s,y) and v=wv(t,z):

/ / / / [(uv)@8t©+(g(t,x,u)g(t,x,v)) (Vo)
Ry JRN JRy JRN
+ (g(tvxvu) —g(t,x,v) _f(s7y7u) +f(87yﬂv)) ' (V\I/)(I) (53)

+(F(s,y,u) = G(t,z,v) +divg(t,z,u) —div f(s,y,v)) ¢
xsign(u—v)dzdtdyds > 0.

We introduce a family of functions {¥y}y>o as in (4.16). Let M = ||8ug\|Lw(Q;RN) and

define x,% as in (4.17), for ,6,T,, R >0, x, € RV (see also Figure 4.1). Note that with
these choices, equalities (4.18) still hold. Note that here the definition of the test func-
tion ¢ is essentially the same as in the preceding proof; the only change is the definition

of the constant M, which is now defined with reference to g. We also introduce as
T—T,

above the function B(t,z,u,v)=M|u—v|+sign(u—v) (g(t,z,u)—g(t,z,v))- ozl
T—To

that is positive for all (t,z,u,v) €Q xRN, and we have:
/ / / / [(u—v)@,@—i— (g(t,z,u)—g(t,z,v)) -V@} Usign(u—v)dzdtdyds
Ry JRY R, RN

§/ / / / [lu—v|x'— B(t,z,u,v)xYy | Udzdtdyds
Ry JRNJR, JRN

S//// lu—v|x Y ¥drdtdyds.
R, JRN JR, RN

Due to the above estimate and (5.3), we obtain

Johok L

(u—v)X'p¥
+ (g(t,x,u) _g(tv‘r’v) _f(svyvu)+f(svy’v)) : (V\IJ)CD

+ (F(Svyvu) —G(t,x,v)+divg(t,x,u) —din(SvyﬂJ)) ¥

xsign(u—v)dzdtdyds >0,
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e, I+J,+Ji+ K+ L.+ L; >0, where

I:/ / / / |u—v|x'yp¥dzdtdyds, (5.4)
Ry JRN JR, JRN

= [ L L G s s - fran) (o0 69
xsign(u—v)dzxdtdyds,

d= [ L L G = S s~ ) (Te
xsign(u—v)dxdtdyds,

k=[] L e pan o= pean) e (56
xsign(u—v)dadtdyds,

Lm:/]R+ /RN /RJr /RN (F(t,y,u)—G(t,x,v)+divg(t,x,u)—divf(t,y,v))ap (5.7)
xsign(u—v)dzdtdyds,

Lt_/uh/RN /]R+ /]RN (F(s,y,u)—F(t,y,u)+divf(t,y,v)—divf(s,y,v))g@
xsign(u—v)dxdtdyds.

Now, we choose U(t,z)=v(t)u(z) as in (4.19), (4.1), (4.2). Thanks to Lemma 5.2,
Lemma 5.3 and Lemma 5.4 we obtain

limsup/ < |u(0,2) —v(0,2)|dx

£,m,A—0 /|x—zo§R+MTO+0

—/ |u(T,x) —v(T,z)|dz, (5.8)
le—zol| <R+M(To—T)

T
limsuprgNHVaufHLw// lo(t,2) — u(t,2)|dedt,  (5.9)
€,m,A—0 0 JB(zo,R+M(To—t)+6)

T
timsupZ, < [ [ | ((F=6)~div(s~9)) (ty,0)| _ et
€,1,A—0 0 JB(zo,R+M(To—t)+6) Le

+ (N0l + 100 Fllgee +|00(F = G) . )

T
x// lo(t,) — u(t,z)| dedt. (5.10)
0 JB(20,REM(T,—t)+6)

Additionally, we find that:
l<alodufl [ [ [ [ lotta) -t [V9| @dzarayds,
Ry JRN JR, JRN
|Li| <nwn (R+MT,)N (T +e) (|0:div f | oo + |10:F || ),
so that

limsup|J¢| =limsup|L;| =0. (5.11)
n—0 n—0
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In order to estimate K as given in (5.6), we introduce a regularization of the
y dependent functions. In fact, let pa(z):ép(i) and og(y):ﬁ%o (%), where
pE C?:O(Rvﬁ-l-) and g e CZO(RN7R+) are such that ||pHL1(R;R) = ||U||L1(RN;R) =1 and
supp(p) C]—1,1], supp(c) € B(0,1). Then, we introduce

P(w) = (g_f)<tvx’w)v Sq = SigN*y P,
T, (w) = sa(w—v) (Pi(w) = Pi(v)), ug = og%y U,
T (w) = sign(w —v) (Pi(w) —Pi(v)),

so that we obtain

(X%, (ug) = T4 (u), By, 0)
- /]RN /RSign(w) (Pa(tp —v—w) Pi(up) = pa(u—v—w) P;(u)) Oy, pdwdy

*/RN/RSign(w) (Pa(up—v—w) = pa(u—v—w)) Pi(v)dy, pdwdy
/RN/R/uﬁsign(w)p;(va) (Py(U) = P;(v)) 8y, dU dwdy

ug
—I—/ // sign(w) po (U —v—w) P/ (U) 8y, pdU dwdy.
RN JRJu
Now, we use the relation dy,sq(u)=2p (%) to obtain

(8 (ug) =T (), 0,4

S/ 2 sup <p<U;U)(pi(U)_Pi(q)))>min{2a,|u—u,3‘}ayi90dy

RN QX U€[(u,up)]

up
+/ / |P/(U)|0y, ¢dU dy.
RN Ju
When « tends to 0, using the Dominated Convergence Theorem we obtain
06 ) =T, 030) < [ s | POy

Applying the Dominated Convergence Theorem again, we see that

lim lim <Tia (uﬁ)’ ayz 50> = <Ti (u), ayz 50>a

B—0 a—0

lim lim (T (u), Vy0) = (T(w), V,0).

B—0 a—0

Consequently, it is sufficient to find a bound independent of o and 8 on K, g, where

Koc,B:_/ / / Tao(ug) Vypdedtdyds.
R, JRN JR, JRN
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Integrating by parts, we obtain

Ka,ﬁ:/ / / / Div, T (ug)pdedtdyds
Ry JRN JR, JRN

/ / / OusSa(ug—v)Vug

R+ RN JR, JRN

((g— ) (t,zup)—(g— f)(t,z,0)) pdrdtdyds

+/ / / / Sa(ug—v) (8u(g—f)(t,z,up) - Vug) pdzdtdyds
Ry JRN JRy JRN
=K+ K>.

We now search for a bound for each term of the sum above.

e For K1, recall that &Lsa(u):%p(%). Hence, by Dominated Convergence
Theorem, we obtain that K; —0 when a«— 0. Indeed,

2p<uﬁa—v> Vug- ((g—f)(tx,uﬁ) _(g_f)(t’ffw)) @

(07

2
Sp(uﬁ U)ga”VugsyH/ Ha (f— g)tmedw

o

S2||pHL°°(]R,]R)Hvuﬁ 5,y H Hau f_g HLQO(Q’]RN)(ID eLl ((R-i- XRN)ZvR)

e Concerning Ks,

T+e+n
KQS“au(f_g)HLOO(Q;]RN)/O /RNHVW"(S’y)dedS

THe+n
< ||8u(f—9)||Lc,o(Q;RN)/0 TV (ug(t))dt.

Finally, letting o, 3 — 0 and ,7,A— 0, due to [1, Prop. 3.7], we obtain

T
limsup K < H@ (f—g ||Loo/0 TV (u(t))dt. (5.12)

€,m,A—0

Now, we collate the estimates obtained in (5.8), (5.9), (5.10), (5.11) and (5.12).
Note that the order in which we pass to the various limits: first €,17,0 — 0 and, after,
A— 0. Therefore, we obtain

/ \u(T,x) —v(T,z)|dx
B(wo,R+M(T,~T))

g/ u(0,2) —v(0,2)|dx
B(zo,R+MT,)

+[2N190u g + 100 F e + 0u(F = G|l |

T
x// |v(t,x)—u(t7x)|dxdt
0 JB(zo,R+M(To—t))

T
|louts o)l [ TV

T
)
0 JB(zo,R+M(T,—1))

’ (F=G)—div(f—g))(t.y,") HLmdydt]
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or equivalently
ANT) <A (0)+KrA(T)+S(T), (5.13)

where

T
A(T) :/ / ’v(tm) —u(hx)‘dxdt,
0 JB(zo,R+M(T,—1))

k=2N|[VOufllg +10uF e+ [[0u(F = G) . (5.14)
T
S)=0u(1 =9) g [ TV (ult) a
T
+/o /B(ﬂfo,R+M(To—t))"(<F_G)_dIV(f_g)) (t,y,-)HLmdydt. (5.15)
The bound (2.5) on TV (u(t)) gives:

kol _ 1 T _ko(T—t) _ 1 T
S(T)< < a+ / Topdt+ / c(t)dt,
0 0

Ko Ko

where k, is defined in (2.4) and
a= ||8u(ffg)HLwTV(uo),
b(t):NWNHau(f_g)HLoo XRN HV(F_dIVf)(tvxv)HLoo d{E,

C(t) - /B(ac R+M(T,—1)) H ((F_ G) _diV(f —g)) (t7y’ .) HLw 4

since T'<T,. Consequently

A(T)<A(0)+rA(T) + <€HOT_1a+/TW(T_ﬂ_lb(t)dw/Tc(t)dt). (5.16)
0 0

Ko Ko

By a Gronwall type argument, if x, =k, we obtain

A(T)<e"TA'(0)+Te" a+ ( / T(T—t)e~<T—t>b(t)dt> ( / Te“(T_t)c(t)dt> ,
0 0

yielding
/ |u(T,z) —v(T,z)|dx < 6”T/ o (2) = vo ()| da
le—wzo||<R |e—z,|| <R+MT
+Te" TV (o) [|0u(f — 9) || o (5.17)

T
+ N Wy (/O (T =)= /RN ||V(F—divf)(t,m,-)HLocda:dt> 10u(f —9)]|;.

T
+/ en(Tft)/
0 lz—o || <R+M(T—t)

while, in the case k, # Kk, we have

etioT _ orT T 6m,(Tft) _ en(Tft)
—a+
0

Ko —K

(F—G)—div(f—g)) (t,:n,-)HLoo dzdt

A(T)<e"TA'(0)+

T
b(t)dt+ / T=0 (1) dt.
0

Ko — K
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Taking T'="1T,, we finally obtain the result. 0

REMARK 5.1. Assuming that (g,G) also satisfies (H2), allows us to exchange the
role of w and v in (5.14). Let

Fo=NWn (2N +1D)||VOugl + 104Gl )
a=|]0u(f = 9)|| 1, TV (v0),
b(t)=|0u(f = 9) [ N WN/RN V(G = divg) (¢, )| . d2,
R=2N[VOug|l e +[10uCllpo +]|0u(F = G) |
and repeating the same computations as above, we obtain

RoT

A(T) < A(0)+ RA(T) + ( i ‘1a+/Tma<t>dt+/Tc<t>dt>,
Ko 0 Ko 0

so that, finally,

A(T) < A'(0) +min(k, &) A(T) +max

KoT_l T mo(Tft)_]_
¢ a+ / =YY
0

+ /0 Tc(t)dt.

Below, we collect some lemmas that were used in the previous proof. The first
one is similar to a part of the proof of [3, Thm. 2.1].

——— G+ b(t)dt

Ko

eRDT 1. /T eEO(Tft) —1-
) p

Ko

LEMMA 5.2. Let I be defined as in (5.4). Then,

limsuplg/ |u(0,2) —v(0,z)|dz
e—0 |z—zo||<R+MT,+6
_/ |u(T,2) —v(T,z)|dz+2 sup TV (u(r))A
e =0 || <R+ M(T,—T) re{0.1})
+2 sup / |u(t,y) —uls,y)|dy.
tE{O‘T}[ ly—zo|| <RAAN+M (T, —t)+6

s€]t,t+n

Proof. By the triangle inequality I < Iy + Is+ I3, with

/]R+ /RN /R /RN |u(t,x) —v(t,2)| X () (t,2) U (t— s,z —y) dedtdyds,

/R+ /RN /]R+ /]RN |u(t,z) —u(t,y)| X' ()] (t,2) U (t - 5,2 —y) dedtdyds,
/R+ /RN /Dh /]RN |u(t,y) —u(s,y)||X' ()| ¢(t,2) ¥(t - 5,2 —y)dzdtdyds,

I
Iy
I3
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we have

11:/]R+ /RN lu(t,z) —v(t,2)| (Y(t) =Y. (t=T))¥(t,x)dedt

g/ / lu(t, ) — ot )| Y2 (t) dedt
2, oo | <R+ M(T,— )10

—/ / lu(t,z) —o(t,2)| Y (t—T)dzdt,
Ry oo |<R+M(T,~1)

and by the L' right continuity of v and v in time, due to Theorem 2.3

limsup ; <

/ |u(0,) —U(O,x)‘dx
e—0 |z—zo||<R+MT,+0

—/ \u(T,x) —v(T,z)|da.
lz—zo||[ <R+M(To—T)

For Iy and I3, we have

</ [ ] Jut,2)— u(t,9) | (V2(8) + V2 (t— T) ucadydt,
Ry JRY J ||z — a0 || <RAM(To—t)+6

I3§/ / / lu(t,y) —u(s,y)| (YZ(t)+ Y. (t—T)) vdydsdt.
Ry VR |ly—zo | <R+A+M (To—t)+6

As £—0, we use on the one hand the L' right continuity in time of u, thanks to
Theorem 2.3, and on the other hand that u(t) e BV(RM;R), thanks to Theorem 2.5.
In particular, we can use (4.11) to obtain

limsup I < Z sup/ |u(t7x)—u(t,x+h)}dx
e—0 t=0, 7 IMI<Alz—2,|[<R+M(To—t)+6
<2 sup / |u(t,z) —u(t,x+h)|dz
IhISA S| z—z, || < R+M (To—t)+0
te{0,T}
<2 sup TV (u(t))A,
te{0,T}
limsup Iz < Z sup / IU(t,y)—U(&y)\dy
e—0 t=0,75€tt+n[ ly—zo | SR+A+M (To—t)+6
<2 swp | [u(t,y) —us.y) | dy.
12O Jy—ao | SRANM(T, ~0) 16

LEMMA 5.3. Let J, be defined as in (5.5). Then,

T
limsuszgNHV('?ufHLoo/ / |v(t,2) —u(t,z)|dzdt
e—0 0 JB(zo,R+M(To—t)+6)

+NT||VOyfllpe sup TV (u(r))A
0,T

7€[0,T]

+NT[VOuflly~ sup

t€[0,7T] /7 <R —
AT ly—zo|| <R+A+M (To—t)+6

|u(t,y) —u(s,y)|dy.
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Proof. By assumptions (H1), f € C2(€;R") and therefore
||f(t7y”u) _f(tay’u) +f(t7xau) _f(trxa’U)H
v(t,z) pl
|/ / Vauf(t,x(lfT)Jrry,w)~(y—x)drdw
u 0

(s,v)
<IVOuf g I =yl |o(t,2) —uls,y)|.

Then,
T2 <V fllpm / / / / lot,2) —u(s,)| 2 — ||Vl x b derddy ds.
R, JRY JR, JRN

Similar to the proof of Lemma 5.2, we apply the triangle inequality and obtain J, <
J1+ Jo+ J3, where

= [V0uf e / / / / lo(t,2) —u(t, )|z — Il [V pall v xpdededyds,
R, JRN JR, JRN

Ty = [V0uf e / / / / fu(t, ) — u(t, )| |z — oIl | Viall v x Y dz dedyds,
R, JRN JR, JRN

T3 = [0S e / / / / lu(t,y) —u(s.9)]| Il — yll [Vl b derdedyds.
R, JRN JR, JRN

For Jy, we have, thanks to (4.5)

T+e
J1§N||V5'uf||Loc/ / |v(t,2) —u(t,z)|dzdt.
0 B(zo,R+M(T,—t)+0)

For Js, we have

T+e
J2§N|\V3uf||Lm/ Sup/ lu(t,z) —u(t,z+h)|dzdt
0 IAlI<Az—20 | <R+M(To—t)+0

<N||VOyfllge (T +e) TV (u(7)) A,

sup
T7€[0,T+¢]

and for J3

T+e
T3 < N[ VO, f g / sup lu(t,y) —u(s,y)| dydt
0 sE

]t,t+n[/|x—xo|§R+)\+]V[(To—t)+9

< N[V, Sl (T+e) sup

te[o,T+s]/, < _
0T el S lly—o | SRAAM (To—1)+0

lu(t,y) —u(s,y)|dy.

In particular, letting A\,n,e,0 — 0, we prove that Js,J3 —0 and

T
limsup J1§N||V8uf||Lm/ / lv(t, ) —u(t,z)|dzdt,
A,n,e,0—0 0 JB(zo,R+M(T,—1))

completing the proof. ]
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LEMMA 5.4. Let L, be defined as in (5.7) and My as in (4.20). Then

T
limsumegT/ / H((F—G)fdiv(f—g))(t,:z:,~)H dzdt
0 Jllz—zo||<R+M(T,—t)+6 Lee

e—0

+ (NIV0uS e+ 10uF e + [0 (F = G )

T
/ / |v(t,z) —u(t,m)’dxdt
0 JB(xo,R+M(T,—t)+0)

+T sup TV(u(r))A
T€[0,T]

X

+T sup

te[0,T / —r —
se]t[,t+]n[ ly—mo | <RAN+M (To—t)+8

u(t,y) —u(s,y)|dy
T
+>\M1/0 /RN||V(F—divf)(t,z,~)||Lwda:dt.
Proof. Let
L1=/R+ /]RN /R+ /RN ((F—G)—div(f—g))(t,a:,u)<,0sign(u—v)davdtdyds7

L2:/R+ /]RN /R+ /RN (F-G)(t,z,0) = (F—G)(t,z,u)) gsign(u—v)dzdtdyds,

Ly= / / / / (F(t,y,u) — F(t,y,0) +div f(t,2,u) — divf (£,2,0))
Ry JRN JR, JRN
x sign(u—v)dzdtdyds,

L4/R+ /RN /R+ /RN ((F=divf)(t,y,v) — (F — divf)(t,2,v)) psign(u—v) dzdtdyds,

so that L,=Ly+ Lo+ L3+ L4. Clearly,

T+e
LlS/ / H((GfF)fdiv(ffg))(t,x,')H dzxdt.
0 lz—zo|| <R+M(T,—t)+0 Lee

For Ly and Ls, we have

Ly < ||3u(F*G)||LOO/R /RN/R /]RN lu(s,y) —v(t,z)|pdzdtdyds,
+ +

L3:/ / / / sign(u—v)(/ (6udivf(t,x,w)+8uF(t,y,w))dw>gpdxdtdyds
R, JRN JR, JRN v
< (V9O +10uF) [ [ [ ot —uls.g)odedrdyas.
R, JRN JR, JRN

Proceeding as for .J,, we find the following bound for [[[[|v(t,z) —u(s,y)|¢ in Lo,
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Lo+ Ly < (N 90uf I +10uF |l + [0 F= G ..

T+He
X / / |v(t,z) —u(t,m)’dxdt
0 B(x0,R4+M(To—1)+6)

+(T+¢e) sup TV (u(r))A
T7€[0,T+¢]

+(T+¢) sup

te[U,TJrs]/, < _
0T el Jly—o | SRAAM(To—1) +0

|u(t,y) —u(s,y)|dy|.

For L4 we have

L4_/R+/RN/R+/RN /01V(F—divf)(t,m+(1—7~)y,v)-(y—x)dr ©

xsign(u—v)dxdtdyds

T+e
g)\Ml/ / IV (F—divf)(t.z,)| . dedt.
0 RN

To complete the proof, it is sufficient to note that L, =L+ Lo+ L3+ Ly. 1]
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