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A SUB-LINEAR SCALING ALGORITHM FOR COMPUTING THE
ELECTRONIC STRUCTURE OF MATERIALS*
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Abstract. We introduce a class of sub-linear scaling algorithms for analyzing the electronic
structure of crystalline solids with isolated defects. We divide the localized orbitals of the electrons
into two sets: one set associated with the atoms in the region where the deformation of the material
is smooth (smooth region), and the other set associated with the atoms around the defects (non-
smooth region). The orbitals associated with atoms in the smooth region can be approximated
accurately using asymptotic analysis. The results can then be used in the original formulation to
find the orbitals in the non-smooth region. For orbital-free density functional theory, one can simply
partition the electron density into a sum of the density in the smooth region and a density in the
non-smooth region. This kind of partition is not used for Kohn-Sham density functional theory and
one uses instead the partition of the set of orbitals. As a byproduct, we develop the necessary real
space formulations and we present a formulation of the electronic structure problem for a subsystem,
when the electronic structure for the remaining part is known.
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1. Introduction

The main purpose of this paper is to introduce a new class of sub-linear scal-
ing algorithms for the analysis of the electronic structure of materials using density
functional theory. By sub-linear scaling algorithms, we mean algorithms whose com-
putational cost scales sub-linearly with the size of the system, here the total number
of atoms. As was remarked in [6], from an algorithmic viewpoint, one main purpose
of multiscale modeling is to develop sub-linear scaling algorithms. In the case of crys-
talline solids, the well-known quasicontinuum method is an example of a sub-linear
scaling algorithm [25, 37], when plastic deformation only occurs on a vanishingly small
part of the whole sample. This is the case of interest to us.

Our focus in this paper is electronic structure and density functional theory.
We refer to well-known textbooks such as [29, 34] for an introduction to density
functional theory, and the following sections for the essential ingredients needed in
this article. For now, let us comment briefly on the history of numerical algorithms
for density functional theory, particularly the Kohn-Sham model. Early efforts on the
numerical solutions of the Kohn-Sham model took the viewpoint that the Kohn-Sham
equation is a nonlinear eigenvalue problem and used diagonalization methods to find
the eigenvalues and eigenfunctions. The computational complexity of such algorithms
scales as O(N?), where N is the number of plane waves (Fourier modes) used in
the discretization of the system. Iterative methods and dynamics-based methods
were introduced in the 1980’s, sometimes bringing down the cost to O(N?) or even
O(NlogN) [29]. However, these algorithms also require orthogonalization steps, with
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a cost of O(M2) where M, is the number of atoms in the system. Beginning from the
1990’s, much effort has gone into exploring the locality of the problem and developing
linear scaling methods [13, 19, 43] with an expected cost of O(M,). While many
interesting ideas have been proposed and explored, a lot remains to be done in order
to make these algorithms robust, with a controllable error and with true linear scaling.

The complexity of orbital-based density functional theory has prompted a renewed
interest in orbital-free density functional theory [39, 40], and numerical algorithms
have been developed for these models [5, 16, 18]. In particular, let us mention the
high order accurate, linear scaling algorithms developed in [16], which will be used
later in this paper.

At the same time, it has also been realized that a detailed analysis of the electronic
structure is only necessary in regions where defects are present or chemical changes
are expected. Therefore, beginning in the 1970’s, there has been a parallel effort in
developing hybrid (or multiscale, multi-physics) algorithms that combine quantum
mechanical models with classical mechanical models. The well-known QM-MM algo-
rithm is a good example of this kind of method [14, 42, 45]. These QM-MM algorithms
have been quite popular in chemistry. But it is only quite recently that they began
to be explored in the context of material modeling [5, 28, 44]. Parallel to the work
presented here, there have also been efforts in developing quasicontinuum methods,
originally developed as a multiscale method for the analysis of the mechanical defor-
mation of solids based on classical atomistic models [37] for electronic structure study
[17, 31]. So far this work is limited to the Thomas-Fermi-von Weiszécker model, but
there is certainly great interest in extending such methods to Kohn-Sham models. Lo-
cal quasicontinuum methods have been generalized to orbital-free density functional
theory [12].

Despite the long history and the popularity of such hybrid or multiscale methods,
the issue of consistency and accuracy has never been satisfactorily resolved. This is
particularly a concern at the QM-MM interface or, in quasicontinuum methods, at
the local-nonlocal interface. For the former class of methods, errors at the QM-MM
interface are manifested in the form of unbalanced charges and destabilized chemical
bonds. For quasicontinuum methods, such errors result in the well-known “ghost
force” [9, 37]. Partly for this reason, there still does not exist a systematic way of
improving the accuracy of these methods. Therefore, while they produce some form
of approximate solution, one cannot view these methods as systematic ways of solving
the original quantum mechanical problem that can achieve any desired accuracy.

Partly motivated by the desire to understand such coupled multiscale methods,
we began in [10] an analysis of the continuum limits of DFT models, as well as
the accuracy of coupled DFT-continuum models. It was shown, for example, that
by modifying the way that long range interaction between the DFT and continuum
regions is modeled, one can eliminate the “ghost-force” at the interface between the
DFT and the continuum models.

In this paper, we will present asymptotics-based sub-linear scaling algorithms for
density functional theory models, with any desired accuracy. Our fundamental as-
sumption is that the positions of the atoms are distributed smoothly except for small
isolated regions that contain defects. We use this smoothness assumption to perform
asymptotic analysis of the DFT models, with arbitrarily high order accuracy. In the
smooth region, we can then solve the DFT models to any specified accuracy require-
ment, by solving the asymptotic equations that we have derived. These asymptotic
equations can be solved on coarse grids whose grid size depends only on the smooth-
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ness of the atomic positions and the error tolerance, not on the atomic spacing. The
results can then be used to obtain the electronic structure in the remaining non-
smooth region, with the solution in the smooth region acting as the environment.

In the present paper, we will focus on the electronic structure problem only with
the atomic positions given and fixed. In this case, one solves first for the smooth
region, and then the non-smooth region. In other words, the results in the smooth
region do not depend on the results in the non-smooth region. However, the philoso-
phy presented here applies equally well to the case when we are also interested in the
analysis of the deformation of the material, or simply relaxation of atomic positions.
In that case, it is no longer true that the smooth region can be completely solved
beforehand, as is the case when classical atomistic models are used.

We now turn to the organization of this paper. In the next section, we introduce
the density functional theory models that we will use. This is followed by a discussion
of the general strategy of the sub-linear scaling algorithm that we will propose. In
Sec. 4, we discuss sub-linear scaling algorithms for the Thomas-Fermi- von Weiszéacker
model. In Sec. 5, we discuss the Kohn-Sham model. Some conclusions are drawn in
Sec. 6.

2. Density functional theory

In Kohn-Sham density functional theory, we consider a set of N wavefunctions or
orbitals {¢;},k=1,...,N, where N is half of the total number of (valence) electrons
in the system. There is a factor of one half that comes from the Pauli exclusion
principle and the fact that we are not taking into account explicitly the spin variable.
The energy functional takes the form:

LoD =52 [ IVetPy+ [ ectoot)ay
k

1 (p—m)(y)(p—m)(y') '
#3 o T @1)

where p is the electron density:

p(y) =2 |w(y)I. (2:2)
k
In this form, {¢x(y)} is assumed to satisfy the orthonormality condition,

5w du = (23)

The first term in (2.1) is the kinetic energy of the electrons. The third term repre-
sents the Coulomb interaction between the electrons. ey is the exchange-correlation
functional. This is the term that distinguishes KSDFT from a true first principle such
as the quantum many-body problem, and it has to be approximated. For simplicity,
we will adopt the local density approximation (LDA) and assume that ey is simply
a function of p: exe = €xc(p).

The input to the model is the function m. Typically m takes the form:

my) =3 mi*(y =), (2.4)

where the sum is over all the atoms in the system, y; is the position of the i-th atom,
and m{ is the pseudo-potential associated with the i-th atom. The pseudo-potential
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tells us the nature of the atom. For simplicity, at this moment, the model only includes
local pseudo-potentials. Nonlocal pseudo-potentials [38] will be added in later sections
such as Sec. 5.2.

Next we will rescale the model. Let L, be the characteristic size of the material
and a be an atomic length scale such as the lattice constant of a crystal. We rescale the
system using ¥ =z /L., so that after rescaling the system lies in a fixed domain € in R3.
Let e=a/L.. We rescale the energy of the system using the Hartree energy constant

2 2 .
Eyg=-1"=_¢_ where me, h, e, o, ag are electron mass, Planck’s constant, unit
mea2 dregag’ y 1y Cy ) 9 )

charge, dielectric constant and Bohr radius respectively. We rescale the quantities as:
plz)=L3p(zL,.) and o (z)= 3/QzZJ(ach). For example, the rescaled pseudo-potential
is given by

m(y) =m*(y/e)/e’

After this rescaling, the KSDFT functional takes the form:
L({e}) = Z [ virays [ ecnntay

3 (p—m)(y)(p—m)(y') /
+5//11@&]1%3 ly—y| dydy. 25)

Notice that after rescaling, both €4, and its argument are dimensionless quantities.

A major component of this paper is the asymptotic analysis of the electronic
structure problem, using ¢ as a small parameter. To this end, we need some termi-
nology from continuum mechanics. In continuum theory, the deformation of a solid
is described by a displacement field u:— R? defined on the reference (undeformed
or equilibrium) configuration. We assume that the displacement field u has a char-
acteristic length L.. The position of a material point or an atom after deformation
is y=y(x) =x+wu(z) where x is the position in the reference configuration. x is nor-
mally called the Lagrangian coordinate, and y, the Eulerian coordinate. One of the
problems we face when considering the continuum limit of electronic structure models
of solids is the conflict between these coordinates: continuum theory of solids such
as elasticity theory naturally uses Lagrangian coordinates and electronic structure
theory naturally uses Eulerian coordinates. As a result, we will have to specify care-
fully the variable with respect to which we carry out differentiation. This inevitably
complicates the notation a bit.

We will perform asymptotic analysis in regions where the underlying lattice struc-
ture is kept after the deformation, i.e.,where there are no defects. Denote by L the un-
derlying crystal lattice. After rescaling, the underlying lattice of the system becomes
eL with unit cell eI". The atoms in the system are located at x; €cL N, i=1,....N
in equilibrium. We assume that each atom in the system has ng valence electrons.
Therefore, the total number of valence electrons in the system is ng|le LNSY|, where
|| denotes the cardinal number of a set. Since {t} are orthonormal wave functions
with total number ngleLNQ|/2, we have

/Rsp(y)dy:no\eLﬂQ\. (2.6)

KSDFT is a rather complicated model. For analytical as well as numerical pur-
poses, it is useful to consider simplified models. One such simplified model is the
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Thomas-Fermi-von Weiszécker (TFW) model. While the Coulomb interaction part
is retained, the kinetic part is approximated by functionals that depend only on the
density (not on the wave functions):

& / p(y)*3dy + &2 / Vo) dy, (2.7)
RS RB

where we omit the dimensionless constants such as Crg,C,w. For various reasons it
is convenient to take v(y) =/p(y) as the variable for the TFW model. Therefore the
energy functional becomes

L(v) =2 / Sy e / VP / el P)ply)dy
: (2 —m)) (2 -m)y) .
+§//RSxRS dydy’. (2.8)

ly—y']

The TFW functional is minimized under the normalization constraint:
/ v(y)?dy=neleLNQ.
RS

3. General strategy for the sub-linear scaling algorithm

Our basic assumption is that, except for isolated defects, the displacement of the
atoms follows a smooth vector field, i.e.,u; =u(z;) for some smooth function u where
u; is the displacement of the j-th atom.

The basic intuition is as follows. When the displacement field is smooth, the
electron density behaves like

P (y) ~ po <y7x(€y))+p1 (y,x(f))ﬂz (yx(ey)>+ (3.1)

where y=xz+u(x), x(y) is the inverse of the map x —y=1x+u(z), and pg,p1,... are
smooth functions which are periodic in the second variable with period I'. (Recall that
€ is the lattice constant and I is the unit cell of the undeformed lattice). Furthermore,
we can derive effective equations for the functions pg,p1,.... These effective equations
depend only the local behavior of u, i.e.,derivatives of u at the point of interest. They
can be solved independently, as long as we know the derivatives of u.

This motivates the following numerical strategy. We first solve these effective
equations in the smooth region to find an approximation of the electron density in
this region. We then substitute the results in the smooth region into the original
problem and solve for the electron density in the non-smooth region.

For KS-DFT, we not only solve for the electron density in the smooth region, we
also find a set of localized orbitals. When dealing with the non-smooth region, this
set of orbitals defines an environment for the orbitals in the non-smooth region. If
we were to use the orthogonal formulation of KS-DFT, we would have to ensure that
the orbitals obtained for the non-smooth region are orthogonal to the environment or-
bitals. This is a difficult constraint to enforce. Therefore we will use a non-orthogonal
formulation of KS-DFT. In that case, we only require the orbitals to be independent.
This is almost automatic, since the orbitals are localized at different locations.

We emphasize that in this algorithm there is no decomposition of energy, electron
density or orbitals, even though we talk about decomposition into smooth and non-
smooth regions. We only decompose the set of orbitals into two sets. The only
approximation made is to use the effective equations derived from asymptotic analysis.
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In the present form, this algorithm also has the feature that the results in the
smooth region do not depend on the results in the non-smooth region. Whether this is
accurate enough depends on the size of the non-smooth region we choose. To reduce
the size of the non-smooth region, one might have to modify the algorithm such that
the results of the non-smooth region can be fed back to the smooth region. Such
algorithmic improvements will be considered in later publications. In addition, this
feature is present because we are limiting ourselves in this paper to the electronic
structure problem only. If we are interested in relaxation of the atomic positions
under stress, then the smooth and non-smooth regions will be coupled in a non-trivial
way.

4. The Thomas-Fermi-von Weiszicker Model

To develop a sub-linear scaling algorithm along the lines just described for the
TEFW model, we need two main ingredients: The first is asymptotic analysis for the
smooth region. The second is an algorithm for the TFW model in real space. We will
first discuss these two components.

4.1. Asymptotics in the smooth region. The Euler-Lagrange equations
associated with the functional (2.8) are (neglecting the exchange-correlation term for
the moment since it does not affect the asymptotics)

762Au+§€2u7/3—¢u+)\1/:0, (4.1)
— Ap=4ne(m—1v?), (4.2)

where ) is a Lagrange multiplier for the normalization constraint and ¢ is the Coulom-
bic potential generated by the electrons and the ions.

There are two scales in this problem: The scale of the displacement field which
is O(1), and the scale of the electron density which is O(e). To represent these two
scales, we take the following ansatz:

s (02) - ) o () o)
p=¢ (y g) = o (y g) +epy (y g) +&%¢s (y g) +o (4.4)
A=Xo+eN +e2 o+, (4.5)

where z =x(y) = (I +u)~!(y) is the Euler-Lagrange map, which gives the Lagrangian
coordinate corresponding to y. v(y,2) and ¢(y,z) are functions defined on R? x I and
are periodic in the second variable on I'. Note that we use the Eulerian coordinate for
the first variable and the Lagrangian coordinate for the second variable. The reason
for this is that we will impose periodicity in the second variable with a fized period
which is going to be the unit cell T' (in atomic units) in the equilibrium configuration.
Similarly, we have:

T 1 x 1 x 1 x
m(y)=m (y, g) =3Mo (yv g) Tam (yv g) T (yv g) te (4.6)
For example, from (2.4), one can see that

mo(y,2)= Y mi((I+A)(z)(z—2)), (4.7)

z; €L

where A=Vu is evaluated at z=1z(y).
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We will use the identity
T x 1_. x 1 - x 1 .. T
“Af (D) ==auf (1 2) = 2V5- Vi (0.0) -2V VS (1 2) - 5257 (.2
€ € € € € € € €
Here V; denotes gradient in the first variable, and V3, the second. We write V§ = (I +
Vu(z))"TVy and A% =V%-V% to simplify the notation. The factors (I +Vu(z))~ "

arise as a result of the transformation between Eulerian and Lagrangian coordinates.
Expanding the Euler-Lagrange equations, we get the leading order equations

5
—A§V0+§Vg/3—¢0V0+)\01/0:0, (48)
— Af o =4m(mo —15). (4.9)

The next order equations are
—AS11 —V1- V3 —V35-Viy
+%ﬁ“m—@m—%m+km+&mza (4.10)
—AZ¢1 —V1-Vido— V35 - Vigo=4m(mi —2vp11). (4.11)

The leading order equations (4.8)—(4.9) are a set of equations for functions defined on
the unit cell I', with A =Vu(z) as parameters.

This asymptotic procedure bears a lot of similarity with homogenization theory.
As was observed in [11], many problems in homogenization theory are best viewed
from a fiber bundle viewpoint in which the macro-scale variations play the role of
the base manifold and the local micro-structure plays the role of the fibers. For the
example discussed here, the base manifold describes the smooth distribution for the
positions of the nuclei, and the fibers describe the local electronic structure represented
by the periodic problem in the fast variable z.

4.2. Real space formulation and algorithms. We now review briefly the
general ideas that will be used to solve the TFW model. We will use the algorithm
presented in [16], and we refer to that article for details.

The algorithm consists of two main components: the discretization and optimiza-
tion of the energy functional.

To discuss the discretization of the energy functional, let us focus on the sim-
ple case when the domain is given by D=][0,L1] % [0,L2] x [0,L3] in the Eulerian
coordinates. The domain D is discretized using a uniform mesh with grid sizes
Ay =Li/ny, Ays=Ls/ny, and Ays=L3/ng. The density is defined at the center
of the cells: v, jr~v(y1,i,Y2,5,Y3,k), Where yi ;= (i— %)Ayl, i=0,...,n1+1, yo ;=
(j— %)Ayg, j=0,....,n0+1, ys = (k— %)Ayg, k=0,...,n3+1. The grid points with
indices 0 or n;+1, ny+1, and nz+1 are ghost cells outside the computational do-
main, and are used to impose the boundary conditions. Since the density is known
on the boundary, the ghost values are defined using second order extrapolation. On
the y; =0 boundary, where the boundary value is vy, the ghost values are defined as
Vojk =2Vw,jk — V1jk- A similar expression is used on the other boundaries.

The gradient of v is approximated using forward differences. The integral of
the gradient term in the energy is approximated using the trapezoidal rule, and the
remaining terms are discretized using the midpoint rule. We denote the discretized
energy functional by Fy[v].
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To approximate the convolution with the Hartree potential we approximate v by
a piecewise constant function:

ny N2 ng

(KH*VQ) (y1,¢7y2,j,y3,k)%ZZZVESP/ N (4.12)

o — |dy,
r=1s=1p=1 Drsp Yijk =Y

Where Drps = [yl,r - Ayl /27y1,r + Ayl/z] X [92,5 - Ay2/2>y2,s +Ay2/2] X [y?),p _Ay3/2;
y3.p+Ays/2], and yijx = (Y1,4,Y2,5,¥3,k). The integrals in (4.12) can be evaluated using
a combination of explicit integration and adaptive Gaussian quadrature [23], and
depend only on the distance between y;;i and y,g,. Defining

1
Kivian :/ L 1) 413
dmskep Do [Yijk — Yl (4.13)

rop
we can write (4.12) as a discrete convolution:

Ng Ny N,

(K #1)ige =Y > > ViepKivrjmskps (4.14)

r=1s=1p=1

which can be evaluated using the Fast Fourier Transform (FFT) [33].

We use a modification of the Truncated Newton method for energy minimization,
appropriate for constrained minimization under the constraints ||v||3 =N, and v > 0.
In Newton-based minimization methods, given an approximation v, the energy is
approximated around v by a quadratic functional, which is subsequently minimized
to obtain a descent direction p:

[zr

1 3
||l,+p|} =FV]+(Gv],p)n+ 5 (H[V] p,p)n+O(p|°), (4.15)

2

where (-,-);, denotes the discrete inner product, given by

(’LL,’U)}L:AylAygAygzuiijijk. (416)
1,5,k

In minimization without constraints, G and H are the gradient and Hessian of the
energy, respectively. For the constrained problem, G and H are projected versions of
the gradient and Hessian, respectively. The projected gradient is

Gv|=VF[v]—(VF[V],v)pv, (4.17)

where VF[v] is the unconstrained gradient, obtained from the discrete energy by
taking partial derivatives with respect to the variables {v;;i}.

Minimization of the quadratic part of (4.15) with respect to p leads to the linear
equation

Hv]-p=—-G[v]. (4.18)

The matrix H[v] is symmetric, but not necessarily positive definite. We use the
Preconditioned Conjugate Gradient (PCG) to solve equation (4.18). For the precon-
ditioner we use the Laplacian term, which in our discretization can be inverted using
the FFT. If H[v] is not positive definite, the procedure fails by producing a direction
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of negative curvature. In that case we use the corresponding approximation to the so-
lution of system (4.18) as our descent direction. Sufficiently near the minimum, H[v]
becomes positive definite, and from (4.18) we get p=—H[v]~-G[v], i.e.,Newton’s
method. For details regarding the convergence of this algorithm in the unconstrained
case, see [32].

Given the current approximation, v, and a descent direction, p, the next approx-
imation is computed with a line search using

[ lvtep|
f (6)‘F{u+ep|]' (4.19)

In the line search we impose the Wolfe conditions to ensure sufficient decrease in the
energy [32].

It is relatively straightforward to extend this algorithm to account for periodic
boundary conditions. The only necessary changes are the discretization and the com-
putation of the Coulomb potential.

In the periodic case, we use a pseudo-spectral, Fourier collocation method [21].
The values of the density are given at the grid points (y1.4,y2,j,¥3.k) = (1Ay1,jAys,
kAys), where i=0,...,n1 —1, j=0,...,no—1, and k=0,...,n3—1. Given a local de-
formation gradient I+ A =TI+ Vu, the Coulomb interactions are obtained by solving
the equation

—((I+A)"T"V)2p=4r(v?—m), (4.20)

with periodic boundary conditions. This can be done efficiently using the FFT.

4.3. Sub-linear scaling algorithm for the TFW model. The basic
assumption is that the distribution (or displacement) of the atoms follows a smooth
function except for a very small part of the sample. This allows us to divide the whole
sample into smooth and non-smooth regions, denoted by 2, and 2,5 respectively.

We showed that the Euler-Lagrange equation in the smooth region can be solved
asymptotically through a series of much simplified equations. For the electronic struc-
ture problem, these asymptotic equations are periodic problems for the deformed unit
cells. Moreover, they are independent of the electronic structure in the non-smooth
region. As a consequence of the smoothness of the displacement, there is no need to
solve the periodic problems for each unit cell. It is enough to consider a subset of the
unit cells that form a macro-grid covering the smooth region, and solve the periodic
problems on these unit cells, as depicted in Figure 4.1. The electronic structure on
other unit cells can be obtained through interpolation. The size of the macro-grid is
determined by the smoothness of the displacement field and the error tolerance.

The algorithm proceeds as follows. We first select a subset of unit cells (whose
centers lie on the grid points of a macro grid) in the smooth region, and solve the
asymptotic equations on these unit cells. We then find the electronic structure in
the non-smooth region, p,s, by minimizing the original energy functional, using the
results already obtained for ps in Q. In addition, we impose the boundary condition
for p,s at the boundary of Q,:

Prs = Ps- (4.21)

To complete the description of this algorithm, we need to
1. discuss how to solve the asymptotic equations in the smooth region,
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Fic. 4.1. Decomposition of the domain into smooth and non-smooth regions. The non-smooth
region is shown in dark gray. In the smooth region, a coarse grid is defined. At the grid points in
the smooth region, the unit cell is depicted. The asymptotic equations are solved on these unit cells,
using the local deformation A=Vu(x) as a parameter.

2. discuss the interpolation procedure for extending results from a subset of the
unit cells to the whole smooth region, and
3. discuss how to solve for p,;.
These issues will be discussed in detail now.

4.4. Algorithm for the smooth region. In the region where the atoms are
smoothly distributed, the electronic states can be thought of as a smoothly varying
microstructure (see the illustration in figure 4.2). The microscale variation is the
variation of the electronic structure inside a unit cell. The macroscale variation is
the variation of the smooth displacement field, which also induces a variation of the
electronic structure. Furthermore, as we saw earlier, the microstructure is entirely
local. To compute such a microstructure, we can proceed using the following steps.

Step 1. We select a coarse grid of unit cells, as discussed earlier.

Step 2. We solve the asymptotic equations (4.8)-(4.9) on these unit cells. To do
this, let us define the periodic Thomas-Fermi-von Weiszécker functional (putting back
the exchange-correlation term),

Ia(v)= / v193(2; A) dz+/\ (I+A)""Vu(z; A)|2dz+/exc( M2 (z;A)dz
//F . v —mep)(2;A)G (2 — 2/ A)(V? —mep)(2/;A)dzd2,  (4.22)

where mcg(z; A(x)) =mo(y,2) =>_, m§((I+A)(z)(z—2)), and G(z;A) is the peri-
odic Coulombic kernel [27], which is the solution of

—(I+A)""V)2G(2;A)=4r <5(z) - |F1|> , inT, (4.23)
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satisfying the periodic boundary condition and
lim (G(25.4) ~ 1/|(I+ A)z) =

It is easy to see that the Euler-Lagrange equations of I4(v), with the normalization
constraint

/F V(2 A)dz = m, (4.24)

are the same as (4.8)-(4.9) with A=Vu(z). Therefore the leading order asymptotic
equations can be solved using the minimization algorithm described above. Often the
results already give us an accurate approximation of the electronic structure in these
regions. We rarely need to solve the higher order equations. If necessary, we can solve
the higher order equations using standard methods, since they are linear problems.

Note that in [1], Blanc et al. . rigorously proved that the integration of (4.22)
does indeed give the leading order energy.

Step 3. The electronic structure at other locations is obtained through the fol-
lowing multiscale interpolation procedure.

Assume that we have a function of the form

u(x)=U (:c, %) ,
where U is a smooth function and periodic in the second variable, with period T'.
Consider a macroscale grid with grid points {z;}, and let U;(2) =U(z;,%). The mul-
tiscale interpolation problem we are facing can be formulated as follows: Knowing the
functions {U;}, and given x € 2, how do we approximate the function U*(z) =U (z,2)?
Without the dependence on z, this is a standard interpolation problem. With the
dependence on z, this is still a standard interpolation problem: all we have to do is

to view z as a parameter and perform standard interpolation.
Assume that we have a standard interpolation operator in the form

(Tpu)( ZaJ uj,
where {a;} is some weight function. We may then simply write
(IU)(x,z) Za]
Going back to the multiscale representation, we have that

()@) = 3205 ()

For example, in one dimension, for the piecewise linear interpolation, we have

T—Tj-1

(I f) (@) = 5= o) + =5 = ()

if € (xj_1,2z;]. Then for the multiscale problem, we use

_.’Ej—il,' T—Tj-1 )
(IU)(@,2) = = o Ulw,2).

Once we have solved the local problems on a coarse grid, we can then use this
interpolation procedure to find the electronic structure everywhere in the smooth
region. In particular, we can use this procedure to find the boundary values needed
for the non-smooth region, as we explain below.

U(wj-1,2)+
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4.5. Algorithm for the non-smooth region. In the non-smooth region
Q,s, we minimize the energy

I(u):/ |Vu|2dy+/ Vlo/gdy—l—/ exe (V)2 dy
Y(Qns) Y(Q2ns) Y(Qns)

2 _ 2 ’
+1// (V mns)(y)(l/ mns)(y ) dydy'Jr/ (1/2 *mns)Vs(y)dy,
2 ) y(@no) xy(@ns) y( )

ly—y|
(4.25)
subject to the constraints v,s >0 and
/ V,%de:an, (426)
y(Qns)

where N, is the number of electrons in the non-smooth region, and with boundary
condition

Uns(Y) =vs(y), Y€y (Qns)- (4.27)

If necessary, v, is obtained through the multi-scale interpolation procedure described
above. Here V; contains the Coulomb potential due to the electron density in the
smooth region,

_ i-—ms )W) .
Vs(y)/y(ﬂs) =y dy’,  yEey(Qns). (4.28)

Notice that we use y(£2,5) to denote the non-smooth region after deformation (or in
the Eulerian coordinate system). For the exchange and correlation energy in (4.25),
we use the local density approximation (LDA) and specifically the Ceperley-Alder
functional [4], as parametrized by Perdew and Zunger [35]. The atomic potential 1,
is generated by the atoms located inside the non-smooth region. The minimization
problem for (4.25) can be solved using the same algorithm as described in Sec. 4.2.
The main difficulty is the treatment of the Coulomb potential Vi, defined by (4.28).
Here we discuss two different ways of treating this Coulomb term, and refer the reader
to the article [15], where a more thorough discussion is presented.

The first approach is the fast multipole method (FMM) [22]. FMM is a well-
known linear scaling algorithm for computing Coulomb interactions. However, FMM
cannot be applied to our problem directly since we have a two-scale charge distribution
(see Figure 4.2). To deal with this multiscale issue, we adopt a HMM (heterogeneous
multi-scale method [7]) philosophy, namely we apply FMM (which acts as the macro-
solver in HMM) on a set of effective charges whose moments are computed from the
detailed multiscale charge distribution. For a detailed description of this approach,
see [15].

In the absence of large scale elastic deformations, a simpler approach can be
obtained by combining a Poisson solver in the smooth region with a convolution in
the non-smooth region. Since the lattice is not deformed, the smooth density can be
extended periodically to the whole space. Therefore the potential can be written as

@R . [ Remd)
= [ vy /ymm) P (4.29)
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FiG. 4.2. Electronic density around a vacancy in an aluminum FCC crystal. The oscil-
lations at the atomic level are modulated by a smooth deformation.

The first term can be obtained by solving the equation
—A¢p=4m(v? —m,) (4.30)

in the unit cell, with periodic boundary conditions, and extending ¢ periodically to
R3. The second term in (4.29) can be evaluated as a convolution using the FFT, as
described in Sec. 4.2.

4.6. Numerical results: the vacancy problem. As an illustration, we
have computed the electronic structure of an undeformed aluminum FCC crystal. In
our first example, we consider a perfect (infinite) crystal, and in our second example
we consider a crystal with a vacancy, where one atom has been removed. Vacancies
in a crystal lattice are commonly studied using the so-called supercell method. In
that approach, a large region containing the vacancy is considered, and the energy
functional is minimized using periodic boundary conditions at the boundary of the
large region. One drawback of this approach is that the supercell must be exceedingly
large in order to reduce the interactions between the artificially created periodic copies
of the defect. In the approach presented here, this is not necessary. The domain is
divided into two regions: the non-smooth region, €,,s, which surrounds the vacancy,
and the smooth region, which in this case is simply R?\ Q,,.

In this example, the non-smooth region is formed by 43 =64 unit cells, and the
missing atom is located at the center of this domain. In the case of FCC aluminum,
each perfect unit cell has 4 atoms, and therefore 12 valence electrons. The periodic cell
problem in the smooth region is discretized using 323 grid points, .e.,approximately
4 grid points per atomic unit. The initial density was taken to be random, and
normalized to satisfy charge conservation. For the non-smooth region, we require the
boundary value at the center of the face adjacent to the smooth region. This value is
obtained as the average of the values of v, at the vertices of that face. The external
potential is computed as described previously, by extending the periodic potential
into the non-smooth region, and subtracting the convolution term. This only needs
to be computed once.

The grid size in the non-smooth region is the same as in the smooth region. This
is not a limitation, as grid refinement can be performed in the area surrounding the
non-smooth region. Although the initial density can be chosen to be a random array
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(a) aluminum FCC crystal. (b) aluminum FCC with a vacancy.

Fic. 4.3. Contour levels of the electronic density obtained using the Thomas-Fermi-
von Weiszicker model. We only present an interior slice. The box indicates where the
separation between the smooth and non-smooth regions is.
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(a) Density profile for the perfect crystal. (b) Density profile near the vacancy.

Fic. 4.4. Electronic density across the center line in figure 4.3.

as in the periodic case, we chose the initial density by extending periodically the
density from the smooth region, and interpolating onto the grid in the non-smooth
region.

The electronic density obtained with this procedure in both cases is shown in
Figure 4.3. A detail of the electronic density is shown in Figure 4.4. It is seen in
the figures that the matching at the interface between the smooth and non-smooth
regions is seamless.

It is important to note as well that the effect on the electronic density of the
disturbance in the crystalline lattice is limited to one or two periodic cells in each
direction. This allows us to define a non-smooth region localized near the defect,
ensuring a sub-linear scaling algorithm.

5. The Kohn-Sham density functional theory
Kohn-Sham DFT is quite different from TFW due to the presence of orbitals.
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From a numerical viewpoint, orbitals present at least three problems: The first is
that they are not uniquely defined. The second is that they in principle extend to the
whole space. The third is the orthonormality constraints that are usually imposed on
the orbitals.

We will work with localized orbitals. This allows us to link each orbital with par-
ticular atoms or bonds. However, localized orbitals are not uniquely defined either.
This non-uniqueness issue is fixed by the particular localization procedure that we
use, in the localized subspace iteration algorithm discussed below (see also [8]). Us-
ing localized orbitals also allows us to truncate the orbitals outside some localization
region. This also fixes the second problem. To deal with the third problem, we use a
non-orthogonal formulation of KS-DFT. In this formulation, we only need to enforce
independence of the orbitals, which is guaranteed automatically by the localization
procedure. Since we work with localized orbitals, we will adopt a real space formu-
lation of the problems and sub-problems that we encounter, even for the periodic
case.

The basic idea of the sub-linear scaling algorithm is as follows. We divide the
orbitals into two sets: the set associated with the atoms in the smooth region and the
set associated with the atoms in the non-smooth region. The orbitals in the smooth
region can be approximated using asymptotic analysis, and can be found beforehand
by solving a series of periodic problems. We then go back to the full problem, and
use the results in the smooth region (as given) to find the orbitals in the non-smooth
region. The wave functions in the smooth region serve as the environment for the
wave functions in the non-smooth region. They confine the wave functions in the
non-smooth region and force them to decay into the smooth region.

This decay property of the orbitals will be used in an essential way in the al-
gorithm, both for the smooth and non-smooth regions. In the smooth region, even
though the problems are periodic, we will formulate them as problems in the whole
real space, in contrast to the conventional k-point sampling techniques for periodic
problems. The real space formulation is preferred since the problem in the non-
smooth region has to be formulated in real space anyway. The decay property of the
wave functions then allows us to truncate the computational domain and compute the
wave functions only on small neighborhoods of the corresponding physical domains.
Indeed, a crucial component of our algorithm is to ensure that the wave functions
we compute have fast decay properties. For this purpose, we replace the standard
orthogonalization steps in KS-DFT algorithms by localization steps, as in [8].

As in the last section, we will first discuss the asymptotics for the smooth region
and the general KS-DFT algorithm that we will use. We will then discuss the sub-
linear scaling algorithm.

5.1. Asymptotic analysis in the smooth region. The rescaled energy
functional for the Kohn-Sham density functional theory model is

LoD =53 [ IvawlFdut [ ey
k

£ (p—m)(y)(p—m)(y') /
+7/A3XR3 ly—y] dydy. (5-1)

2

For simplicity, the nonlocal pseudopotential is not included here. Similar results can
be obtained when it is included.
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The associated Euler-Lagrange equations are

2
- 62A¢k+ch(€3p)¢k—¢¢k+;>\kk/¢k' =0; (5.2)
—Ap=4dme(m—p). (5.3)

Here the \’s are the Lagrange multipliers for the orthonormality constraints, ¢ is the
Coulombic potential generated by the charge distribution of electrons and ions, and
Vie(€2p) = exc(€%p) + € (%)% .

The wave functions {¢} are far from being unique. We will assume that the
collection of {t} can be chosen as {1, (y;,(x —x;)/e)}, where «, which ranges from
1 to ng/2, is the index for the occupied states. 1, (y,-) is localized at 0, i.e.,it decays
away from the origin. Thus ¥, (y:,(x —x;)/e) is localized at the atomic position
x;. If the system is in equilibrium or under homogeneous deformation, {¢q (y;,(z—
x;)/e)} can be chosen as the well-known Wannier function [41] of the a-th energy
band centered at x;.

Similar to the case of the TFW model, we take the following ansatz:

Valy,2) = 53%7%,0 (y, g) + 81%1%71 (y, g) +eM %y 0 (y, g) +-- (5.4)
o022 (D) e ) e
¢:¢(y7§) = o (yg) +edy (yg) +e%¢y (yg) +e (5.6)

As discussed above, 1, (y,z) decays when z becomes large, and p(y,z) and ¢(y,z) are
periodic in z, as in the TFW model. Recall that

py)=2> > |ta (yj,x;xj> B

a zjeelN

In the limit as € — 0, by the decay property, we obtain, at leading order, that

pO(yaz):2Z Z|wa,()(yvz_zj)|2' (5'7)

«@ ZjEL

Note that 1q,0(y, - — 2;) is a translation of ¢ o(y, - — z;) with translation vector z; — 2.
Similarly, for the orthonormality constraint, we have

[ Bl = ) ol =) e =GB det(T+ V). (58)

Taking these into consideration and expanding the Euler-Lagrange equations, we
get the leading order equations:

2 AR 0(:2) + Vac0) i (0:2) — (3,2 0(y,2)

+ Z )\aa’,2j0¢a',0(yaz_zj):0; (59)

a’,z; €L

—A3¢0(y,z) =4m(mo — po)(y,2). (5.10)
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Here the \’s are Lagrange multipliers. The second order equations are

1 1 1
—§A§¢a,1(y,2) - §V§-V1wa,o(y,z) - §V1 -V31a0(y,2)
+ch(po)1/)a1(y, )+ Ve (p0) p1¥a,0(Y; 2) — Pota1 (¥, 2)
_(;blwaO Y,z Z )\aa zJOwa’ 1(?/,2'—2])

a’,z; €L
+ Z )\aa',zjlwa’,O(yaZ_zj)zo; (511)
a’,z; €L
~ASba1(y,2) = V5 - Vida0(y,2) = V1-V30a,0(y,2) (5.12)

=4m(m1 —p1)(y,2).

As was observed in [10], the asymptotic analysis reveals something that may seem
surprising at first sight, namely that the problem becomes effective local: all terms
in the asymptotic expansion are determined by solving differential equations in the
fast variable; the slow variable enters only as a parameter. In the language of fiber
bundles [11], all terms are determined by solving PDEs on the fibers — differentiation
with respect to the variables on the base manifold only enters in the source terms.
Indeed, given the displacement field, the leading order terms become independent for
different values of the slow variable. This means that the local electronic structures
at different macro-scale locations are essentially independent of each other and can
be solved independently. This is a remarkable fact and is a consequence of the near-
sightedness discovered by W. Kohn [26].

5.2. Essential ingredients of the KS-DFT algorithm. To ease discussion,
we will use the KS-DFT model in the following form:

ml%QZ/ |V1/J]|2dy+2/ (Vps¥5)(y);(y) dy

1 (p=m)W)(p—m)(y) . .
+2//RSXR3 ly—v/] dydy +/RS xe(p)pdy, (5.13)

subject to the orthogonality constraints
/ wledyzém (514)
R3
The electronic density, p, is defined as
N
y)=2> ;) (5.15)
j=1

Given N, atoms located at {Ry}, k=1,...,N,, the ionic function, m, is defined by

Na

=3 mi(y— Ra). (5.16)
k=1

where mj, is the atomic function.
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The last term in (5.13) is the exchange and correlation energy in the local density
approximation (LDA). As in the TFW case, we use the Ceperley-Alder exchange and
correlation energy, as parametrized by Perdew and Zunger [4, 35].

The pseudopotential operator in (5.13), Vs, together with the ionic function m,
describe the screened effect of the core electrons and the nuclei. Here we use the norm-
conserving pseudopotential of Troullier and Martins [38], in the Kleinman-Bylander
form [24]. The pseudopotential is usually decomposed into local and nonlocal com-
ponents:

1 ~
Vos = <‘/10c —mx* |y|) I+ Zvnonlocal,lljla (517)
l

where ]31 projects out the I-th angular momentum component of the wave function.
The function V, in (5.16) is chosen so that the local part in the pseudopotential
has compact support, with approximately the same cutoff radius as the nonlocal
components, and so that

[e=mas=o. (515)
The minimization problem (5.13) leads to the nonlinear eigenvalue problem

Hipj = eijibi, (5.19)
]

where {eij}ﬁ\)g:l are the Lagrange multipliers necessary to enforce the orthogonality

constraint (5.14), and H is the Hamiltonian:

Hy=— MY+ Ve (o) (5.20)

In (5.20), Vg is the effective potential. This problem is usually solved by diagonal-
ization, resulting in an algorithm that scales like O(N3).

It is important to notice that the Kohn-Sham energy (5.13) is invariant under
unitary transformation of the set of wave functions. In fact, one can even extend the
energy functional to accommodate non-orthonormal wave functions [30].

min1 (/RB(VdJk)T(Sfl)ijZZdey—F/RB(Vpﬂ/)k)(sil)kjd’jdy)

{¥;} 24

7.k

1 —m)(y)(p—m)(y’

+7// (p )(y)_(pl )(y)dydy/+/ exc(p)pdy, (5.21)
2 J s g ly—y/| R

with p defined as

p(y)=2> i(w)(S™ )it (y)- (5.22)
ij
Here S is the overlap matrix

Sij:/¢i¢jdy~
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In this case, the energy functional is invariant with respect to any non-singular trans-
formation of the wave functions. This allows us to reformulate the problem. In this
reformulation, the emphasis is not on a particular basis, such as the eigenfunctions
considered in (5.19), but on the linear subspace generated by these functions. The
starting point in our algorithm is a set of linearly independent normalized wave func-
tions, ¥ ={¢;}}L,. The wave functions are centered at fixed locations, {b;}7_,, which
we usually take to be the center of the interatomic bond. These wave functions are
compactly supported, with support within a certain cutoff radius, R.. As in the work
of Zhou, Saad, Tiago and Chelikowsky [46], we iteratively improve this initial sub-
space by polynomial filtering. But in contrast to their work, in our approach there is
no orthogonalization step, which would lead to cubic scaling. Instead, linear scaling
is achieved in our algorithm by using always a representation in terms of a localized
basis.

Next, we discuss some algorithmic details.

As in [46], we use a Chebyshev polynomial filter. The Chebyshev polynomial of
degree n >0 is defined as

_ fcos(ncos™'z), |z|<1,
Tnlz) = { cosh(ncosh™'z), |z| > 1. (5.23)

These polynomials satisfy the three-term recurrence relation
Toi1(x)=22T, () —Th—1(x). (5.24)

Because of the rapid growth of the polynomials outside the interval [—1,1], they
can efficiently filter out the components in the wave functions ¥ that correspond to
eigenvalues in the high end of the spectrum. Given V =spanV, the filtered subspace
is

\I]:pm(H)\Ilv (525)

where p,, is a shifted Chebyshev polynomial, so that the unwanted part of the spec-
trum lies in [—1,1], and the lower part of the spectrum lies in (—oo,—1]. The filter
is applied via the use of the recursion relation (5.24), which makes it unnecessary to
construct p,, (H) explicitly.

Given a set of wave functions, {);}}_,, centered at the locations {b;}}_,, respec-
tively, we obtain a more localized basis by minimizing
s|ly—0;]?P 2d
F[cp]: fRd‘y ]| |902(y)| Yy (526)
fRs lo(y) |2 dy
among functions ¢ of the form
,
)= ari(y). (5.27)
k=1

Only the wave functions whose support overlaps with the support of ¢; are included
in the summation (5.27). Since the support of the wave functions is contained within
a pre-defined cutoff radius from the center, there is an upper bound on the number
of wave functions required in (5.27), r, which is independent of the number of atoms.
In [8] it is proved that the localized wave functions decay faster for increasing values
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of peN, but the conditioning of the problem grows with p as well. In what follows,
we use the value p=3.
Minimization of (5.26) leads to the generalized eigenvalue problem

Wa=M\Sa, (5.28)
where a=(a,...,an), A is the generalized eigenvalue, and the matrices W and S are
defined as

Wij= /Rz ly = bk (y) 5 (y) dy, (5.29)
Si= [ 6wy b=l (530)

The smallest generalized eigenvalue and corresponding eigenvector of (5.28) are ob-
tained using the Lanczos algorithm for matrix pairs [36], and a bisection procedure
to isolate the smallest eigenvalue [20].

Note that in the procedure described above the Hamiltonian H is fixed, or equiv-
alently, the electronic density is fixed. To monitor the convergence of the iterated
spaces, we compute the corresponding electronic density by

2Zwk ik ().

The LSI is repeated until there is little change in the density, at which point the
Hamiltonian is updated. Therefore the algorithm consists of two iterations: an inner
loop in which the linear subspace is iteratively improved via the LSI, and a self-
consistency outer loop in which the electronic density, and therefore the Hamiltonian,
is updated. In the algorithm described below we update the density in the self-
consistent iteration using linear mixing. However, this is not a limitation of the
algorithm, and other schemes may be used [29].
In summary, this linear-scaling algorithm proceeds as follows:

1: Given wave functions V.

2: k=0.

3: repeat {(Self-Consistency Loop (SCF))}

4: [=0.

5:  Compute electronic density:

2Zwk ik ().

6:  Pk,0=Pk-

7. Compute effective potential: Veg(p) =V (p)+ Vps + Vxe(p)-
8:  repeat {(Localized Subspace Iteration (LSI) [8])}

9: Filtering Step: 7, =pm(H)T,.
10: Localization Step:
11: for r=1to N do
12: Localize 1,

o Jrely =51 le(y) P dy
min _ 5 .
pEspan ¥; fRB |‘P(y)| dy
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13: end for

14: Truncation: ¢ (y)=0if |y —bxl| > Re, k=1,...,N.
15: Update subspace: ¥, 1 =[p1,...,oN].

16: Compute associated density, pg,i41.

17: until [|pg 41— p |2 < Tol.
18: Mixing: Pk+1 :()lpk+(1 —oz)kaH.
19: until Hpk—&-l — Pk H2 < Tol.

The overlap matrix, S, is symmetric and positive definite, and its condition num-
ber is bounded independently of its size. Due to the truncation of the wave functions,
it is also sparse. Therefore the matrix can be inverted with linear complexity using
the multigrid or the preconditioned conjugate gradient methods.

5.3. Algorithm for the smooth region. The electronic structure in the
smooth region can be computed in a similar way as for the TFW model: A coarse grid
of unit cells is generated. The wave functions associated with the electrons inside these
unit cells are found by solving the asymptotic equations. The multiscale interpolation
technique is used to generate the electronic structure at other locations. The first and
the last steps are the same as in the previous case. Let us focus on the second step.
To do this, as in Section 4.4, define the periodic Kohn-Sham functional (here the
nonlocal pseudo-potential is included)

L0 =53 [ T+ 4 Vha AP+ Y [ (Vatva)bals4)d:

+/Fexc(p)p(z;A)dz+%/Axr(p—mCB)(Z;A)G(Z—z’;A)(p—mCB)(z’;A)dzdz’,
(5.31)

where mcg(z; A(x)) =mo(y,2) =>_, mi((I+A)(z)(z—=2)), and G(z;A) is the pe-
riodic Coulombic kernel as in (4.23). It is easy to see that the Euler-Langrange
equations of T4 ({¢}) with the orthonormality constraints

/ ﬂ);’o(z —2;;A) Y0 0(2— 25, A)dz=0qar0;5/ det(I + A) (5.32)
RB

are (5.9)-(5.10) with A=Vu(z). Therefore, we can obtain the leading order approxi-
mation of the wave functions in the smooth region using the LSI algorithm described
above.

Although this looks like an orthogonal formulation of DFT, the numerical algo-
rithm that we use is the LSI algorithm described in last subsection, and that is a
non-orthogonal formulation. The orthogonal formulation used here and in Sec. 5.1 is
only for the convenience of presenting the asymptotic analysis.

When solving for the wave functions in one unit cell, we have to consider their
periodic translations in the other unit cells. Since the wave functions are localized,
we only have to consider a small number of these translations. We choose the cutoff
radius to be R.=1.5a9, where ag is the lattice constant.

In this formulation, the wave functions are not periodic. However, the electronic
density is periodic. Therefore the Coulomb term is computed as in the TFW model,
i.e.,by solving the Poisson equation

—A¢p=4n(p—m), (5.33)
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with periodic boundary conditions, discussed in Sec. 4.4.

Some remarks are in order concerning the strategy used here to solve the unit
cell problems in the smooth region. Notice that the cell problem is not formulated as
a periodic problem over the unit cell, but rather a problem over the whole space, as
shown in (5.31). The wave function, although localized, is also defined on all of R3.

We further remark that, although (5.31) is derived from assumptions of periodic-
ity, it takes a form that is quite different from the usual formulation of periodic models
when wave functions are included (e.g., for the Hartree and Hartree-Fock models as
in [2, 3]). Our formulation (5.31) is in real space, not in k-space where the Bloch
boundary condition is used [29]. Because of this, we have chosen a localized repre-
sentation (Wannier functions) for the electronic states, since they are more naturally
associated with each individual atom or electron. For numerical computation, the
real space formulation might be more advantageous than the k-space representation.
This point will be pursued in future work.

5.4. Algorithm for the non-smooth region. Let K, K, and K, denote
the collection of indices for the wave functions associated with the whole domain,
atoms in the smooth region and atoms in the non-smooth region, respectively. Note
that K = K,UK,,, and K;NK,,=0. As before, the electronic structure in the non-
smooth region is solved by minimizing the original energy functional, but with the
orbitals associated with the atoms in the smooth region already given:

it 5SS ([ T S Ve [ V(5w d)

kEK jEK
1 p—m)(y)(p—m)(y
+/ exc(p)p(y)der*// ( Jw) ; i )dydy'- (5.34)
R3 2 JJrsxms ly—y'|
Here, we have adopted the non-orthogonal formulation, so that p is defined as
p(y) =2 vi(y)(S™)ijth; (), (5.35)
ij

and satisfies the normalization condition:
[ etwydy=v. (5.36)
]R3

The problem is to determine the electronic structure for the non-smooth region given
the environment of the smooth region, i.e.,given {¢r }re k., we need to find {9k }rek,,. -

At this point, the problem is formulated over the entire space. The orbitals are
defined everywhere. However, due to the localization of the orbitals, we can truncate
the integrals in the definition of the functional (5.34) as well as the inverse overlap
matrix.

We define an environment region, with indices K¢y, C Ks. This environment
region contains the indices of the wave functions that overlap with the non-smooth
region after the wave functions are truncated, as shown in Figure 5.1. The density
can therefore be written as

py)=2 > > v (y)
i€ K paUKeny JEK naUReny
+4 Z Z Pi (S i5(y) +2 Z Z Pi(STH) i 05 (y).-
1€KnsUKenv jEK s\ Konw 1EK\Keny jEK\Keno
(5.37)
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Fic. 5.1. Decomposition of the domain into smooth and non-smooth regions. The non-smooth
region is shown in black, and the environment region is shown in dark gray.

This decomposition is exact. Furthermore, if y € Q,,;, only the first term in (5.37) is
not zero:

p()=2 D »i(STNit(y), YEDns. (5.38)

4, €EKnsUKeny

At first sight, since S is a huge matrix of the dimension of the total number of wave
functions in the system, it is very expensive to invert S or to calculate S~ using
the conjugate gradient method. The localization of the wave functions helps again,
since the overlap matrix can be truncated away from a small neighborhood of the
non-smooth region. Therefore, we define the density in the non-smooth region as

ps@=2 > wi(STVi(y). yE (5.39)

1,]€EKnsUKeno

where we have truncated the overlap matrix and only consider the wave functions in
the non-smooth region and the environment region:

gz‘j:/swi(y)wj(y)dy, 1, € Kns U Kepy. (5.40)
"

This is the main approximation we make that helps to decouple the orbitals in
the non-smooth region from a majority of the orbitals in the (vast) smooth region.

Let y(£2,,) be a domain that contains the support of the orbitals associated with
atoms in the non-smooth region. The functional in (5.34) can now be simplified to:

. 1 _ _
ot 5SS ([ (TS Tyt [ (V) (S do)

kEKjeK

1 (p—m)W)(p—m)(y") , .,
+/ym/ )exc(p)p(y)der2//“9%5%3 " dydy’. (5.41)

ly —

ns
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Carbon Atom

%

Center

Fic. 5.2. Carbon Chain. In red, the location of the atoms. The wave functions have centers
on alternating orthogonal planes.

There are several interaction terms that have to be considered. The first is the
Coulomb term. This situation is identical to the TFW case, and we treat the long
range interactions (like the nonlocal pseudopotential) in the same way. Other than
these long range interactions, the overlap between the wave functions in the smooth
region and the wave functions in the non-smooth region also needs to be taken into
consideration. It may seem at first sight that to evaluate (5.41), for terms like

[ R

all the wave functions should be included, which will make the calculation impossible.
Fortunately, since we are working with localized wave functions, only a small number
of wave functions in the smooth region need to be taken into account.

The LSI algorithm discussed above is not an optimization algorithm (such as
steepest decent or quasi-Newton methods). Instead an effective Hamiltonian is con-
structed using the current electron density

1
H:_§A+Vveff(pns)+VH(ps)7 (542)

which is used to get an updated set of localized wave functions. In this algorithm,
the surrounding wave functions from the smooth region contribute in two ways: On
one hand, they are involved when the overlap matrix is calculated in the definition
of the density. On the other hand, the surrounding wave functions serve to confine
the wave functions in the non-smooth region and force them to decay away from the
non-smooth region through the localization procedure.

This coupling between the smooth and non-smooth regions via the wave functions
is not standard, but it is the most natural approach one can think of for this situation.
In this approach, the non-smooth region sees the surrounding wave functions as their
environment, and this reflects the situation for real materials.

Finally, here we have used LSI to solve the Kohn-Sham model. This is not
the only choice. Other algorithms based on localized wave functions such as orbital
minimization can also be used.
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5.5. Numerical examples. To illustrate the linear scaling algorithm pre-
sented in Sec. 5.2, we have considered an infinite carbon chain. Each unit cell contains
two atoms. There are two covalent bonds between every two consecutive atoms in the
chain, and therefore we associate four wave functions to each unit cell. Note that these
wave functions are not confined to their unit cell; only the centers, which are used in
the localization step, are. The atoms are located on the OX axis, and the wave func-
tions are centered at points located on alternating orthogonal planes, as depicted in
Figure 5.2. The distance between atoms is ag = 1.785A. We use 4 unit cells in the OX
direction.The environment region contains 3 unit cells in the OX axis on each side of
the non-smooth region. The truncation radius for the wave functions is R.=1.5ag.
We set the tolerance for both the inner and outer loop to 1076, The density was up-
dated every 100 iterations within the inner loop. We have used 64 x 32 x 32 gridpoints
in each unit cell. The electronic density obtained by the algorithm presented in Sec.
5.2 is shown in Figure 5.3.

6. Conclusions
We have presented a new class of sub-linear scaling algorithms for studying the
electronic structure of materials. To better appreciate the features of our approach, let

BHS: 0.02 0,04 0.06 0.08 0.1 0.12 0.14 046 0.18 0.2 0.22 0.24

(a) carbon chain — no vacancy. In this case, we still artificially divide the domain into
a smooth and non-smooth region, in order to compare with the results for the case with
vacancy (see below).

(b) carbon chain with a vacancy. The non-smooth region covers a neighborhood of the
vacancy. Both smooth and non-smooth regions are shown.

F1G. 5.3. Electronic density of a carbon chain, computed with the linear scaling algorithm
presented in Sec. 5.2.
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us recapitulate the main steps for the electronic structure analysis using Kohn-Sham
density functional theory. The main components are:

e Partition the set of orbitals into a union of two sets: the orbtials associated
with the atoms in the region where the deformation of the material is smooth,
and the orbitals associated with atoms in the region around defects.

e The (localized) orbitals associated with atoms in the smooth region are com-
puted appoximately by solving the asymptotic equations.

e The localized orbitals in the non-smooth region are found by minimizing the
total energy subject to the condition that the wave functions associated with
the electrons in the smooth region (the “environment wave functions”) are
given. Due to the fast decay properties of the wave functions, only a small
number of environment wave functions need to be taken into account.

There are two main approximations in this procedure: The first is the asymptotic
solutions in the smooth region. The second is the truncation of the set of “environment
wave functions” away from the non-smooth region. Both approximations can be
systematically improved to obtain better and better accuracy. In particular, we have
avoided introducing an ad hoc buffer region.

The general idea pursued here, that of solving simplified asymptotic equations
in the smooth region, has an obvious similarity with the quasicontinuum method
[25, 37]. For one thing, the leading order equation is nothing but the Cauchy-Born
approximation. There are some differences though, compared with the quasicontin-
uum method. The numerical methods that we use for the simplified equations are
not limited to the finite element method. In particular, the finite difference method
offers some clear advantage: it fits naturally to the common crystal structures such as
the body-centered cubic, face-centered cubic and diamond structures. Its flexibility
can be explored to reduce the error at the boundary of the non-smooth region, the
analog of the “ghost force”. We should note that such an error does not arise for the
electronic structure problems considered here. But it will be a concern when we study
the deformation of the material.

Aside from this main theme, some of the ideas we introduced along the way
might also be of interest. For example, we introduced a real space formulation and
algorithm for the electronic structure of a unit cell. In the past this problem has
been usually formulated and solved in k-space. We also introduced a formulation for
the electronic structure of a subsystem, giving that the electronic structure of the
rest of the system is known. We feel this is the natural formulation for the electronic
structure problem with a Dirichlet boundary condition, and could potentially be useful
for other purposes.

In this paper we have limited our attention to the electronic structure problem.
The natural next step is to study the deformation of the material itself, as was done
in [17] for the TEFW model. This will be done in future work.
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