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INSTABILITY OF MARGINALLY STABLE STREAMWISE
VARYING SHEAR FLOW TO LONG ROSSBY WAVES∗

DANIEL HODYSS† AND TERRENCE R. NATHAN‡

Abstract. The instability of streamwise varying shear flow that is marginally stable to long
Rossby waves is examined. Both Hamiltonian and non-Hamiltonian flows are considered within the
framework of coupled wave instability (CWI). The CWI is shown to be mediated by a ‘physical’
wave and a ‘virtual’ wave. The physical/virtual wave model concisely describes the differences
between the instabilities that develop on locally supercritical flow and those that develop on globally
subcritical flow. Globally subcritical Hamiltonian flows are proven to be stable. In contrast, non-
Hamiltonian flows may be unstable in both locally supercritical and globally subcritical regimes.
In locally supercritical flow, the CWI grows via wave-resonance between the physical/virtual wave
pair and is highly localized to the supercritical region. In contrast, in globally subcritical flow, the
CWI grows via pseudomomentum extraction from the background flow and either radiates away or
remains attached to the streamwise variation in the flow.
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1. Introduction

Rossby waves are ubiquitous. They may exist in any medium that possesses
a background potential vorticity (PV) gradient, including Earth’s atmosphere and
oceans ([1], [2]), the Sun’s interior ([3], [4]), and spiral galaxies ([5], [6]). Conse-
quently, the literature on Rossby waves is vast, with most of it occupied by studies
examining their dynamics in media for which the background PV gradient is stream-
wise uniform (e.g., [7], [8]). Relatively few studies have examined the dynamics of
Rossby waves in media for which the background PV gradient is streamwise varying,
despite such media often being in closer aligment with observations.

In Earth’s atmosphere, for example, streamwise varying shear flow is common-
place, owing in large part to longitudinal asymmetries in bottom topography and
diabatic heating. The streamwise variations produced by these forcings play a sig-
nificant role in both the genesis and regional structure of low frequency (LF) Rossby
waves (e.g., [9], [10]). Yet, despite these findings, fundamental questions remain. For
example, are there differences between the instabilities that develop on Hamiltonian
versus non-Hamiltonian flows? How do variations in the local stability properties of
the flow control the emergence of Rossby wave instabilities? Is the instability mech-
anism that traditionally operates in streamwise uniform flow, i.e., wave-resonance
(e.g.,[11]), also operating in streamwise varying flow? If not, are there other, possibly
new, instability mechanisms operating?

To provide a framwork for addressing these questions first requires a brief re-
view of the stability criteria associated with streamwise uniform background flow.
To anchor the discussion, consider the simplest case of a rotating, two-dimensional
incompressible fluid confined to a channel of width 2L. For this fluid system the nec-
essary condition for instability of normal mode disturbances takes the following form
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(e.g., [12]):

ωi

L
∫

−L

k|H(y)|2

|kU(y)−ω|2
dQ(y)

dy
dy=ωiI=0, (1.1)

where y is the cross-stream direction, ω=ωr + iωi is the complex eigenfrequency, k is
the streamwise (zonal) wavenumber, H(y) is the cross-stream disturbance structure,
and dQ/dy is the absolute vorticity gradient of the background flow. Based on (1.1),
we define five stability regimes: (1) unstable (ωi>0, I=0), where I=0 requires that
the absolute vorticity gradient change sign somewhere in the domain; (2) deeply stable
(ωi =0, I=O(1)); (3) marginally stable (ωi =0, I=0); (4) supercritical (ωi =O(ε)>
0, I=0), where ε≪1; and (5) subcritical (ωi =0, I=O(ǫ)). The supercritical and
subcritical stability regimes result from small, i.e., O(ǫ), departures of the background
flow from marginal stability, and are the focus of this article.

The stability regimes that we have defined for streamwise uniform flow will be
applied locally to characterize streamwise varying flow. In particular, we will show
that for streamwise varying shear flow, there are sharp differences in the Rossby wave
instabilities that develop on (1) deeply stable versus marginally stable flows and on (2)
locally supercritical verus globally subcritical flows. These differences will be shown
to manifest themselves in the stability mechanism, stability criteria, and disturbance
structure.

To examine the connection between the streamwise variations in the background
flow and the Rossby wave instabilities that subsequently develop, we will build our
analysis on the foundation set by Hodyss and Nathan ([13]; hereafter HN06), who
analytically examined the local stability of streamwise varying media to a broad class
of long waves. Hodyss and Nathan ([14]) [hereafter HN07] subsequently showed, using
a quasigeostrophic (QG), barotropic model, that HN06’s generalized stability analysis
applies to long Rossby waves that develop on streamwise varying background flows
that are everywhere deeply stable. They obtained the striking result that streamwise
varying flow that is deeply stable at every streamwise location may nonetheless be
unstable to exponentially amplifying disturbances.

The deeply stable flow regime examined by HN07 may not always be met in the
atmosphere. Stone ([15]), for example, has shown that on seasonal time scales the
extratropical zonal flow is marginally stable to synoptic-scale Rossby waves. It is
therefore reasonable to expect that at certain times during the seasonal evolution of
the atmosphere the extratropical zonal flow may also be marginally stable to long
Rossby waves. With such times in mind, we examine the extent to which the results
obtained by HN07 apply to streamwise varying background flows that are marginally
stable.

To carry out the marginal stability analysis, we will utilize the linearized form
of the long, low frequency Rossby wave equation derived by Hodyss and Nathan
([16]; hereafter HN04). That equation derives from the classic two-layer model for
baroclinic instability, wherein the streamwise variations in the background flow are
chosen to be asymptotically small and to vary on the same scale as the long-wave.
Although HN04 carried out some linear stability calculations, their focus was on
the mechanisms that excite nonlinear instabilities. Here we show that the linear
instability of the streamwise varying flow examined by HN04 can be explained as
a coupled wave instability (CWI). More importantly, the CWI framework clearly
exposes the fundamental differences in stability criteria between marginally stable and
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deeply stable streamwise varying shear flows and between supercritical and subcritical
flow regimes.

The paper is organized as follows. In Section 2 the model is briefly described, and
in Section 3 the long Rossby wave equation derived by HN04 is reviewed to the extent
necessary to highlight the physical and mathematical setting; two new conservation
laws are also introduced. Stability criteria for marginally stable Hamiltonian flows
are derived in Section 4 and compared to the stability criteria derived in HN06 for
deeply stable Hamiltonian flows. In Section 5, which considers non-Hamiltonian flow,
a complex WKB analysis is carried out to obtain an expression for the global mode
frequency and structure. The conclusions are given in Section 6.

2. The model
We will employ the classic two-layer quasigeostrophic (QG) model ([12]). To

anchor the discussion we formulate the model in a geophysical context. We em-
phasize, however, that the long-wave equation to be derived below relies only on the
assumptions of quasigeostrophy and marginal stability, not on the two-layer fluid con-
figuration. In fact, it can be shown that under the assumptions of quasigeostrophy
and marginal stability, long wave equations can be derived for both barotropic and
continuous QG models that are equivalent to the long wave equation derived here.

The two-layer QG model consists of two layers of homogeneous, incompressible
fluids of different densities in a gravitationally stable configuration (less dense fluid
overlies more dense fluid). The fluid system is rotating with angular speed Ω about
the vertical axis and is bounded above and below by flat, rigid boundaries and is
confined to a streamwise infinite channel. The channel walls, which are rigid and
vertical, are a distance 2L apart in the cross-stream direction. The beta-plane ap-
proximation is used to account for the Earth’s sphericity, i.e., 2Ω=f 0 +β∗y∗, where
f 0=2Ωsinθ0 is the Coriolis parameter and β∗ is the dimensional, northward gradient
of f. Both f 0 and β∗are evaluated at the central latitude, θ0 =45◦.

The non-dimensional equations governing the evolution of the model atmosphere
are:

∂qn
∂t

+J(ψn,qn)=Gn, (2.1)

where the QG potential vorticity (PV) is defined as

qn =▽2ψn +βy+F (−1)n(ψ1−ψ2). (2.2)

The subscript n=1 (n=2) denotes variables defined in the upper (lower) layer,
J(a,b)≡axby −aybx, and ∇2 =∂xx +∂yy. The streamwise and cross-stream directions
are denoted by x and y, and t denotes time. ψn is the geostrophic streamfunction,
where

Un =−
∂ψn

∂y
,Vn =

∂ψn

∂x
, (2.3)

are the streamwise (zonal) and cross-stream (meridional) velocities. Gn is an external
PV source that drives the background flow. In deriving (2.1), the scales L, D, U,
UL, DU/f 0L and L/U have been used to non-dimensionalize the length and depth
of each layer, horizontal velocities, streamfunction and time, respectively. The non-
dimensional planetary vorticity gradient, β, and internal rotational Froude number, F ,
are: β=β∗L2/U and F =f2

0L
2/D(g∆ρ/ρ), where g is the gravitational acceleration,
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∆ρ is the difference in density between the two fluid layers, and ρ is the mean density.
In the streamwise limits, x→±∞, the background flow is streamwise uniform and

the disturbance field vanishes. For the cross-stream boundary conditions we require
that the flow normal to the channel sidewalls, at y=±1, vanish.

3. Long wave equation
In this section we present the asymptotic deveopment of the long wave equa-

tion and use a coupled wave framework to derive conservations laws that provide
constraints on the structure and growth of the wave field.

3.1. Asymptotic development. The total streamfunction field is parti-
tioned into a background flow and a disturbance field:

ψn(x,y,t)= Ψn(x,y)
Background Flow

+ φ′n(x,y,t)
Disturbance Field

. (3.1)

The background flow is chosen to be a steady, vertically sheared current that varies
in the streamwise and cross-stream directions. The background flow is driven by the
external PV source, Gn, and satisfies

J(Ψn,Qn)=Gn, (3.2)

where Qn is the background PV. Insertion of (3.1) into (2.1), and subsequently sub-
tracting (3.2), yields the following equation for the disturbance field:

∂q′n
∂t

+J(φ′n,Qn)+J(Ψn,q
′
n)+J(φ′n,q

′
n)=0, (3.3)

where q′n is the disturbance PV. To isolate the long, low frequency motions in (3.3),
we introduce the long zonal scale X= ǫ1/2x and long time scale T = ǫt, where ǫ≪1.
For the background flow we choose

Ψn(X,y,T )=−

∫ y

−1

(

U (0)
n (y′)+ǫU (1)

n (X,y′)
)

dy′, (3.4)

which has been partitioned into two parts. As in ([7]), the first part is an O(1) stream-
wise uniform current that is chosen marginally stable to long, low frequency waves.
In the two-layer, QG model considered here, the point of marginal stability in the
long, low-frequency limit requires that the normal mode disturbance and streamwise
uniform flow together satisfy

IQG =
2
∑

n=1

1
∫

−1

H2
n

U
(0)2
n

dQ
(0)
n

dy
dy=0, (3.5)

where Hn(y) is the cross-stream normal mode structure. The second part of the back-
ground flow in (3.4) measures the small streamwise varying perturbation to the O(1)
streamwise uniform flow. If we were to evaluate (3.5) locally with the total flow (3.4),
we would find that the small streamwise perturbation produces locally subcritical
(ωi =0 and IQG =O(ǫ)) and supercritical (ωi =O(ǫ)>0 and IQG =0) regions in the

flow. If U
(1)
n is chosen constant in the streamwise direction, then the background flow

becomes identical to that used by Helfrich and Pedlosky ([7], [8]) in their studies of
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isolated anomalies in baroclinic zonal currents.
Given the background flow (3.4), the long, low frequency Rossby wave equation is

obtained by expanding the disturbance streamfunction field in the asymptotic series,

φ′n = ǫφ(0)
n +ǫ3/2φ(1)

n + ... (3.6)

Insertion of (3.4) and (3.6) into (3.3) yields a sequence of linear problems in powers
of ǫ. By demanding that at each order in ǫ the solutions remain orthogonal to the
homogenous adjoint solution, we obtain, to O(ǫ3/2), the following solution for the
disturbance field:

φ′n(X,y,T )= ǫA(X,T )Hn(y)+ǫ3/2Φ(X,T )fn(y), (3.7)

where A(X,T ) is the amplitude, H(y) is the meridional structure, and Φ(X,T )fn(y)
is the vertical and horizontal phase shift of the Rossby wave field. As shown in ([7]),
the small phase shift term, ǫ3/2Φ(X,T )fn(y), and the meridional structure, H(y), do
not have to be calculated explicitly in order to obtain generalized solutions for the
Rossby wave amplitude. It will suffice to show that the meridional structure of the
Rossby wave field satisfies

d2Hn

dy2
+F (−1)n(H1−H2)=κnHn, (3.8)

Hn =0, y=−1,1, (3.9)

where κn =−Q
(0)
ny /U

(0)
n . In the special case where the background flow U0

n is constant,
the meridional structure function is defined by sinusoidal waves (see Appendix A).

The Rossby wave amplitude, A(X,T ), satisfies a variable-coefficient Boussinesq
equation

m1
∂2A

∂T 2
+

∂

∂X

[

m2
∂3A

∂X3
+m3(X)

∂A

∂X
+m4A

∂A

∂X
+m5(X)A

]

=0, (3.10)

where A→0 as |X|→∞ has been used. The coefficients mj(j=1−5), which are
discussed in [7] and [16], are defined in Appendix B.

Before proceeding to the analysis of (3.10), it is instructive to first show how the
terms in the amplitude equation are related to the original terms in the disturbance
PV Equ. (3.3):

U (0)
n

∂q
(1)
n

∂X
=⇒

∂

∂X

(

m2
∂3A

∂X3

)

(3.11)

U (1)
n

∂q
(1)
n

∂X
+
∂Q

(1)
n

∂y

∂φ
(1)
n

∂X
=⇒

∂

∂X

(

m3(X)
∂A

∂X

)

(3.12)

J(φ(1)
n ,q(1)n )=⇒

∂

∂X

(

m4A
∂A

∂X

)

(3.13)

V (1)
n

∂q
(1)
n

∂y
−
∂Q

(1)
n

∂X

∂φ
(1)
n

∂y
=⇒

∂

∂X

(

m5(X)A

)

. (3.14)
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Equations (3.11) and (3.13), which are the linear dispersion and nonlinear terms, arise
from the advection of the Rossby wave by the streamwise uniform flow and from the
advection of the Rossby wave by itself. Equations (3.12) and (3.14), which depend
on streamwise variations in the background flow through the coefficients m3(X) and
m5(X), describe the phase speed modulation and local growth of the Rossby wave
field. For the subsequent analysis, it suffices to note that m2>0 and that m5 =0 in
streamwise uniform flow (see Appendix B).

It will prove useful to write (3.10) in canonical form by the following re-scaling:

∂

∂X
→

1

m
1

4

2

∂

∂X
, (3.15)

∂

∂T
→

1

m
1

2

1

∂

∂T
, (3.16)

A→
m

1

2

2

m4
A, (3.17)

m3→
1

m
1

2

2

m3, (3.18)

m5→
1

m
1

4

2

m5, (3.19)

which allows the evolution equation to be written in only two parameters, m3(X) and
m5(X):

∂2A

∂T 2
+

∂

∂X

[

∂3A

∂X3
+m3(X)

∂A

∂X
+A

∂A

∂X
+m5(X)A

]

=0. (3.20)

Without loss of generality, the analysis below is based on this simplified form of the
evolution equation.

3.2. Coupled wave framework. The properties of the instabilities that
arise in (3.20) are most easily identified by introducing two coupled waves, A(X,T )
and B(X,T ), such that (3.20) may be written as two coupled equations, viz.,

∂A

∂T
=
∂B

∂X
, (3.21)

∂B

∂T
=−

∂3A

∂X3
−m3(X)

∂A

∂X
−A

∂A

∂X
−m5(X)A. (3.22)

Equ. (3.21) is an advection equation whereas (3.22) is related to the variable coefficient
Korteweg-deVries equation examined by HN07 in their study of long Rossby waves in
streamwise varying, deeply stable flow. If steady state conditions are assumed, then
(3.21) and (3.22) reduce to the steady state form of the equation examined in HN07.

Because wave A is the solution to (3.20), it is measurable in a physical system
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and thus will be referred to as the ‘physical’ wave. In contrast, wave B is an artifact
of our CWI conceptual framework and thus will be referred to as the ‘virtual’ wave.
The introduction of the virtual wave B serves two purposes: (1) it makes clear the
connection between the marginally stable and deeply stable cases; (2) it facilitates
the derivation and interpretation of the conservation laws to be derived below.

Waves that satisfy (3.21) and (3.22) also satisfy the following conservation laws:

d

dT

∫ ∞

−∞

AdX=0, (3.23)

d

dT

∫ ∞

−∞

BdX=

∫ ∞

−∞

(

dm3

dX
−m5

)

AdX, (3.24)

where we have assumed that B→0 as |X|→∞. Conservation law (3.23) is extremely
restrictive; it guarantees that all exponentially growing long Rossby waves have os-
cillatory structure. This is in sharp contrast to the deeply stable flow examined in
HN07, where it was shown that oscillatory as well as non-oscillatory wave structures
were possible.

A conservation equation for pseudomomentum can also be obtained from (3.21)
and (3.22):

d

dT

∫ ∞

−∞

ABdX=

∫ ∞

−∞

S(X)A2dX, (3.25)

where

S(X)=
1

2

(

dm3

dX
−2m5

)

. (3.26)

We will find it useful to refer to S(X) as a local pseudomomentum ‘source.’ Phys-
ical/virtual wave pairs that have positive pseudomomentum grow where the local
pseudomomentum source is positive (S>0), and wave pairs that have negative pseu-
domomentum grow where the local pseudomomentum source is negative (S<0). Ad-
ditionally, as shown below, in streamwise uniform flow, S=0 yields pseudomomentum
conservation. When pseudomentum is conserved, A and B must be orthogonal for in-
stability. Lastly, it is interesting to note that the nonlinear term plays no explicit role
in the growth and decay of these wave activity measures [(3.23),(3.24), and (3.25)].

Based on the pseudomementum Equ. (3.25), we have identified two distinct
mechanisms for instability. The first mechanism is wave-resonance, where A and B
are locally configured such that the pseudomomentum vanishes, which is the tradi-
tional mechanism that operates in streamwise uniform flow. The second mechanism is
pseudomomentum extraction, where A and B are locally configured to have the same
signed pseudomomentum as the pseudomomentum source, which is a new mechanism
that operates only in streamwise varying flow. HN07 found that pseudomomentum
extraction is the sole mechanism for growth found in deeply stable flow.

4. Hamiltonian stability analysis
In the following analysis we will focus on the behavior of the linear instabilities in

the coupled amplitude equations (3.21) and (3.22) by neglecting the nonlinear term.
However, we note that the nonlinear term may be incorporated by the simple addition
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of the appropriate term in the Hamiltonian density.
Equations (3.21) and (3.22) constitute a Hamiltonian system, provided

m5 =
dm3

dX
. (4.1)

This condition is identical to the Hamiltonian condition derived in HN06 and HN07,
a fact that may not be too surprising given that (3.22) is, as discussed above, directly
related to the equation governing the linear dynamics of long Rossby waves in deeply
stable flow. As shown in HN07, all background flows forced by topographic variations,
and a well-defined class of external source functions Gn, satisfy an equation with the
form of (4.1).

Given (4.1), the linearized amplitude equations can be written as a non-canonical
Hamiltonian system of the form:

∂

∂T

[

A
B

]

=J

[

δH/δA
δH/δB

]

, (4.2)

where the symplectic operator J is defined as

J≡

[

0 −∂/∂X
−∂/∂X 0

]

, (4.3)

and the Hamiltonian is defined as

H=
1

2

∫ ∞

−∞



m3A
2−

(

∂A

∂X

)2

−B2



dX. (4.4)

Following the procedure in HN06, several necessary conditions for the global insta-
bility of the streamwise varying flow can be obtained by application of Noether’s
theorem to the Hamiltonian form of the amplitude evolution equation. For example,
if the Hamiltonian (4.4) possesses translational symmetry in α, a functional Π is time
invariant, provided

∂

∂α

[

A
B

]

=−J

[

δΠ/δA
δΠ/δB

]

. (4.5)

If the Hamiltonian is invariant to translations in space, such that α=X, the following
expression for the pseudomomentum, P , is obtained:

Π=P ≡
1

2

∫ ∞

−∞

ABdX, (4.6)

The condition that the Hamiltonian be translationally invariant in the streamwise
direction is equivalent to restricting attention to streamwise uniform flow. Thus the
pseudomomentum is conserved for background flows that are streamwise uniform.
Because the instability of streamwise uniform flow requires that the pseudomomentum
vanish, a necessary condition for global mode instability in streamwise uniform flow
is that the wave pair, A and B, be orthogonal. Hence, the traditional supercritical
instability condition of streamwise uniform flow that the background PV gradient
must change sign may also be interpreted as the condition that physical/virtual wave
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pairs be orthogonal.
If the Hamiltonian is invariant to translations in time, such that α=T , we obtain

conservation of pseudoenergy E, where Π=E≡−H. It is instructive to partition the
pseudoenergy into two components, one component for the physical wave A and the
other for the virtual wave B: E=EA +EB , where

EA =
1

2

∫ ∞

−∞





(

∂A

∂X

)2

−m3A
2



dX, (4.7)

EB =
1

2

∫ ∞

−∞

B2dX>0. (4.8)

Each wave makes a distinct contribution to the pseudoenergy. Because EB >0, insta-
bility requires that the physical wave have ‘negative energy’, i.e., the total pseudoen-
ergy must vanish for instability [11]. Therefore, a necessary condition for instability
is that m3>0 somewhere in the flow. As discussed below, the condition m3>0 leads
to a supercritical dispersion relation, i.e., the O(ǫ) portion of the flow is such that it
pushes the total flow across the marginal curve into the unstable region. Similarly,
the condition m3<0 results in both the physical and virtual waves having positive
energy and therefore stability is assured. Thus, a sufficient condition for stability is
m3<0, which states that all globally subcritical Hamiltonian shear flows are stable,
whereas instability requires a supercritical region (m3>0). In contrast, we will show
in the next section that non-Hamiltonian shear flows may in fact be unstable even
when no supercritical region exists in the flow. Lastly, note that the pseudoenergy of
the physical wave has precisely the form of that for waves on deeply stable flows (see
[13] and [14]).

In addition to the conservation of pseudomomentum and pseudoenergy, other con-
servation laws can be obtained by identifying the Casimir invariants C that satisfy

J

[

δC/δA
δC/δB

]

=0. (4.9)

One such Casimir invariant is “mass”, which is given by

M =

∫ ∞

−∞

[A+B]dX. (4.10)

Because M is conserved, the integrated sum of the coupled modes must vanish for
instability. Because (3.23) states that the integrated amplitude of A must vanish for
instability, this implies that the integrated amplitude of B must also vanish. Thus,
like the physical wave, the virtual wave must have oscillatory structure.

5. Non-Hamiltonian stability analysis
Before carrying out the stability analysis for generalized non-Hamiltonian flow,

it is instructive to first consider the case of streamwise uniform flow, for which m3

is constant and m5 =0. Upon assuming the small-amplitude limit, (3.21) and (3.22)
reduce to the linearized form of the classic Boussinesq equation, which yields the
following quartic dispersion relation:

DB(k,ω)≡ω2−k4 +m3k
2 =0. (5.1)
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As is well known, this dispersion relation may, depending on the parameter setting,
describe linear exponential instability. We consider the local stability of the back-
ground flow for two different regimes: supercritical flow (m3>0) and subcritical flow

(m3<0). Therefore, m3>0 (m3<0) occurs when the O(ǫ) portion of the flow, U
(1)
n ,

is such that it pushes the stability of the total flow across the marginal curve into the

unstable (stable) region. Because we will employ flows in which U
(1)
n is a function

of the streamwise coordinate, X, we will be able to compare the instabilities that
develop on locally subcritical and supercritical flows.

To provide context for the analytical (WKB) analysis to be presented below,
and to preview the main differences between the unstable modes that develop on
streamwise uniform and streamwise varying flows, we show in Fig. 5.1 generic plots
of frequency and growth rate as a function of zonal wavenumber. For the stream-
wise uniform (Boussinesq) case (Fig. 5.1a), which is based on Equ. (5.1), there is a
short wave cut-off and the unstable waves (Im(ω)>0) have zero frequency. In sharp
contrast, for the streamwise varying case (Fig. 5.1b), which is based on (5.6) below,
there is no short wave cut-off and the unstable modes have non-zero frequency.

0

0

0k k

ω
 (a) (b)

Fig. 5.1. Generic depiction of the variation of frequency versus wavenumber for (a) zonally
uniform flow (m5 =0), which derives from the linearized form of the classic Boussinesq equation,
and (b) streamwise varying flow (m5 6=0). Solid lines denote Re(ω) and dashed lines denote Im(ω).

5.1. WKB analysis. To obtain an analytical expression for the global mode
frequency and growth rate, we assume that the streamwise variations in the back-
ground flow are ‘slow’ such that χ= δX, where δ≪1 measures the ratio of the long
wave variation to that of the background flow. We seek solutions to (3.21) and (3.22)
of the form

[

A
B

]

=

[

a(χ)
b(χ)

]

exp[−i(ω0 +δω1 + ...)t]+c.c., (5.2)

where the frequency ωj ∈C, and cc denotes the complex conjugate of the preceding
term. Expanding the amplitude a in standard WKB form [17],

a(χ)=exp[Θ0(χ;ω0)/δ+Θ1(χ;ω1)+ ...], (5.3)

where k0(χ,ω0)=−idΘ0/dχ is the local zonal wavenumber, leads to the following
relationship between the physical and virtual wave amplitudes, a and b:

[

a
b

]

=

[

1
−c0

]

exp[Θ0(χ;ω0)/δ+Θ1(χ;ω1)+ ...], (5.4)
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where c0 =ω0/k0 ∈C is the phase speed of the waves. c0 also measures the ratio of the
virtual to physical wave amplitudes, with the phase relationship between the waves
given by

α=tan−1(
ci
cr

), (5.5)

where c0 = cr + ici. For c0 = cr, the waves are 0◦ or 180◦ out of phase. If cr>0, the
wave pair has negative pseudomomentum, and if cr<0 the wave pair has positive
pseudomomentum. Recall that wave pairs with non-zero pseudomomentum must ex-
tract pseudomemontum from the background flow in order to grow (see Equ. (3.25)).
For c0 = ci, the physical and virtual waves are 90◦ or 270◦ out of phase and thus have
zero pseudomomentum. In this case the phase relationship between the physical and
virtual wave is such that they are unable to exploit the pseudomomentum source in
(3.26).

To lowest order the waves must satisfy the following dispersion relation:

D(k0,ω0;χ)≡ω2
0 −k

4
0 +m3(χ)k2

0 − im5(χ)k0 =0. (5.6)

If the leading order frequency ω0 were known, we would need only solve (5.6) for the
wavenumber, k0, at each location in χ. This would yield the WKB phase function,
Θ0, and thus the leading order WKB approximation. Consequently, to complete the
WKB approximation we must identify the leading order (complex) frequency. As
shown below, this requires also determining (1) the location of the branch point,
χ0, and (2) the complex wavenumber k0 at the branch point. We thus have three
unknowns [χ0,ω0,k0(χ0,ω0)] whose determination requires three conditions.

As in HN06, obtaining an expression for the leading order (complex) frequency
hinges on identifying the branch points in the complex χ plane. Because constructing
WKB approximations requires validity across the entire complex plane, the search
for branch points cannot be naively limited to the real axis. Otherwise, solutions
(instabilities) will be missed. Once the complex branch point is located we may follow
the Stokes line back across the real axis to determine where two branches of the WKB
approximation change from subdominant (dominant) to dominant (subdominant).
The point where the Stokes line crosses the real axis will be used as the matching
point for the two branches of the dispersion relation (e.g., [18], [19], [20]).

For the quartic dispersion relation (5.6), where k0,χ∈C, a point χ0 that is a
square root branch point is defined by

∂D

∂k0

∣

∣

∣

∣

∣

χ=χ0

=0. (5.7)

Cube root branch points or higher are possible, but they typically turn out to be
unphysical (e.g., [17]; HN07). To close the system, we use the equation

dD

dχ
=
∂D

∂χ
+
∂D

∂k0

∂k0

∂χ
=0. (5.8)

Evaluating this equation at the branch point, subsequently using (5.7), and assuming
the wavenumber is continuous at χ0, one obtains

∂D

∂χ

∣

∣

∣

∣

∣

χ=χ0

=0. (5.9)
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From expressions (5.6), (5.7), and (5.9), we obtain the following equation whose roots
are the branch points:

Fbr(χ0)=4

(

dm5

dχ

)3

+2m3
dm5

dχ

(

dm3

dχ

)2

−m5

(

dm3

dχ

)3

=0. (5.10)

Fig 5.2 shows the branch point configurations in the complex-χ plane for the locally
supercritical (left panel) and globally subcritical (right panel) parameter settings of
Section 5.2. These branch point configurations appear as either two double poles (left
panel) or four single poles (one pair is shown in the right panel).

At the branch point the local wavenumber is

k0(χ0,ω0)= i
dm5/dχ

dm3/dχ
, (5.11)

and the leading order approximation to the global mode frequency is

ω0(χ0)
2 =

(

[

dm5/dχ

dm3/dχ

]3

+m3
dm5/dχ

dm3/dχ
−m5

)

dm5/dχ

dm3/dχ
. (5.12)

Because the wavenumber at the branch point is complex, we expect spatial
growth/decay of the solution across the branch point. Armed with the branch point
location and the global mode frequency, we may now examine the solutions to (3.16)
and (3.17).

-1 0 1
-1

0

1

⊕

⊕

1.5 2 2.5
-0.5

0

0.5

⊕

⊕
χ i

χ r χ r

Fig. 5.2. Contours of Fbr in the complex χ-plane for locally supercritical flow (left panel)
and globally subcritical flow (right panel). The ⊕ denotes the locations of the roots of Fbr. The
locations of these roots are the branch points, which denote the location where a branch of the WKB
approximation changes from subdominant to dominant.

5.2. Long Rossby wave solutions. The effects of streamwise variations
on the growth and structure of long Rossby waves is examined for two cases that
illustrate the general behaviors possible in the system. The first case is for locally
supercritical flow and the second case is for globally subcritical flow. We show below
that for locally supercritical flow the modes grow via wave-resonance, which is the
same growth mechanism that occurs in streamwise uniform flow. In contrast, for
globally subcritical flow, the modes grow via pseudomomentum extraction, the same
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growth mechanism that occurs in deeply stable streamwise varying flow.
In both the supercritical and subcritical cases we assume Gaussian variation in the

background flow, which is perhaps the simplest way to represent streamwise variations.
To simplify the coefficients in (3.20), we choose

m3 =−1+αe−χ2/9, (5.13)

m5 =4χ/9e−χ2/9, (5.14)

where the free parameter α∈R is chosen such that the flow is either globally sub-
critical (m3<0) or locally supercritical (m3>0). The relationship between the co-
efficients has been chosen to satisfy the constraint that the background flow must be
horizontally non-divergent. The WKB parameter δ will be set to 0.2.

Given the coefficients, the branch points and corresponding global mode frequen-
cies can be calculated. Once the global mode frequencies are known, the dispersion
relation (5.6) can be evaluated to determine the local wavenumber, k0, and subse-
quently the WKB phase function, Θ0.

The left panel of Fig. 5.2 shows, for α=3, a typical spatial configuration of the
complex branch points that exist for locally supercritical flow. The branch points
are off the real χ axis and in the locally unstable region (m3>0). In contrast, the
right panel of Fig. 5.2 shows, for α=1, a typical spatial configuration of the complex
branch points that exist for globally subcritical flow. Again, the branch points are off
the real χ axis, but now they are on the downstream side of the Gaussian well, i.e.,
in a streamwise shear zone where dm3/dχ is large. The mirror image of this branch
point configuration exists for χr<0, which represents another mode attached to the
streamwise shear zone on the upstream side of the Gaussian well.

Because the dispersion relation (5.6) is quadratic in ω0, there exists a pair of

χ

-4 -3 -2 -1 0 1 2 3 4
-1

0

1

-10 -5 0 5 10 15
-1

0

1

(a)

-15

(b)

Fig. 5.3. The global mode structures for the physical wave (solid line) and virtual wave (dashed
line). The vertical line denotes the projection of the branch point on the real axis. (a) Locally
supercritical flow; (b) globally subcritical flow.

complex conjugate modes at each branch point. Focusing our attention on the un-
stable supercritical modes of Fig. 5.2, both branch points are associated with equal
growth rates, Im(ω0)=0.92, and zero frequencies, Re(ω0)=0. For subcritical flow,
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the unstable modes (right panel, Fig. 5.2) have opposite frequencies: Re(ω0)=−0.39
for the point where χi>0, and Re(ω0)=0.39 for the point where χi<0. However,
both branch points have equal growth rates, Im(ω0)=0.15. In addition, there exists
two additional modes attached to the mirror image of the branch point configuration
in the right panel of Fig. 5.2, i.e., for χr<0. These modes have the opposite real
frequency arrangement about the χr-axis, but the same growth rates as the pair of
modes for χr>0. This suggests that the global mode in subcritical flow is constructed
from a quartet of growing, counter-propagating physical waves with equal growth rate.

Fig 5.3 shows the lowest order approximation for the wave structure. For locally
supercritical flow (Fig. 5.3a), the wave is strongly trapped to the Gaussian well.
Because (5.6) is quartic in wavenumber, k0, the solution obtains four branches. A
careful examination of these branches shows that only certain pairs can be matched
that satisfy the streamwise boundary conditions. Thus two solutions are created that
satisfy the boundary conditions. In the locally supercritical case, the two solutions
are identical. We also note that the WKB solutions are robust; that is, they remain
valid beyond their strict range of validity, which corresponds to δ≪1. In particu-
lar, although we have used δ=0.2 in order to formally conform to WKB scaling, the
structure of the supercritical instabilities under this WKB scaling compare favorably
to solutions obtained by HN04 with δ=1. The WKB solutions were also found to be
robust in the deeply stable case [14].

In contrast, the structure of the globally subcritical instabilities are such that the
matched pairs are anchored on either side of the Gaussian well (see Fig. 5.3b). Both
wave pairs have been plotted by assigning them unit amplitude and then summing.
The solution shown in Fig 5.3b exhibits significant penetration of Rossby wave radi-
ation into the far-field. The penetration into the far-field was found to be controlled
by the sign of m5 in (3.10), i.e., if a minus sign is arbitrarily added to the right-hand
side of (5.14), the penetration into the far-field is eliminated and the wave structure
is confined to the Gaussian well.

In Fig. 5.3, for the subcritical modes, the physical/virtual wave pair, A and B,
appear nearly anti-parallel downstream of the Gaussian variation, but almost parallel
upstream. For the supercritical mode, the physical/virtual wave pair appear orthogo-
nal. These phase relationships, which are based on visual inspection of Fig. 5.3, were
verified by explicitly calculating the pseudomomentum for the modes. The supercrit-
ical mode has P =0, which confirms that the mode on the locally supercritical flow
must be growing through wave-resonance. In contrast, the upstream (downstream)
mode in Fig. 5.3b has P =1.5 (P =−1.3), which is consistent with the pseudomo-
mentum arguments given earlier based on (3.25).

6. Conclusions

The stability of streamwise varying shear flow that is marginally stable to long
Rossby waves has been examined. Departures from marginal stability are due to
local streamwise variations in the flow. Constraints on allowable wave structures
and general stability criteria have been obtained. We have shown using a coupled
wave instability (CWI) framework that all exponentially amplifying disturbances must
have oscillatory structures. In sharp contrast, exponentially amplifying disturbances
that develop on streamwise varying shear flow that is deeply stable can have either
oscillatory or non-oscillatory structures [14].

Equations for pseudoenergy and pseudomomentum were derived and used to ob-
tain general stability properties. We proved that all globally subcritical Hamiltonian
shear flows are stable and that instability requires a region in the flow that is locally
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supercritical. On the other hand, we have used the fact that pseudomentum is not
conserved for either Hamiltonian or non-Hamiltonian streamwise varying shear flow
in order to provide conditions for classifying the growth mechanism, predicting the
regions along the flow where the waves can grow, and predicting the structural char-
acteristics of the waves.

A WKB analysis was applied to two distinct types of non-Hamiltonian background
flows: (1) locally supercritical flow, which operates like an unstable streamwise uni-
form flow that is simply bounded on either side by stable flow; and (2) globally sub-
critical flow. For locally supercritical flow, the classic integral theorem for instability,
which requires that the flow possess an inflection point somewhere in the domain, is
satisfied within the supercritical flow region (see Equ. (3.5)). We have shown that in
locally supercritical flow, an unstable disturbance consists of a physical/virtual wave
pair that is highly localized to the locally unstable region. The growth mechanism in
this locally supercritical case was shown to be wave-resonance, which is the traditional
mechanism for disturbance growth in streamwise uniform flow. Thus, an alternative
interpretation of the classic integral theorem for instability is as the condition for
wave resonance between a physical/virtual wave pair.

For globally subcritical flow, the integral theorem for instability is not satisfied
at any streamwise location in the flow. Nevertheless, we have found instabilities
on non-Hamiltonian subcritical flows. The existence of these instabilities highlights
the distinction between the local and global stability properties of streamwise vary-
ing shear flows. Moreover, the growth mechanism for modes on subcritical flow was
shown to be distinctly different from traditional wave-resonance. The growth mecha-
nism on globally subcritical flow is characterized by pseudomomentum extraction from
the streamwise variations in the flow. These subcritical instabilities consist of cou-
pled waves composed of physical/virtual wave pairs that are parallel or anti-parallel
depending on the local properties of the local pseudomomentum source.
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Appendix A. Cross-stream structure functions. An analytical solution for
the cross-stream (y) structure of the unstable waves can be obtained by assuming
that to lowest order the streamwise uniform background flow satisfies

Q(0)
ny =−κnU

(0)
n , (A.1)

where κn is a (possibly different) constant in each layer. U0
n = constant is an example

of a background flow that satisfies A.1. The solution to (3.8), with κn a constant, is

Hn = cn sin(ly)+dn cos(ly), (A.2)

where the cn and dn are constants. The cross-stream wavenumber, l, must satisfy

l2 =−

(

F +
κ1 +κ2

2

)

±

√

√

√

√F 2 +

(

κ1 +κ2

2

)2

−κ1κ2. (A.3)

Because we require l∈R, it follows that κ1κ2<0. The only way to achieve this
is for the background potential vorticity gradient in each layer to have opposite
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sign. This latter condition is simply a manifestation of the necessary condition for
instability for streamwise uniform flow in the (quasigeostrophic) two-layer model
([12]). This connection between the cross-stream wavenumber l and the satisfaction
of this stability condition could have been predicted from our starting assumption
that we would focus on flows that are marginally stable.

Appendix B. Coefficients in the amplitude Equ. (3.9).

m1 =−

2
∑

n=1

1
∫

−1

κn

(

fn−
Hn

U
(0)
n

)2

dy, (B.1)

m2 =

2
∑

n=1

1
∫

−1

H2
ndy, (B.2)

m3 =

2
∑

n=1

1
∫

−1

[

κnU
(1)
n +Q(1)

ny

] H2
n

U
(0)
n

dy, (B.3)

m4 =

2
∑

n=1

1
∫

−1

κn
H3

n

U
(0)
n

dy, (B.4)

m5 =
2
∑

n=1

1
∫

−1

[

V (1)
n (κnHn)y +Q

(1)
nXHny

] Hn

U
(0)
n

dy, (B.5)

where fn(y)and Hn(y) are related by

fnyy +F (−1)n(f1−f2)−κnfn =−
κn

U
(0)
n

Hn. (B.6)

In B.1-B.5 the background PV gradients are given by

Q(1)
ny =−U (1)

nyy −F (−1)n
(

U
(1)
1 −U

(1)
2

)

, (B.7)

Q
(1)
nX =−V (1)

nyy −F (−1)n
(

V
(1)
1 −V

(1)
2

)

. (B.8)
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