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Abstract: We calculate the value of the average of the singularities of a Gibbs mea-
sure μ invariant with respect to an expansive C2 diffeomorphism of a one-compact
manifold. This is the value related to dimension that one computes numerically.
We then define and study a function, known as the correlation dimension, which is
related to a free energy function, and we generalize the results in higher dimension
with an axiom A transformation acting on a two-compact manifold.

0. Introduction

Let μ be a measure on a compact space X. Multifractal analysis is concerned with
the description of different decay rates of the measures μ(B(x,r)) of balls of radius
r as r goes to 0. A natural quantity to be considered is

Logfμ(B(x,r)γμ(dx)
W P j ~ Logr

It can be argued [P, G] that in numerical computations based on time-series associ-
ated to a dynamical system, the functions M(r,β) are the most accessible.

We prove here the existence of the limit

V β e R , Af(jS) = limAf(r,j8), (0.1)

and we compute M(β) in terms of other dynamical quantities. Actually, it is known
in [P] that this function M referred to as the correlation dimension, plays an impor-
tant role in the numerical investigation of some models, and differs in general with
other characteristic dimensions, as a Hausdorff dimension, capacity or information
dimension. There exists also a numerical procedure in [G] and described in [P]
which is simple and runs fast.

The aim of this paper is to compute this correlation dimension in the case
when the measure μ is a Gibbs measure for an expansive smooth transformation
in dimension 1, or a two dimensional hyperbolic diffeomorphism. The method used
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to obtain the results in dimension 2 does not allow us to generalize to higher
dimension.

1. Notations and Preliminaries

Let g be a C 1 + y (resp. piecewise Cι+γ) expansive Markovian transformation of
the circle A (resp. the interval). Let J — — Logg'. The function J is negative and
y-Hόlder (resp. piecewise). This is a context met for example in [C].

We consider a ^-invariant measure μ that is the Gibbs measure associated to a
function φ : A —> 1R y-Hόlder. Let Pφ be the pressure of φ, defined by

Pφ= sup [hp + fφdp] ,
peMg(Λ)

where Mg(A) is the set of probabilities defined on A and ^-invariant.
Multifractal analysis of the measure μ consists in analyzing the singularity sets

I/Ho

Ca = c+nc~, ( l . i )

and in estimating the Hausdorff dimension of these singularity sets. We know that
on a set of full measure μ [C, SI, II], there exists a real α such that

lim L*(r) = α μ a.s., (1.2)

where L*(r) = L o g ^ ( ^ r ) ) . This means that there exists a real α such that

We know that this particular value is linked with a free energy function F which
derives from the partition functions defined on R by

Σ μ(Aγ (1.3)Σ
A€An

where An is a sequence of partitions of exponentially decreasing diameters and

F(β)= lim --LogZ n (/J)

is obtained for any real β by a variational formula [SI, II]

peMg{Λ)

This function F is in fact real analytic on IR, strictly increasing, and is either a line
or strictly concave. We also have for the value of α in (1.2),
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The function F also satisfies a variational principle and is actually the inverse
function of a more intrinsic free energy, the dynamical free energy function G
[C, SI,Π]. This function G is defined in terms of the pressure P so that we have:

Vβ e R, P[-F(β)J - β(φ - Pφ)] = 0 . (1.5)

The main result of this paper is the proof of the equality

VjSeIR, M(β) = F(β+l).

Let / be the Legendre-Fenchel transform of F. By [SI, II] we know that

/(α) = HD(Cα) (1.6)

for α G [αi ok], where αi = mϊβe^F'{β) and 0C2 — s\xpβeΈLFf(β), and / = -co
otherwise.

Let K = {Kj)j=\^ iP be a Markov partition with diameter less than the expansion
constant of g [B,C, SI, II], and consider the transition matrix A = (Λy)i^v/^/? with

Λ _ ί i i f ^ n ^ - 1 ( ^ y )Φ0

10 otherwise

and the subshift of finite type ΣA

Σ = {*e (xΛso e {ι,...,P}
κ/Vi, AXIXI+! = 1}

A

that codes the transformation g since

A

is a continuous bounded-to-one Lipschitz surjection and satisfies

V / i G N , Πoσn = gnoΠ ,

where σ is the shift on ΣA.

Consider the function φ on ΣA defined by φ = φ o Π and the associated Gibbs

measure vφ on ΣA. We have

vφ(C(n;y)) ~ exp { Σ φtfiy)] - nPφ\ , (1.7)
~ I 1=0 ~~ ~~ J

where C(n; y) is the cylinder of size n containing y: here and in all the paper, we
denote ~ to express that the ratios of both sides are uniformly bounded by constants
c and c~λ. The measure μ is the image of vφ under 77 and the cylinders C(n;y)
are transformed by Π into intervals:

I(n; y) = {xe Λ/\g\x) - g\y)\ ^ ε, 0 ^ i < n} .
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To an element
y(U)eU such that

To an element U of the dynamical partition £Pn = V^ΓQ g~J\K), we associate
) h h

l, (1.8)

or in another way

{ } U (1.9)
ί=0

and the cylinder of size n associated to U : C(n;y(U)) verifies

μ(U)~vφ[C(n;y(U)]

- exp { ΣφtfWU))] -nPφ\. (1.10)
I 1=0 J

To prove the existence of M (0.1), we follow the method of [SI, II]. We prove
that the upper and lower limits of the function M(r, β) as r goes to 0 are equal.
For convenience, we consider L(r) = —M(r,1) and we observe that for any b > 1
we have

Proposition 1.1. The sequence (L(b~n))n^\ is convergent if and only if

lim L(r) exists .

We are going first to examine a lower bound for the limits of L{r).

2. Lower Bound for lim inf L{r)

A lower estimate of the lower limit of L{r) follows from

Theorem 2.1. The lower limit of L{r) verifies

r τ( x ̂  \hp + 2fφdp-2Pφhm L(r) ^ sup — γ
r—*0 pEMg(Λ) L J ~

Theorem 2.1 will follow directly from Lemmas 2.2 and 2.3.

Lemma 2.2. The lower limit of L(r) verifies

+ 2fφdp-2Pφ~hm L(r) ^ sup -*
r-^0 pEMg(Λ) I J —

p ergodic

Proof of Lemma 2.2. We consider an ergodic and ^-invariant measure p. From the
ergodic theorem, we have on a set of p measure 1:

lim -ΣJtfiyyi^fJdp (2.1)
«—>-+oo n i=Q

and

„jim^ I g Φto'"^)] = / Φ Φ (2.2)



Mean of Singularities of Gibbs Measure 493

We are going to reduce this problem to the calculation of partition functions (1.3)
[C, SI, II]. According to (2.1), let b = exp(— f J dp + ε) for ε small enough. Indeed
we have

n) = l-LogbJμ(B(x,b-n))μ(dx)

= ~ Log, I Σ fμ(B(x,b-n))μ(dx) 1. (2.3)
n [& J

The theorem of Shannon-McMillan [D, p. 81] leads us to consider the elements U
of &n of length

Log|C/|e [JVφ-ε / J φ + ε],

since for ε small enough the greatest part of the weight of the measure p is concen-
trated on those U( > 1 — ε) for large n. Then let An be the set of elements U e ^n

such that

b~nε2n ^ \U\ S b~n .

For U G An we have for any x G U,

μ(U) ί μ(B(x,b-")) ,

therefore we get

μ(U)2 ί
u

n)^ -LogJ Σ μ{U)Λ. (2.4)
n

and (2.3) leads to

Consider now the right hand-side of (2.4). We have from the Shannon-McMillan
theorem [D, p. 81] and [L, (2.2), SI, (2.4)] a lower estimate of #An since we get:
for any ε > 0, there exists an integer N such that for any n^N, and we have

#An ^ (1 - e)exp{/i(Ap - ε)} . (2.5)

From (1.10) and (2.2) we have for U G An,

2{Jφdp-Pφ}-ε ^ ^Logμ2(U) ̂  2{fφdp - Pφ} + ε . (2.6)

The inequality (2.4) becomes for n large enough

L(b-n) > hp + 2fφdp-2Pφ-2ε
K }~ f-Jdp + ε

Since ε is arbitrary, we have then

hm L(b n) ^ -£ r

J Ύ

 Tj ^ . (2.7)
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Since the ergodic and g-invariant measure p is arbitrary, we proved:

ί sup I1**1/**"']. Π (2.8)
r^o peMg(Λ) L J -Jap j

p ergodic

We finish the proof of 2.1 with:

Lemma 2.3. The two following expressions are equal:

ϊhp + 2fφdp-2Pφ] _ \hp + 2fφdp-2Pφ

P r T J — P c T J

peMg(Λ) I J -J dp J peMg(Λ) [_ J ~ J dP
p ergodic

Proof of Lemma 2.3. Since the dynamical system expands, the map p —> hp

is upper semi-continuous [D, (16.7), p. 107]. The ergodic measures are extremal
and form a G$ in Mg(Λ) (this property comes from the specification [D, (21.9),
p. 198]). The supremum on these two sets is the same, and it is achieved since
Mg(Λ) is compact. D

Remark. This supremum is achieved by a unique ^-invariant measure. Let the
functional (a large deviation functional)

hp + 2fφdp-2Pφ

f-Jdp

and ψ a ^-invariant measure which achieves the supremum

I(ψ)= sup I{p).
peMg(Λ)

We have then for any ^-invariant measure ξ

I(φ)J-Jdφ ^ hξ + 2fφdξ-2Pφ9

or in a variational form

hξ + f(2φ - 2Pφ + I(ψ)J) dξ^O,

with equality for ξ = ψ. Since the function τ = 2φ — 2Pφ + I(ψ)J is by assumption
Holder continuous, the pressure of the function τ verifies

pτ= sup [hξ + fτdξ]=O (2.9)
peMg(Λ)

with equality only in the case where φ — μτ the Gibbs measure of τ.

3. Upper Bound for lim sup L(r)

An upper estimate of the upper limit of L(r) is given by

Theorem 3.1. The upper limit of L(r) verifies

T^τr x ̂  \ hp + 2fφdp-2Pφ

hm L(r) ^ sup -* f^y- φ-
r^° peMg(Λ) [ J -Jdp
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Comparing the result with Theorem 2.1 implies the existence of the limit
M(l)(0.1) and we have

n p + 2jφdp2Pφ] i n f np+2jφdp-2Pφ

L ]Jdp \ peM(Λ) [ fjdp

Following (1.9) we have for any U e &>n,

n mί{J} ^ Log I ί/1 S n sup{/} ,

or equivalently

d[n == (esu*{-J}Γn ^ \U\ ̂  (einf{-Jϊyn = a~n . (3.1)

Let b be a real such that a\ ^ b ̂  a^ (will be made precised in (3.15)). Then
Theorem 3.1 clearly follows from

Theorem 3.2. For any cluster point S of the sequence (L(b~n))n^\ there exists a
g-invariant measure ζ such that

hζ + 2fφdζ-2Pφ

s- T
Proof of Theorem 3.2. We have from (2.3),

L(b-n)=-Logb Σ fμ(B(x,b-n))μ(dx).
n &

The proof parallels the proof in the cases of the partition functions and the free
energy functions. We isolate the dominating terms in (2.3) for intervals of "same"
diameter and μ-measure:

Lemma 3.3. There exists a set Jk{jι) of intervals U of (gPn)n^\ with equal length
and close μ-measure which verifies

") ~-LogJ Σ Jμ(B(x,b-"))μ(dx)\.

Proof of Lemma 3.3. Set

Ei = {U G <?„/ - Log \U\ e [i; i + 1[} . (3.2)

From (3.1) the sets E, are defined only for integers / e [[α2«];[αi«] - 1] (linear
scale). There exists an integer i(n) such that for any integer i,

- Log, Σ / KB(x,b-"))μ(dx) g - Log, Σ, I KB(*,b~n))μ(dx) ,
n UEEtU n U€E,χn)U
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and therefore we have

-LogJ Σ fμ(B(x,b-n))μ(dx)\
n [ueEι(n)u J

^ L(b'n) S - Log, J (ax - a2)n Σ I μ(B(x,b~n))μ(dx) 1.
n { uE J

Hence we get:

J \ ( ^ ) (3.3)

We define also for integers k G TL the sets

Λ = {t/ € £/(Λ) / Σ φ[^(X£/))] - ^ φ e[hk+ i[ J (3.4)

for ,y(C/) € £/ (1.9). The sets Jk are defined for A: varying in a linear scale:

n-\

a3n = «(inf φ - Pφ) ^ Σ φ t ^ W ^ ) ) ] ^ W(SUP Φ - ̂ ) = a*n

ί=0

There exists an integer k(n) such that for any integer k e [[«3«]; [«4«] — 1],

" Log, Σ / μ(B(x9b~n))μ(dx) ^ - Log, Σ / μ(B(x, b~n))μ(dx),
n uJ u n ueJk(n) u

and like in (3.3) we have:

L(b~n)=-LogJ Σ ftiB(x,b-"))tidx)\+θ(^). (3.5)

All the intervals U in J^(n) have the "same" length e~1^ and their μ-measure
satisfies

μ(U) - exp{^(«)} , (3.6)

and this is the claim of Lemma 3.3. D

From (3.5) we have

) \ 9J
fμ(B(x9b-"))μ(dx)\9 (3.7)

u J
and to solve this problem from the point of view of partition functions, we are
going to involve sums with values of type μ(A)2. Let us define like (1.3)

- LogZB(2) = - Log Σ μ(Λf = -Fn(2).
n n
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We can reduce this computation to intervals A of 3Pn of the "same" length and μ
measure. The procedure is similar to the one in the proof of Lemma 3.3. Using
Definition (3.2) there exists an integer j(n) such that

-Fκ(2)=1-Log\ Σ A

We define now like in (3.4) the sets

Kp = {A e Em I g ψ[g\y{A))} - nPψ G [p, p + 1[ | . (3.8)

Then there exists an interger p{n) such that

-F.(2)=iLog( Σ KΛA+O(*W). (3.9)

Let us consider a cluster point of the sequence (—Fn(2))n^\, for example

F = lim - Fnj{2\ where S = lim L(b~nJ) .

We have then

Proposition 3.4. There exists a g-ίnvariant measure ξ which verifies

F S hξ + 2fφdξ-2Pφ.

Proof of Proposition 3.4. Let us define the measures

a ~ l Σ δy(A) and ξn = - Σ gι' θn ,
Aeκp{n) n / = 0

where jμ(̂ 4) G ^ (1.9). We have

• cί;̂ . G M(Λ), the set of probability measures defined on A and

Both sequences take their values in compact sets. We can suppose that

• ξn —> ξ G Mg(A) (observe that the weak limit is ^-invariant), (3.10)

Let us compute

^ Σ -Σ

Following (1.10) we have for any A G

Σ
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which gives

By the same

when n

method

goes to +00

lim P ( n )

l i m

we prove also

lim
n->+oo Π

= Jφdξ-

= f-J>

-Pφ.

D. Simpelaere

(3.11)

(3.12)

Moreover a standard argument (due to Misiurewicz, see [SI, (2.3), II, (2.4), D,
p. 145] shows that:

Vύhξ. (3.13)

We now claim:

F= lim -Log Σ μ(A)2 = γ + f2φdξ-2Pφ. (3.14)
n—•-(-oo fx Λf-v

Aeκp{n)

For any A e Kp{n), we have by (1.10) and (3.8),
μy ) ~~ ^̂ -P \P\jΊ) j

We obtain therefore

Σ μ(A)2~#Kmexp{2p(n)}

which leads to

-Log
n

Going to the limit and using (3.9) and (3.10) we get (3.14). Using (3.13) and
(3.14) we get Proposition 3.4. D

Now and for the following we take Logb = / —Jdξ. We have then

Remember with (3.7) that

L(b~n) - - Log, { Σ I μ(B(x,b-n))μ(dx) 1 .
n \uJ J

There are therefore two cases which depend on the values e~'(w) and b~n. But it
seems that the weights of the sums, which are maximum for the values of type
μ{A)2 with \A\ ~ e~J^ ~b~n (3.12), are also maximum for the values of type
/ ( 5 ( 6 - π ) ) ( ^ ) with \U\ ~ e~^n) ~ b~n (means "i(n) = nLogb").

** First case. e~1^ > b~n. We have then for a certain constant C,

Jμ(B(x,b-n))μ(dx) ^ C Σ β(A)2 . (3.16)
A0>
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Vx e [eJl μ(B{x,b~n)) £ μ([e,p\) +

Cut an interval U G Λ(«) in three pieces: [c,d],[d,e] and [e,f] with \d — c\ =

\f-e\= b~n < \e - d\ ~ \U\ ~ β"/(w) (see Fig. 1).
We have then:

* Vx G [c,rf], B(x,b~n) c [A,rf] U C/ (where h = a - b~n) and therefore

= / + b~n\ and

For the points of [d,e] we can compare μ(B(x,b~n)) and μ(U)9 otherwise it may
happen that the weights μ([h9d]) and μ([e,p]) are much bigger than μ(U)9 and we
want to control these subset distortions. Here is described the general situation:

From Fig. 2, we see that the interval U has two neighbours V and W\ four
cases may occur according to whether V and W belong to Λ(«) Let's study first
the simple case:

* V G Jk(n)' the intervals U and V are in Λ(«) which contains intervals of similar
lengths and μ-measures,

where c comes from (1.7) and e from (3.4) and (3.6). We have then

μ([h,d]) S μ(V) + μ(U) S (1 + ec)μ(U) 9

and therefore for any x of [c9d]9

In this case we can also compare μ(B(x,b~n)) and μ(U).

* V§:Jk{n)'. we have two possibilities:

- μ(V) ^ μ(U) and μ(B(x9b-»)) ^ 2μ(U) ,

- μ(U) ^ μ(V) and μ(B(x9b~n)) ^ 2μ(V) .

c d e f
-[-I

u
Fig. 1.

Fig. 2.

U W
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We make a similar operation for W and we get

fμ(B(x,b-n))μ(dx) S C(μ(U)2 + μ(V)2 + μ(W)2) ,

u

and this leads to (3.16).

** Second case. e~1^ ^ b~n. We use here a new partition (we shall use cylinders
of size /(«)). Let l(n) be the greatest integer k such that

VA e 9k, \A\ ̂  b~n .

Following Proposition 3.4, since S = limy .^ + o o L(b~nJΓ), there exists a ^-invariant
measure χ such that (we write « instead of wy )

HU^OO 7? )̂ L θ g 1 Σ M^)2 [ ^ *χ + 2fφ dχ - 2Pφ , (3.17)

with

1 Log! E ^ ) 2 U ^ L o g ( E

where for intervals A e Kq^n) we have

μ | ^ e-q(n) ^ ^-« ^ w ) ^ nLogb) (3.9), (3.18)

-Pφ(3.U)9

where the measure χ is defined by

1 1 /(«)-i
Σ) δy(A) and χw = — - £ <

n)AeKq{n) IK") /=0

We get therefore

-Log^ < J^ M^) 2 f ^ -^ T—j-j ~ > (3.19)

since using (3.18),

1 l(n) 1 ___, /(«) /(«) ήr(«) ^ 1

nLogb nLogb l{n) nLogb q(n) nLogb J—Jdχ'

Like in the first case and (3.16) we get

Jμ(B(x,b-n))μ(dx)^C £ μ(A)2 . (3.20)
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Comparing the expression (3.7) with the results (3.4) and (3.16), (3.19) and (3.20),
we obtain

5 * suP(/(θ;/ω)=no = hζ+2\φ_fd-
2Pφ,

and this achieves the proof of Theorem 3.2. •

4. Study of the Correlation Function M

From Sects. 2 and 3 follows the existence of the limit

and the expression

. n f

eM(Λ
n f

peMg(Λ)[ JJdp
For any positive β, the same analysis applies to the quantities M(r,β) defined in
(0.1). We get

Proposition 4.1. We have for any positive β,

Log r

= inf \h> + U+»{*dS«l+1V']=F(β+l). (4.1)
p€Mg(Λ)[ fjdp J

Recall that F was defined in [C, SI, II]. Observe also that there is nothing to prove
for β — 0, and that for β < 0 the proofs are also analogous. The minimum in (4.1)
is achieved since the functional is lower semicontinuous and Mg(Λ) is compact.
Proposition 4.1 defines the real function M(β) that we are going to analyze.

Define G as the dynamical free energy function for any pair (x,y) of ΊR2 by

G(x,y) = P[(x + 1 )(φ - Pψ) + yJ] . (4.2)

Since the function φ is Holder continuous, the function G is real analytic in both
variables [R]. Observe that

Proposition 4.2. We have for any real β,

G(β,-M(β)) = 0.

Proof of Proposition 4.2. Let β G IR and consider the Holder continuous func-
tion ξβ,

ξβ = (β+l)(φ-Pφ)-M(β)J.

Its Gibbs measure μβ is the measure for which the minimum in (4.1) is achieved
and this means that

sup [hφ + J[(β + l)(φ-Pφ)-M(β)J]dψ] = 0 .
ψeMg(Λ)

The statement of 4.2 follows. D
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As a consequence we get

Proposition 4.3. The function M is real analytic and is strictly increasing on R,
and we have for any real /?,

Proof of Proposition 4.3 (See [M, Ma, R, SI, II]). We have for any real β,

\-^ή (β, -M(β)) = Jφdμβ-Pφ<0, (4.3)

and

(^j (β9 -M(β)) = JJdμβ<0. (4.4)

The expression (4.4) is never 0 so by the implicit function theorem and (4.2) the
function M is real analytic on 1R. When differentiating (4.2) we get

hence

V/»€R, M>(β)=fφ?μβ-P«>0. D
JJdμβ

We get also

Proposition 4.4. The function M is concave. It is strictly concave unless J and φ
are homologous, i.e. there is K G Cy(Λ) such that J — φ-\-Kog — K.

Proof of Proposition 4.4. When differentiating the above formula, we get for any
real β,

M"(β) = _ I A. J (j8, -M(β)) - M'(β)— ^ (jδ, -

and finally

From [R, SI, II] we have for any real β the following equalities:

(4.5)

= Σ {JφJogkdμβ-JφdμβJJdμβ} , (4.6)

and

( β y { k ( ) 2 } (4.7)
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Graph 1.: Graph of the correlation dimension function

And we have

( 0 ) iβ> ~ ( 4 ' 8 )

which becomes an equality only when J and φ are homologous (see [SII, (2.3.1)]).
The conclusion follows. D

Here we describe in the general case the behaviours of the correlation dimension
function M and its derivative M'. We can prove that

* a = l i m ^ + o o M'{β) = li

* b = l im^-oo M'(β) = li ψ

* there exist positive reals δ\ and bi such that

lim
—>-|-OO

= O and lim [M(β) - b(β δ2] = 0 ,

where the numbers (5i and δ2 are the Hausdorfif dimensions of ^-invariant measures
px and p2 (where /ffi>(p) = inf{//D(i4)/p(>4) = 1 } ) .

5. Extension of the Results in Dimension 2

Consider a compact manifold X of dimension 2, for example the torus, on which
acts an Axiom A C2 difTeomorphism g. We associate to this dynamical system a
g-invariant measure μ, in the first case the Bowen-Margulis measure and in the
second case a Gibbs measure.
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We introduce canonical coordinates [B, R, SI, II] and a local product structure us-
ing local stable manifolds W\oc(x) (where g contracts) and local unstable manifolds
^Ίoc(x) ( w n e r e 9 expands).

Define stable Markov partitions ( ^ ) Λ = i and unstable Markov partitions
I Consider the "product" partition ( ^ n ) π = i whose elements verify

A = [U, V]

ί / , F ) G ^ x ^ , [SI, II]
Consider also the functions

Js(x) = Log Jacobian(Zλ? : Es

x -> Es

gx)

and
Ju(x) = -Log Jacobianφg : Eu

x -> Eu

gx).

Since g is C2, Dg is C1 and the functions /* and Ju are negative and Holder
continuous functions. We get a basic set A which contains the supports of the
measures of interest.

Firstly consider the measure μ of maximal entropy

hμ = h = sup hφ .

We obtain

Theorem 5.1. For any real β we have the following limit:

r^o Logr

In fact M(β) can be decomposed into Ms(β) 4- Mu(β\ where

M.(β)= i n f

eM(Λ
J Ju dp

Proof of Theorem 5.1. We have seen in [SI] that the measure μ verifies locally

μ = μsxμu, (5.1)

where the measures μs and μu are defined respectively on the stable and unstable
manifolds. For example, there exists for each interval U of gPs

n an element y(U) G
U (1.9) such that

exp ( ΣrigXyiU))]) ~ \U\ (5.2)

and
μs(U)~e-nh . (5.3)

Symmetrically, there exists for each interval F G ^ J an element y(V) G V such
that

{Σ^V(Xn)])^l^l (5.4)
i=0 J
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•H-
15

Graph 2.: Graph of the derivative of the correlation dimension function
M' : R ^ ] α ; 6 [ C l R + *

and
μ?(V)~e-nh (5.5)

Following Sects. 2 and 3 we first take p a ̂ -invariant and ergodic measure. We
consider Λs

n the set of elements U G 3Ps

n such that

Log|£/| e [fjsdp-ε;fjsdp + ε] .

Identically we consider the set Au

n of elements F G ^ J such that

Log\V\ e [JJudp - ε; JJUdp+ ε\ .

Let An = [As

n;A"] and define the real b = inf(c J) , where

c = exp (/ — Js dp + ε) and d = exp (/ — 7" φ + ε) .

We have then

*) = i Log, Jμ(B(x,b-n))μ{dx)

Σ Jμ(B(x9b-n))μ(dx)
\ A

^ -Log,

= -Log

A=[U, V]

(5.6)
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From (5.1), (5.6) becomes

-Log, £ μ(A)2~-Logb Σ μs(U)2^-Logb Σ W ) 2 (5.7)
n AeAn

 n ueAs

n

 n veAu

n

We introduce therefore the sequences U(b~n) and Lu(b~n) corresponding to μs and
μu. It is clear that

Ls{b~n) ^ L\c~n) and L5(Zrw) ^ L\d~n).

From (2.4) we have

L\b~n)^ -Logc Σ μ s(ί/)2 + -Lo g ί / Σ A H 2 - (5.8)
w n

We introduce therefore the sequences Ls(c~n) and Lu(d~n) corresponding to μs and
μw. It is clear that

L \ c ~ n ) ^ - L o g , Σ μ ° 2

n

a n d

We have then from the above formulas and (2.7)

lim L\c~n) > lim a*n =
 k

J~Jsdp

and
h — Oh — I

lim L\d~n) > lim au

n = ̂ ^ 2 ^ /ί-J'dp '
Since the measure p is arbitrary and with (2.3) we get

r τsf-n^^ \hp-2h-2Pφ] \hp-2h-2Pφlim L (c ) ^ sup \-ίLj -,—- = sup \-ΪLj -.—-
«->+oo p€Mg(Λ) I J — Js dp J peMg(Λ) I j ~ Js dp

p ergodic

and

\ho-2h-2Pωλ \ho-2h-2Pωlim Lu(d n) ^ sup
n—»+oo pξzMg(Λ)

p ergodic

Using (5.7) it becomes

r Ts ̂  \hp-2h-2Pφ] \hp-2h-2Pφ,
l rmL(r)^ sup I J _ js dp 1+ SUP I " ? ^ 7 ^ I ' ( 5 9>

We prove a sort of converse of (5.9) in the same way as Theorem 3.1, i.e.

h m Z ( r ) ^ sup \-^—n -,—-
r^° peMg{Λ) L J - ^ 5 dp
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and

We have thus obtained

lim L(r) = lim Ls(r) + lim Lu(r) ,

or equivalently
—limL(r) = M(l) = Ms(\) + MM(1) .

r—> 0

This proves the theorem for β = I. The proof is analogous for any real β. D

This function M verifies the following properties:

Proposition 5.2. The function M is real analytic on R.

Proof of Proposition 5.2. Consider the functions defined on R 2 by

and

From Proposition 4.2, we have for any real β,

G\β, -M\β)) = G"(β, -M"(β)) = 0 . (5.10)

Consider the Holder continuous functions

φ

s

β = (β+\)h- M\β) and φu

β = (β + \)h -Mu(β) ,

and their Gibbs measures μi and μ«. We have then, differentiating (5.10),

{j^j jJsdμs

β < 0 (5.11)

and

(fy") iβ'~M"m = J J U d 4 < 0 > ( 5 1 2 >
and the analycity of the functions Ms and Mu by the implicit function theorem
[R]. The functions Ms and Mu are therefore real analytic on R, and M — Ms + Mu

also. D

Proposition 5.3. The function M is strictly increasing and

- either M is linear, this is the case when Js and Ju are homologous to a constant,
i.e. =c + Kog-K (where c E t and K e Cy(Λ)\

- or the function M is strictly concave.

Proof of Proposition 5.3. Using (5.10), (5.11), (5.12) and (4.3) we get for any
real β, that (Ms)r(β) which is given by:
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is positive, and (Mu)f(β) which is given by:

is also positive. Therefore for any real β we have M\β) positive since

In the case when Js and Ju are homologous to a constant, then the measures
μso and μuo are constant when β varies in R, and by (5.13) and (5.14) the functions
(Ms)f and (Mu)' are constants as well. Therefore Ms, Mu and thus M are linear on
R. If we are in the case where the transformation g is Anosov, then the measure
μ is absolutely continuous with respect to the Lebesgue measure [B], and g is
differentiably conjugate to an automorphism of the torus [De].

In the other case, we have for any real β either

β> -MS(β)) < 0 ( 5 1 5 )

or

( 5 1 6 )

from [M Ma R SI]. We have then

M"(β) = (Ms)"(β) + (Mu)"(β) < 0 . D

We shall study the correlation dimension M associated to a Gibbs measure μ.
Like in [SII], we define the Holder continuous functions ξs (resp. ξu) satisfying
P(ξs) = 0 (= P(ξu)) in such a way that the associated family of Gibbs measures
μs (resp. μu) on the stable (resp. unstable) manifold verify: there exist constants c
and C such that

c < ——— < C . (5.17)
~ d{μs x μu) ~ v J

We decompose as in (5.1) along the stable and unstable manifolds, and following
the same steps we prove

Theorem 5.4. We have for any real β,

Logr

(β+l)J(ξs-Pφ)dp

fj'dp

. n f
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We have also

Proposition 5.5. The function M is real analytic on IR and strictly increasing
moreover

- either M is linear, it is the case when Js is homologous to cξs, i.e
Js = cξs + K o g - K, where K e O(Λ\ and Ju is homologous to c'ξu.

- or the function M is strictly concave.

Proof of Proposition 5.2. Consider the Holder continuous functions (G Cy(Λ))

φs

β = (β+\)ξs-Ms(β)Js and φu

β = (β + 1 )ξu -M\β)Ju

and the associated Gibbs measures μ | and μ\. We have then for any real β,

G\β, -Ms(β)) = G"(β, -Mu(β)) = 0 ,

where the functions Gs and Gu are defined on IR2 by

G\x9y) = P[(x + l)ξs + yJ°] (5.18)

and
Gu(x,y)=P[(x+l)ξu + yJu]. (5.19)

We have then for any real β,

> 0 (5.20)
J J"<Φ β

and symmetrically

(Mu)'(β) = -— p > 0 , (5.21)

which implies

Vβ e IR, M\β) - (Mu)\β) + (Ms)\β) > 0 .

When Js is homologous to cξs, the measures μsn are constant when β varies, and
then the function (Ms)f is constant (the same property for Ju and c'ξu). Otherwise
following (4.4) and [SΠ] we prove that Ms or Mu is strictly concave, and a fortiori
M(=MS+MU). D
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