Mean of the Singularities of a Gibbs Measure

D. Simpelaere
Laboratoire de Probabilités, Université Paris VI, Tour 56, $3^{\text {ème }}$ étage, 4 Place Jussieu, F-75252 Paris Cedex 05, France

Received: 4 November 1993/Accepted: 1 December 1995

Abstract

We calculate the value of the average of the singularities of a Gibbs measure μ invariant with respect to an expansive C^{2} diffeomorphism of a one-compact manifold. This is the value related to dimension that one computes numerically. We then define and study a function, known as the correlation dimension, which is related to a free energy function, and we generalize the results in higher dimension with an axiom A transformation acting on a two-compact manifold.

0. Introduction

Let μ be a measure on a compact space X. Multifractal analysis is concerned with the description of different decay rates of the measures $\mu(B(x, r))$ of balls of radius r as r goes to 0 . A natural quantity to be considered is

$$
M(r, \beta)=\frac{\log \int \mu(B(x, r))^{\beta} \mu(d x)}{\log r} .
$$

It can be argued $[\mathrm{P}, \mathrm{G}]$ that in numerical computations based on time-series associated to a dynamical system, the functions $M(r, \beta)$ are the most accessible.

We prove here the existence of the limit

$$
\begin{equation*}
\forall \beta \in \mathbb{R}, \quad M(\beta)=\lim _{r \rightarrow 0} M(r, \beta) \tag{0.1}
\end{equation*}
$$

and we compute $M(\beta)$ in terms of other dynamical quantities. Actually, it is known in $[\mathrm{P}]$ that this function M referred to as the correlation dimension, plays an important role in the numerical investigation of some models, and differs in general with other characteristic dimensions, as a Hausdorff dimension, capacity or information dimension. There exists also a numerical procedure in [G] and described in [P] which is simple and runs fast.

The aim of this paper is to compute this correlation dimension in the case when the measure μ is a Gibbs measure for an expansive smooth transformation in dimension 1, or a two dimensional hyperbolic diffeomorphism. The method used
to obtain the results in dimension 2 does not allow us to generalize to higher dimension.

1. Notations and Preliminaries

Let g be a $C^{1+\gamma}$ (resp. piecewise $C^{1+\gamma}$) expansive Markovian transformation of the circle Λ (resp. the interval). Let $J=-\log g^{\prime}$. The function J is negative and γ-Hölder (resp. piecewise). This is a context met for example in [C].

We consider a g-invariant measure μ that is the Gibbs measure associated to a function $\varphi: \Lambda \rightarrow \mathbb{R} \gamma$-Hölder. Let P_{φ} be the pressure of φ, defined by

$$
P_{\varphi}=\sup _{\rho \in M_{g}(\Lambda)}\left[h_{\rho}+\int \varphi d \rho\right]
$$

where $M_{g}(\Lambda)$ is the set of probabilities defined on Λ and g-invariant.
Multifractal analysis of the measure μ consists in analyzing the singularity sets

$$
\begin{align*}
C_{\alpha}^{+} & =\left\{x / \varlimsup_{\substack{x \in \stackrel{\circ}{i} \\
x|I| \rightarrow 0}} \frac{\log \mu(I)}{\log |I|}=\alpha\right\}, \quad C_{\alpha}^{-}=\left\{x / \underset{\substack{x \in I^{\circ} \\
|I| \rightarrow 0}}{\lim } \frac{\log \mu(I)}{\log |I|}=\alpha\right\} \\
C_{\alpha} & =C_{\alpha}^{+} \cap C_{\alpha}^{-} \tag{1.1}
\end{align*}
$$

and in estimating the Hausdorff dimension of these singularity sets. We know that on a set of full measure $\mu[\mathrm{C}, \mathrm{SI}, \mathrm{II}]$, there exists a real α such that

$$
\begin{equation*}
\lim _{r \rightarrow 0} L^{*}(r)=\alpha \quad \mu \text { a.s. } \tag{1.2}
\end{equation*}
$$

where $L^{*}(r)=\frac{\log \mu(B(x, r))}{\log r}$. This means that there exists a real α such that

$$
\mu\left(C_{\alpha}^{+} \cap C_{\alpha}^{-}\right)=1
$$

We know that this particular value is linked with a free energy function F which derives from the partition functions defined on \mathbb{R} by

$$
\begin{equation*}
Z_{n}(\beta)=\sum_{A \in A_{n}} \mu(A)^{\beta}, \tag{1.3}
\end{equation*}
$$

where A_{n} is a sequence of partitions of exponentially decreasing diameters and

$$
F(\beta)=\lim _{n \rightarrow+\infty}-\frac{1}{n} \log Z_{n}(\beta)
$$

is obtained for any real β by a variational formula [SI, II]

$$
\begin{equation*}
F(\beta)=\inf _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+\beta \int \varphi d \rho-\beta P_{\varphi}}{\int J d \rho}\right] . \tag{1.4}
\end{equation*}
$$

This function F is in fact real analytic on \mathbb{R}, strictly increasing, and is either a line or strictly concave. We also have for the value of α in (1.2),

$$
\alpha=F^{\prime}(1) .
$$

The function F also satisfies a variational principle and is actually the inverse function of a more intrinsic free energy, the dynamical free energy function G [C, SI, II]. This function G is defined in terms of the pressure P so that we have:

$$
\begin{equation*}
\forall \beta \in \mathbb{R}, \quad P\left[-F(\beta) J-\beta\left(\varphi-P_{\varphi}\right)\right]=0 \tag{1.5}
\end{equation*}
$$

The main result of this paper is the proof of the equality

$$
\forall \beta \in \mathbb{R}, \quad M(\beta)=F(\beta+1)
$$

Let f be the Legendre-Fenchel transform of F. By [SI, II] we know that

$$
\begin{equation*}
f(\alpha)=\operatorname{HD}\left(C_{\alpha}\right) \tag{1.6}
\end{equation*}
$$

for $\alpha \in\left[\alpha_{1} ; \alpha_{2}\right]$, where $\alpha_{1}=\inf _{\beta \in \mathbb{R}} F^{\prime}(\beta)$ and $\alpha_{2}=\sup _{\beta \in \mathbb{R}} F^{\prime}(\beta)$, and $f \equiv-\infty$ otherwise.

Let $K=\left(K_{j}\right)_{j=1,, p}$ be a Markov partition with diameter less than the expansion constant of $g[\mathrm{~B}, \mathrm{C}, \mathrm{SI}, \mathrm{II}]$, and consider the transition matrix $A=\left(A_{i j}\right)_{1 \leqq i, j \leqq p}$ with

$$
A_{i j}= \begin{cases}1 & \text { if } \stackrel{\circ}{K}_{i} \cap g^{-1}\left(\stackrel{\circ}{K}_{j}\right) \neq \emptyset \\ 0 & \text { otherwise }\end{cases}
$$

and the subshift of finite type \sum_{A}

$$
\sum_{A}=\left\{\underline{x} \in\left(x_{n}\right)_{n \geqq 0} \in\{1, \ldots, p\}^{\mathbb{N}} / \forall i, A_{x_{l} x_{l+1}}=1\right\}
$$

that codes the transformation g since

$$
\begin{aligned}
& \Pi: \sum_{A} \rightarrow \Lambda \\
& \quad \underline{x} \rightarrow \bigcap_{j \geqq 0} g^{-j}\left(K_{j}\right)
\end{aligned}
$$

is a continuous bounded-to-one Lipschitz surjection and satisfies

$$
\forall n \in \mathbb{N}, \quad \Pi \circ \sigma^{n}=g^{n} \circ \Pi
$$

where σ is the shift on \sum_{A}.
Consider the function $\underline{\varphi}$ on \sum_{A} defined by $\underline{\varphi}=\varphi \circ \Pi$ and the associated Gibbs measure v_{φ} on \sum_{A}. We have

$$
\begin{equation*}
v_{\varphi}(C(n ; \underline{y})) \simeq \exp \left\{\sum_{i=0}^{n-1} \underline{\varphi}\left[\sigma^{i}(\underline{y})\right]-n P_{\varphi}\right\} \tag{1.7}
\end{equation*}
$$

where $C(n ; y)$ is the cylinder of size n containing y : here and in all the paper, we denote \simeq to express that the ratios of both sides are uniformly bounded by constants c and c^{-1}. The measure μ is the image of v_{φ} under Π and the cylinders $C(n ; y)$ are transformed by Π into intervals:

$$
I(n ; y)=\left\{x \in \Lambda /\left|g^{i}(x)-g^{i}(y)\right| \leqq \varepsilon, 0 \leqq i<n\right\}
$$

To an element U of the dynamical partition $\mathscr{P}_{n}=\bigvee_{i=0}^{n-1} g^{-j}(K)$, we associate $y(U) \in U$ such that

$$
\begin{equation*}
\left|g^{n}(U)\right|=\left|\left(g^{n}\right)^{\prime}[y(U)]\right||U| \simeq 1 \tag{1.8}
\end{equation*}
$$

or in another way

$$
\begin{equation*}
\exp \left\{\sum_{i=0}^{n-1} J\left[g^{i}(y(U))\right]\right\} \simeq|U| \tag{1.9}
\end{equation*}
$$

and the cylinder of size n associated to $U: C(n ; y(U))$ verifies

$$
\begin{align*}
\mu(U) & \simeq v_{\varphi}[C(n ; y(U)] \\
& \simeq \exp \left\{\sum_{i=0}^{n-1} \varphi\left[g^{i}(y(U))\right]-n P_{\varphi}\right\} . \tag{1.10}
\end{align*}
$$

To prove the existence of $M(0.1)$, we follow the method of [SI, II]. We prove that the upper and lower limits of the function $M(r, \beta)$ as r goes to 0 are equal. For convenience, we consider $L(r)=-M(r, 1)$ and we observe that for any $b>1$ we have

Proposition 1.1. The sequence $\left(L\left(b^{-n}\right)\right)_{n \geqq 1}$ is convergent if and only if

$$
\lim _{r \rightarrow 0} L(r) \text { exists }
$$

We are going first to examine a lower bound for the limits of $L(r)$.

2. Lower Bound for $\lim \inf \boldsymbol{L}(r)$

A lower estimate of the lower limit of $L(r)$ follows from
Theorem 2.1. The lower limit of $L(r)$ verifies

$$
\varliminf_{r \rightarrow 0} L(r) \geqq \sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int-J d \rho}\right]
$$

Theorem 2.1 will follow directly from Lemmas 2.2 and 2.3.
Lemma 2.2. The lower limit of $L(r)$ verifies

$$
\varliminf_{r \rightarrow 0} L(r) \geqq \sup _{\substack{\rho \in M_{g}(\Lambda) \\ \rho \text { ergodic }}}\left[\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int-J d \rho}\right]
$$

Proof of Lemma 2.2. We consider an ergodic and g-invariant measure ρ. From the ergodic theorem, we have on a set of ρ measure 1:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=0}^{n-1} J\left[g^{i}(y)\right]=\int J d \rho \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{n} \sum_{i=0}^{n-1} \varphi\left[g^{i}(y)\right]=\int \varphi d \rho \tag{2.2}
\end{equation*}
$$

We are going to reduce this problem to the calculation of partition functions (1.3) [C, SI, II]. According to (2.1), let $b=\exp \left(-\int J d \rho+\varepsilon\right)$ for ε small enough. Indeed we have

$$
\begin{align*}
L\left(b^{-n}\right) & =\frac{1}{n} \log _{b} \int \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x) \\
& =\frac{1}{n} \log _{b}\left\{\sum_{U \in \mathscr{P}_{n}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)\right\} . \tag{2.3}
\end{align*}
$$

The theorem of Shannon-McMillan [D, p. 81] leads us to consider the elements U of \mathscr{P}_{n} of length

$$
\log |U| \in\left[\int J d \rho-\varepsilon ; \int J d \rho+\varepsilon\right]
$$

since for ε small enough the greatest part of the weight of the measure ρ is concentrated on those $U(>1-\varepsilon)$ for large n. Then let A_{n} be the set of elements $U \in \mathscr{P}_{n}$ such that

$$
b^{-n} \varepsilon^{2 n} \leqq|U| \leqq b^{-n}
$$

For $U \in A_{n}$ we have for any $x \in U$,

$$
\mu(U) \leqq \mu\left(B\left(x, b^{-n}\right)\right)
$$

therefore we get

$$
\mu(U)^{2} \leqq \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)
$$

and (2.3) leads to

$$
\begin{equation*}
L\left(b^{-n}\right) \geqq \frac{1}{n} \log _{b}\left\{\sum_{U \in A_{n}} \mu(U)^{2}\right\} \tag{2.4}
\end{equation*}
$$

Consider now the right hand-side of (2.4). We have from the Shannon-McMillan theorem [$\mathrm{D}, \mathrm{p} .81$] and [$\mathrm{L},(2.2), \mathrm{SI},(2.4)]$ a lower estimate of $\# A_{n}$ since we get: for any $\varepsilon>0$, there exists an integer N such that for any $n \geqq N$, and we have

$$
\begin{equation*}
\# A_{n} \geqq(1-\varepsilon) \exp \left\{n\left(h_{\rho}-\varepsilon\right)\right\} \tag{2.5}
\end{equation*}
$$

From (1.10) and (2.2) we have for $U \in A_{n}$,

$$
\begin{equation*}
2\left\{\int \varphi d \rho-P_{\varphi}\right\}-\varepsilon \leqq \frac{1}{n} \log \mu^{2}(U) \leqq 2\left\{\int \varphi d \rho-P_{\varphi}\right\}+\varepsilon \tag{2.6}
\end{equation*}
$$

The inequality (2.4) becomes for n large enough

$$
L\left(b^{-n}\right) \geqq \frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}-2 \varepsilon}{\int-J d \rho+\varepsilon}
$$

Since ε is arbitrary, we have then

$$
\begin{equation*}
\underline{\lim }_{n \rightarrow+\infty} L\left(b^{-n}\right) \geqq \frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int-J d \rho} \tag{2.7}
\end{equation*}
$$

Since the ergodic and g-invariant measure ρ is arbitrary, we proved:

$$
\begin{equation*}
\varliminf_{r \rightarrow 0} L(r) \geqq \sup _{\substack{\rho \in M_{g}(\lambda) \\ \rho \text { ergodic }}}\left[\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int-J d \rho}\right] \tag{2.8}
\end{equation*}
$$

We finish the proof of 2.1 with:
Lemma 2.3. The two following expressions are equal:

$$
\sup _{\substack{\rho \in M_{g}(\Lambda) \\ \rho \operatorname{ergodic}}}\left[\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int-J d \rho}\right]=\sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int-J d \rho}\right] .
$$

Proof of Lemma 2.3. Since the dynamical system expands, the map $\rho \rightarrow h_{\rho}$ is upper semi-continuous [D, (16.7), p. 107]. The ergodic measures are extremal and form a G_{δ} in $M_{g}(\Lambda)$ (this property comes from the specification [D, (21.9), p. 198]). The supremum on these two sets is the same, and it is achieved since $M_{g}(\Lambda)$ is compact.
Remark. This supremum is achieved by a unique g-invariant measure. Let the functional (a large deviation functional)

$$
I(\rho)=\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int-J d \rho}
$$

and ψ a g-invariant measure which achieves the supremum

$$
I(\psi)=\sup _{\rho \in M_{g}(\Lambda)} I(\rho)
$$

We have then for any g-invariant measure ξ

$$
I(\psi) \int-J d \psi \geqq h_{\xi}+2 \int \varphi d \xi-2 P_{\varphi}
$$

or in a variational form

$$
h_{\xi}+\int\left(2 \varphi-2 P_{\varphi}+I(\psi) J\right) d \xi \leqq 0
$$

with equality for $\xi=\psi$. Since the function $\tau=2 \varphi-2 P_{\varphi}+I(\psi) J$ is by assumption Hölder continuous, the pressure of the function τ verifies

$$
\begin{equation*}
P_{\tau}=\sup _{\rho \in M_{g}(\Lambda)}\left[h_{\xi}+\int \tau d \xi\right]=0 \tag{2.9}
\end{equation*}
$$

with equality only in the case where $\psi=\mu_{\tau}$ the Gibbs measure of τ.

3. Upper Bound for $\lim \sup L(r)$

An upper estimate of the upper limit of $L(r)$ is given by
Theorem 3.1. The upper limit of $L(r)$ verifies

$$
\varlimsup_{r \rightarrow 0} L(r) \leqq \sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int-J d \rho}\right]
$$

Comparing the result with Theorem 2.1 implies the existence of the limit $M(1)(0.1)$ and we have

$$
M(1)=-\sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int-J d \rho}\right]=\inf _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int J d \rho}\right] .
$$

Following (1.9) we have for any $U \in \mathscr{P}_{n}$,

$$
n \inf \{J\} \leqq \log |U| \leqq n \sup \{J\}
$$

or equivalently

$$
\begin{equation*}
a_{1}^{-n}=\left(e^{\sup \{-J\}}\right)^{-n} \leqq|U| \leqq\left(e^{\inf \{-J\}}\right)^{-n}=a_{2}^{-n} \tag{3.1}
\end{equation*}
$$

Let b be a real such that $a_{1} \leqq b \leqq a_{2}$ (will be made precised in (3.15)). Then Theorem 3.1 clearly follows from

Theorem 3.2. For any cluster point S of the sequence $\left(L\left(b^{-n}\right)\right)_{n \geqq 1}$ there exists a g-invariant measure ζ such that

$$
S \leqq \frac{h_{\zeta}+2 \int \varphi d \zeta-2 P_{\varphi}}{\int-J d \zeta}
$$

Proof of Theorem 3.2. We have from (2.3),

$$
L\left(b^{-n}\right)=\frac{1}{n} \log _{b} \sum_{U \in \mathscr{P}_{n}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)
$$

The proof parallels the proof in the cases of the partition functions and the free energy functions. We isolate the dominating terms in (2.3) for intervals of "same" diameter and μ-measure:
Lemma 3.3. There exists a set $J_{k(n)}$ of intervals U of $\left(\mathscr{P}_{n}\right)_{n \geqq 1}$ with equal length and close μ-measure which verifies

$$
L\left(b^{-n}\right) \sim \frac{1}{n} \log _{b}\left\{\sum_{U \in J_{k(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)\right\}
$$

Proof of Lemma 3.3. Set

$$
\begin{equation*}
E_{i}=\left\{U \in \mathscr{P}_{n} /-\log |U| \in[i ; i+1[\}\right. \tag{3.2}
\end{equation*}
$$

From (3.1) the sets E_{i} are defined only for integers $i \in\left[\left[a_{2} n\right] ;\left[a_{1} n\right]-1\right]$ (linear scale). There exists an integer $i(n)$ such that for any integer i,

$$
\frac{1}{n} \log _{b} \sum_{U \in E_{i}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x) \leqq \frac{1}{n} \log _{b} \sum_{U \in E_{i(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)
$$

and therefore we have

$$
\begin{aligned}
& \frac{1}{n} \log _{b}\left\{\sum_{U \in E_{l(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)\right\} \\
& \quad \leqq L\left(b^{-n}\right) \leqq \frac{1}{n} \log _{b}\left\{\left(a_{1}-a_{2}\right) n \sum_{U \in E_{i(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)\right\} .
\end{aligned}
$$

Hence we get:

$$
\begin{equation*}
L\left(b^{-n}\right)=\frac{1}{n} \log _{b}\left\{\sum_{U \in E_{i(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)\right\}+O\left(\frac{\log n}{n}\right) . \tag{3.3}
\end{equation*}
$$

We define also for integers $k \in \mathbb{Z}$ the sets

$$
\begin{equation*}
J_{k}=\left\{U \in E_{i(n)} / \sum_{i=0}^{n-1} \varphi\left[g^{i}(y(U))\right]-n P_{\varphi} \in[k, k+1[\}\right. \tag{3.4}
\end{equation*}
$$

for $y(U) \in U$ (1.9). The sets J_{k} are defined for k varying in a linear scale:

$$
a_{3} n=n\left(\inf \varphi-P_{\varphi}\right) \leqq \sum_{i=0}^{n-1} \varphi\left[g^{i}(y(U))\right] \leqq n\left(\sup \varphi-P_{\varphi}\right)=a_{4} n
$$

There exists an integer $k(n)$ such that for any integer $k \in\left[\left[a_{3} n\right] ;\left[a_{4} n\right]-1\right]$,

$$
\frac{1}{n} \log _{b} \sum_{U \in J_{k}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x) \leqq \frac{1}{n} \log _{b} \sum_{U \in J_{k(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x),
$$

and like in (3.3) we have:

$$
\begin{equation*}
L\left(b^{-n}\right)=\frac{1}{n} \log _{b}\left\{\sum_{U \in J_{k(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)\right\}+O\left(\frac{\log n}{n}\right) \tag{3.5}
\end{equation*}
$$

All the intervals U in $J_{k(n)}$ have the "same" length $e^{-i(n)}$ and their μ-measure satisfies

$$
\begin{equation*}
\mu(U) \simeq \exp \{k(n)\} \tag{3.6}
\end{equation*}
$$

and this is the claim of Lemma 3.3.
From (3.5) we have

$$
\begin{equation*}
L\left(b^{-n}\right) \sim \frac{1}{n} \log _{b}\left\{\sum_{U \in J_{k(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)\right\} \tag{3.7}
\end{equation*}
$$

and to solve this problem from the point of view of partition functions, we are going to involve sums with values of type $\mu(A)^{2}$. Let us define like (1.3)

$$
\frac{1}{n} \log Z_{n}(2)=\frac{1}{n} \log \sum_{A \in \mathscr{P}_{n}} \mu(A)^{2}=-F_{n}(2)
$$

We can reduce this computation to intervals A of \mathscr{P}_{n} of the "same" length and μ measure. The procedure is similar to the one in the proof of Lemma 3.3. Using Definition (3.2) there exists an integer $j(n)$ such that

$$
-F_{n}(2)=\frac{1}{n} \log \left\{\sum_{A \in E_{j(n)}} \mu(A)^{2}\right\}+O\left(\frac{\log n}{n}\right)
$$

We define now like in (3.4) the sets

$$
\begin{equation*}
K_{p}=\left\{A \in E_{j(n)} / \sum_{i=0}^{n-1} \varphi\left[g^{i}(y(A))\right]-n P_{\varphi} \in[p, p+1[\} .\right. \tag{3.8}
\end{equation*}
$$

Then there exists an interger $p(n)$ such that

$$
\begin{equation*}
-F_{n}(2)=\frac{1}{n} \log \left\{\sum_{A \in K_{p(n)}} \mu(A)^{2}\right\}+O\left(\frac{\log n}{n}\right) \tag{3.9}
\end{equation*}
$$

Let us consider a cluster point of the sequence $\left(-F_{n}(2)\right)_{n \geqq 1}$, for example

$$
F=\lim _{j \rightarrow+\infty}-F_{n_{j}}(2), \quad \text { where } S=\lim _{j \rightarrow+\infty} L\left(b^{-n_{j}}\right)
$$

We have then
Proposition 3.4. There exists a g-invariant measure ξ which verifies

$$
F \leqq h_{\xi}+2 \int \varphi d \xi-2 P_{\varphi}
$$

Proof of Proposition 3.4. Let us define the measures

$$
\theta_{n}=\frac{1}{\# K_{p(n)}} \sum_{A \in K_{p(n)}} \delta_{y(A)} \quad \text { and } \quad \xi_{n}=\frac{1}{n} \sum_{i=0}^{n-1} g^{i} \theta_{n}
$$

where $y(A) \in A$ (1.9). We have

- $\xi_{n_{j}} \in M(\Lambda)$, the set of probability measures defined on Λ and
- $\frac{1}{n_{j}} \log \# K_{p\left(n_{j}\right)} \in\left[0, a_{1}\right]$ (3.1).

Both sequences take their values in compact sets. We can suppose that

- $\xi_{n} \rightarrow \xi \in M_{g}(\Lambda)$ (observe that the weak limit is g-invariant),
- $\frac{1}{n} \log \# K_{p(n)} \rightarrow \gamma \in\left[0, a_{1}\right]$.

Let us compute

$$
\int \varphi d \xi_{n}=\frac{1}{\# K_{p(n)}} \sum_{A \in K_{p(n)}} \frac{1}{n} \sum_{i=0}^{n-1} \varphi\left[g^{i}(y(A))\right]
$$

Following (1.10) we have for any $A \in K_{p(n),}$,

$$
\frac{1}{n} \sum_{i=0}^{n-1} \varphi\left[g^{i}(y(A))\right]-n P_{\varphi}=\frac{p(n)}{n}+O\left(\frac{1}{n}\right)
$$

which gives when n goes to $+\infty$

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{p(n)}{n}=\int \varphi d \xi-P_{\varphi} \tag{3.11}
\end{equation*}
$$

By the same method we prove also

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{j(n)}{n}=\int-J d \xi \tag{3.12}
\end{equation*}
$$

Moreover a standard argument (due to Misiurewicz, see [SI, (2.3), II, (2.4), D, p. 145] shows that:

$$
\begin{equation*}
\gamma \leqq h_{\xi} \tag{3.13}
\end{equation*}
$$

We now claim:

$$
\begin{equation*}
F=\lim _{n \rightarrow+\infty} \frac{1}{n} \log \sum_{A \in K_{p(n)}} \mu(A)^{2}=\gamma+\int 2 \varphi d \xi-2 P_{\varphi} \tag{3.14}
\end{equation*}
$$

For any $A \in K_{p(n)}$, we have by (1.10) and (3.8),

$$
\mu(A) \simeq \exp \{p(n)\}
$$

We obtain therefore

$$
\sum_{A \in K_{p(n)}} \mu(A)^{2} \simeq \# K_{p(n)} \exp \{2 p(n)\}
$$

which leads to

$$
\frac{1}{n} \log \sum_{A \in K_{p(n)}} \mu(A)^{2} \sim \frac{1}{n} \log _{b} \# K_{p(n)}+2 \frac{p(n)}{n}
$$

Going to the limit and using (3.9) and (3.10) we get (3.14). Using (3.13) and (3.14) we get Proposition 3.4.

Now and for the following we take $\log b=\int-J d \xi$. We have then

$$
\begin{equation*}
\frac{F}{\log b}=\lim _{n \rightarrow+\infty} \frac{1}{n} \log _{b} \sum_{A \in K_{p(n)}} \mu(A)^{2} \leqq \frac{h_{\xi}+2 \int \varphi d \xi-2 P_{\varphi}}{\int-J d \xi} \tag{3.15}
\end{equation*}
$$

Remember with (3.7) that

$$
L\left(b^{-n}\right) \sim \frac{1}{n} \log _{b}\left\{\sum_{U \in J_{k(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)\right\}
$$

There are therefore two cases which depend on the values $e^{-i(n)}$ and b^{-n}. But it seems that the weights of the sums, which are maximum for the values of type $\mu(A)^{2}$ with $|A| \simeq e^{-j(n)} \simeq b^{-n}$ (3.12), are also maximum for the values of type $\int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x)$ with $|U| \simeq e^{-i(n)} \simeq b^{-n}$ (means " $i(n)=n \log b$ ").
** First case. $e^{-i(n)}>b^{-n}$. We have then for a certain constant C,

$$
\begin{equation*}
\sum_{U \in J_{k(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x) \leqq C \sum_{A \in \mathscr{P}_{n}} \mu(A)^{2} \tag{3.16}
\end{equation*}
$$

Cut an interval $U \in J_{k(n)}$ in three pieces: $[c, d],[d, e]$ and $[e, f]$ with $|d-c|=$ $|f-e|=b^{-n} \ll|e-d| \simeq|U| \simeq e^{-i(n)}$ (see Fig. 1).

We have then:

* $\forall x \in[c, d], B\left(x, b^{-n}\right) \subset[h, d] \cup U$ (where $h=a-b^{-n}$) and therefore

$$
\mu\left(B\left(x, b^{-n}\right)\right) \leqq \mu([h, d])+\mu(U)
$$

* $\forall x \in[e, f], \mu\left(B\left(x, b^{-n}\right)\right) \leqq \mu([e, p])+\mu(U)$ (where $\left.p=f+b^{-n}\right)$, and
* $\forall x \in[d, e], \mu\left(B\left(x, b^{-n}\right)\right) \leqq \mu(U)$.

For the points of [d,e] we can compare $\mu\left(B\left(x, b^{-n}\right)\right)$ and $\mu(U)$, otherwise it may happen that the weights $\mu([h, d])$ and $\mu([e, p])$ are much bigger than $\mu(U)$, and we want to control these subset distortions. Here is described the general situation:

From Fig. 2, we see that the interval U has two neighbours V and W; four cases may occur according to whether V and W belong to $J_{k(n)}$. Let's study first the simple case:

* $V \in J_{k(n)}$: the intervals U and V are in $J_{k(n)}$ which contains intervals of similar lengths and μ-measures,

$$
\mu(V) \leqq c e \mu(U)
$$

where c comes from (1.7) and e from (3.4) and (3.6). We have then

$$
\mu([h, d]) \leqq \mu(V)+\mu(U) \leqq(1+e c) \mu(U)
$$

and therefore for any x of $[c, d]$,

$$
\mu\left(B\left(x, b^{-n}\right)\right) \leqq(2+e c) \mu(U)
$$

In this case we can also compare $\mu\left(B\left(x, b^{-n}\right)\right)$ and $\mu(U)$.

* $V \notin J_{k(n)}$: we have two possibilities:
$-\mu(V) \leqq \mu(U) \quad$ and $\quad \mu\left(B\left(x, b^{-n}\right)\right) \leqq 2 \mu(U)$,
$-\mu(U) \leqq \mu(V) \quad$ and $\quad \mu\left(B\left(x, b^{-n}\right)\right) \leqq 2 \mu(V)$.

Fig. 1.

Fig. 2.

We make a similar operation for W and we get

$$
\int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x) \leqq C^{\prime}\left(\mu(U)^{2}+\mu(V)^{2}+\mu(W)^{2}\right)
$$

and this leads to (3.16).
** Second case. $e^{-i(n)} \leqq b^{-n}$. We use here a new partition (we shall use cylinders of size $l(n))$. Let $l(n)$ be the greatest integer k such that

$$
\forall A \in \mathscr{P}_{k}, \quad|A| \geqq b^{-n}
$$

Following Proposition 3.4, since $S=\lim _{j \rightarrow+\infty} L\left(b^{-n_{j}}\right)$, there exists a g-invariant measure χ such that (we write n instead of n_{j})

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{1}{l(n)} \log \left\{\sum_{A \in \mathscr{P}_{l(n)}} \mu(A)^{2}\right\} \leqq h_{\chi}+2 \int \varphi d \chi-2 P_{\varphi} \tag{3.17}
\end{equation*}
$$

with

$$
\frac{1}{l(n)} \log \left\{\sum_{A \in \mathscr{P}_{l(n)}} \mu(A)^{2}\right\} \sim \frac{1}{l(n)} \log \left\{\sum_{A \in K_{q(n)}} \mu(A)^{2}\right\}
$$

where for intervals $A \in K_{q(n)}$ we have

$$
\begin{align*}
& |A| \simeq e^{-q(n)} \geqq b^{-n}(q(n) \leqq n \log b) \tag{3.18}\\
& \frac{q(n)}{l(n)} \sim \int-J d \chi \\
& \left.\frac{1}{l(n)} \log \mu(A) \sim \int \varphi d \chi\right)
\end{align*}
$$

where the measure χ is defined by

$$
\rho_{n}=\frac{1}{\# K_{q(n)}} \sum_{A \in K_{q(n)}} \delta_{y(A)} \quad \text { and } \quad \chi_{n}=\frac{1}{l(n)} \sum_{i=0}^{l(n)-1} g^{i} \rho_{n} \rightarrow \chi \in M_{g}(\Lambda) .
$$

We get therefore

$$
\begin{equation*}
\frac{1}{n} \log _{b}\left\{\sum_{A \in \mathscr{P}_{l(n)}} \mu(A)^{2}\right\} \leqq \frac{h_{\chi}+2 \int \varphi d \chi-2 P_{\varphi}}{\int-J d \chi} \tag{3.19}
\end{equation*}
$$

since using (3.18),

$$
\frac{1}{n \log b}=\frac{l(n)}{n \log b} \frac{1}{l(n)} \quad \text { and } \quad \frac{l(n)}{n \log b}=\frac{l(n)}{q(n)} \frac{q(n)}{n \log b} \leqq \frac{1}{\int-J d \chi}
$$

Like in the first case and (3.16) we get

$$
\begin{equation*}
\sum_{U \in J_{k(n)}} \int_{U} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x) \leqq C \sum_{A \in \mathscr{P}_{l(n)}} \mu(A)^{2} \tag{3.20}
\end{equation*}
$$

Comparing the expression (3.7) with the results (3.4) and (3.16), (3.19) and (3.20), we obtain

$$
S \leqq \sup (I(\xi) ; I(\chi))=I(\zeta)=\frac{h_{\zeta}+2 \int \varphi d \zeta-2 P_{\varphi}}{\int-J d \zeta}
$$

and this achieves the proof of Theorem 3.2.

4. Study of the Correlation Function M

From Sects. 2 and 3 follows the existence of the limit

$$
M(1)=\lim _{r \rightarrow 0} M(r, 1)
$$

and the expression

$$
M(1)=\inf _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+2 \int \varphi d \rho-2 P_{\varphi}}{\int J d \rho}\right]
$$

For any positive β, the same analysis applies to the quantities $M(r, \beta)$ defined in (0.1). We get

Proposition 4.1. We have for any positive β,

$$
\begin{align*}
M(\beta) & =\lim _{r \rightarrow 0} M(r, \beta)=\frac{\log \int \mu(B(x, r))^{\beta} \mu(d x)}{\log r} \\
& =\inf _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+(\beta+1) \int \varphi d \rho-(\beta+1) P_{\varphi}}{\int J d \rho}\right]=F(\beta+1) \tag{4.1}
\end{align*}
$$

Recall that F was defined in [C, SI, II]. Observe also that there is nothing to prove for $\beta=0$, and that for $\beta<0$ the proofs are also analogous. The minimum in (4.1) is achieved since the functional is lower semicontinuous and $M_{g}(\Lambda)$ is compact. Proposition 4.1 defines the real function $M(\beta)$ that we are going to analyze.

Define G as the dynamical free energy function for any pair (x, y) of \mathbb{R}^{2} by

$$
\begin{equation*}
G(x, y)=P\left[(x+1)\left(\varphi-P_{\varphi}\right)+y J\right] . \tag{4.2}
\end{equation*}
$$

Since the function φ is Hölder continuous, the function G is real analytic in both variables [R]. Observe that
Proposition 4.2. We have for any real β,

$$
G(\beta,-M(\beta))=0 .
$$

Proof of Proposition 4.2. Let $\beta \in \mathbb{R}$ and consider the Hölder continuous function ξ_{β},

$$
\xi_{\beta}=(\beta+1)\left(\varphi-P_{\varphi}\right)-M(\beta) J .
$$

Its Gibbs measure μ_{β} is the measure for which the minimum in (4.1) is achieved and this means that

$$
\sup _{\psi \in M_{g}(\Lambda)}\left[h_{\psi}+\int\left[(\beta+1)\left(\varphi-P_{\varphi}\right)-M(\beta) J\right] d \psi\right]=0
$$

The statement of 4.2 follows.

As a consequence we get
Proposition 4.3. The function M is real analytic and is strictly increasing on \mathbb{R}, and we have for any real β,

$$
M^{\prime}(\beta)=\frac{\int \varphi d \mu_{\beta}-P_{\varphi}}{\int J d \mu_{\beta}}
$$

Proof of Proposition 4.3 (See [M, Ma, R, SI, II]). We have for any real β,

$$
\begin{equation*}
\left(\frac{\partial G}{\partial x}\right)(\beta,-M(\beta))=\int \varphi d \mu_{\beta}-P_{\varphi}<0 \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial G}{\partial y}\right)(\beta,-M(\beta))=\int J d \mu_{\beta}<0 \tag{4.4}
\end{equation*}
$$

The expression (4.4) is never 0 so by the implicit function theorem and (4.2) the function M is real analytic on \mathbb{R}. When differentiating (4.2) we get

$$
\left(\frac{\partial G}{\partial x}-M^{\prime}(\beta) \frac{\partial G}{\partial y}\right)(\beta,-M(\beta))=0
$$

hence

$$
\forall \beta \in \mathbb{R}, \quad M^{\prime}(\beta)=\frac{\int \varphi d \mu_{\beta}-P_{\varphi}}{\int J d \mu_{\beta}}>0
$$

We get also
Proposition 4.4. The function M is concave. It is strictly concave unless J and φ are homologous, i.e. there is $K \in C^{\gamma}(\Lambda)$ such that $J=\varphi+K \circ g-K$.
Proof of Proposition 4.4. When differentiating the above formula, we get for any real β,

$$
M^{\prime \prime}(\beta)=\frac{\partial}{\partial x}\left(\frac{\frac{\partial G}{\partial x}}{\frac{\partial G}{\partial y}}\right)(\beta,-M(\beta))-M^{\prime}(\beta) \frac{\partial}{\partial y}\left(\frac{\frac{\partial G}{\partial x}}{\frac{\partial G}{\partial y}}\right)(\beta,-M(\beta))
$$

and finally

$$
M^{\prime \prime}(\beta)=\left\{\frac{\left(\frac{\partial^{2} G}{\partial x^{2}}\right)\left(\frac{\partial G}{\partial y}\right)^{2}-2\left(\frac{\partial G}{\partial x}\right)\left(\frac{\partial G}{\partial y}\right)\left(\frac{\partial^{2} G}{\partial x \partial y}\right)+\left(\frac{\partial^{2} G}{\partial y^{2}}\right)\left(\frac{\partial G}{\partial x}\right)^{2}}{\left(\frac{\partial G}{\partial y}\right)^{3}}\right\}(\beta,-M(\beta))
$$

From $[\mathrm{R}, \mathrm{SI}, \mathrm{II}]$ we have for any real β the following equalities:

$$
\begin{align*}
\left(\frac{\partial^{2} G}{\partial x^{2}}\right)(\beta,-M(\beta)) & =\sum_{k \in \mathbb{Z}}\left\{\int \varphi \varphi \circ g^{k} d \mu_{\beta}-\left(\int \varphi d \mu_{\beta}\right)^{2}\right\} \tag{4.5}\\
\left(\frac{\partial^{2} G}{\partial x \partial y}\right)(\beta,-M(\beta)) & =\sum_{k \in \mathbb{Z}}\left\{\int \varphi J \circ g^{k} d \mu_{\beta}-\int \varphi d \mu_{\beta} \int J d \mu_{\beta}\right\} \tag{4.6}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial^{2} G}{\partial y^{2}}\right)(\beta,-M(\beta))=\sum_{k \in \mathbb{Z}}\left\{\int J J \circ g^{k} d \mu_{\beta}-\left(\int \varphi d \mu_{\beta}\right)^{2}\right\} \tag{4.7}
\end{equation*}
$$

Graph 1.: Graph of the correlation dimension function

$$
M: \mathbb{R} \rightarrow \mathbb{R}
$$

And we have

$$
\begin{equation*}
\left(\frac{\partial^{2} G}{\partial x \partial y}\right)^{2}(\beta,-M(\beta))<\left(\frac{\partial^{2} G}{\partial x^{2}}\right)(\beta,-M(\beta))\left(\frac{\partial^{2} G}{\partial y^{2}}\right)(\beta,-M(\beta)) \tag{4.8}
\end{equation*}
$$

which becomes an equality only when J and φ are homologous (see [SII, (2.3.1)]). The conclusion follows.

Here we describe in the general case the behaviours of the correlation dimension function M and its derivative M^{\prime}. We can prove that
${ }^{*} a=\lim _{\beta \rightarrow+\infty} M^{\prime}(\beta)=\lim _{\beta \rightarrow+\infty} \frac{M(\beta)}{\beta} ;$
${ }^{*} b=\lim _{\beta \rightarrow-\infty} M^{\prime}(\beta)=\lim _{\beta \rightarrow-\infty} \frac{M(\beta)}{\beta}$;

* there exist positive reals δ_{1} and δ_{2} such that

$$
\lim _{\beta \rightarrow+\infty}\left[M(\beta)-a(\beta+1)+\delta_{1}\right]=0 \quad \text { and } \quad \lim _{\beta \rightarrow-\infty}\left[M(\beta)-b(\beta+1)+\delta_{2}\right]=0
$$

where the numbers δ_{1} and δ_{2} are the Hausdorff dimensions of g-invariant measures ρ_{1} and ρ_{2} (where $H D(\rho)=\inf \{H D(A) / \rho(A)=1\}$).

5. Extension of the Results in Dimension 2

Consider a compact manifold X of dimension 2, for example the torus, on which acts an Axiom $A C^{2}$ diffeomorphism g. We associate to this dynamical system a g-invariant measure μ, in the first case the Bowen-Margulis measure and in the second case a Gibbs measure.

We introduce canonical coordinates [B, R, SI, II] and a local product structure using local stable manifolds $W_{\text {loc }}^{s}(x)$ (where g contracts) and local unstable manifolds $W_{\text {loc }}^{u}(x)$ (where g expands).

Define stable Markov partitions $\left(\mathscr{P}_{n}^{s}\right)_{n \geqq 1}$ and unstable Markov partitions $\left(\mathscr{P}_{n}^{u}\right)_{n \geqq 1}$. Consider the "product" partition $\left(\mathscr{P}_{n}\right)_{n \geqq 1}$ whose elements verify

$$
A=[U, V]
$$

with $(U, V) \in \mathscr{P}_{n}^{s} \times \mathscr{P}_{n}^{u},[\mathrm{SI}, \mathrm{II}]$
Consider also the functions

$$
J^{s}(x)=\log \operatorname{Jacobian}\left(D g: E_{x}^{s} \rightarrow E_{g x}^{s}\right)
$$

and

$$
J^{u}(x)=-\log \operatorname{Jacobian}\left(D g: E_{x}^{u} \rightarrow E_{g x}^{u}\right) .
$$

Since g is $C^{2}, D g$ is C^{1} and the functions J^{s} and J^{u} are negative and Hölder continuous functions. We get a basic set Λ which contains the supports of the measures of interest.

Firstly consider the measure μ of maximal entropy

$$
h_{\mu}=h=\sup _{\psi \in M_{g}(\Lambda)} h_{\psi}
$$

We obtain
Theorem 5.1. For any real β we have the following limit:

$$
M(\beta)=\lim _{r \rightarrow 0} \frac{\log \int \mu(B(x, r))^{\beta} \mu(d x)}{\log r}
$$

In fact $M(\beta)$ can be decomposed into $M^{s}(\beta)+M^{u}(\beta)$, where

$$
M^{s}(\beta)=\inf _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}-(\beta+1) h}{\int J^{s} d \rho}\right] \quad \text { and } \quad M^{u}(\beta)=\inf _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}-(\beta+1) h}{\int J^{u} d \rho}\right]
$$

Proof of Theorem 5.1. We have seen in [SI] that the measure μ verifies locally

$$
\begin{equation*}
\mu=\mu^{s} \times \mu^{u} \tag{5.1}
\end{equation*}
$$

where the measures μ^{s} and μ^{u} are defined respectively on the stable and unstable manifolds. For example, there exists for each interval U of \mathscr{P}_{n}^{s} an element $y(U) \in$ U (1.9) such that

$$
\begin{equation*}
\exp \left\{\sum_{i=0}^{n-1} J^{s}\left[g^{i}(y(U))\right]\right\} \simeq|U| \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu^{s}(U) \simeq e^{-n h} \tag{5.3}
\end{equation*}
$$

Symmetrically, there exists for each interval $V \in \mathscr{P}_{n}^{u}$ an element $y(V) \in V$ such that

$$
\begin{equation*}
\exp \left\{\sum_{i=0}^{n-1} J^{u}\left[g^{i}(y(V))\right]\right\} \simeq|V| \tag{5.4}
\end{equation*}
$$

Graph 2.: Graph of the derivative of the correlation dimension function $\left.M^{\prime}: \mathbb{R} \rightarrow\right] a ; b\left[\subset \mathbb{R}^{+*}\right.$
and

$$
\begin{equation*}
\mu^{u}(V) \simeq e^{-n h} \tag{5.5}
\end{equation*}
$$

Following Sects. 2 and 3 we first take ρ a g-invariant and ergodic measure. We consider A_{n}^{s} the set of elements $U \in \mathscr{P}_{n}^{s}$ such that

$$
\log |U| \in\left[\int J^{s} d \rho-\varepsilon ; \int J^{s} d \rho+\varepsilon\right]
$$

Identically we consider the set A_{n}^{u} of elements $V \in \mathscr{P}_{n}^{u}$ such that

$$
\log |V| \in\left[\int J^{u} d \rho-\varepsilon ; \int J^{u} d \rho+\varepsilon\right] .
$$

Let $A_{n}=\left[A_{n}^{s} ; A_{n}^{u}\right]$ and define the real $b=\inf (c ; d)$, where

$$
c=\exp \left(\int-J^{s} d \rho+\varepsilon\right) \quad \text { and } \quad d=\exp \left(\int-J^{u} d \rho+\varepsilon\right)
$$

We have then

$$
\begin{align*}
L\left(b^{-n}\right) & =\frac{1}{n} \log _{b} \int \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x) \\
& =\frac{1}{n} \log _{b} \sum_{A \in \mathscr{P}_{n}} \int_{A} \mu\left(B\left(x, b^{-n}\right)\right) \mu(d x) \\
& \geqq \frac{1}{n} \log _{b} \sum_{A \in A_{n}} \mu(A)^{2} \\
& =\frac{1}{n} \log \sum_{\substack{A \in A_{n} \\
A=\left[U V \\
(U, V) \in A_{n}^{x} \times A_{n}^{u}\right.}} \mu([U, V]) \tag{5.6}
\end{align*}
$$

From (5.1), (5.6) becomes

$$
\begin{equation*}
\frac{1}{n} \log _{b} \sum_{A \in A_{n}} \mu(A)^{2} \sim \frac{1}{n} \log _{b} \sum_{U \in A_{n}^{s}} \mu^{s}(U)^{2}+\frac{1}{n} \log _{b} \sum_{V \in A_{n}^{u}} \mu^{u}(V)^{2} \tag{5.7}
\end{equation*}
$$

We introduce therefore the sequences $L^{s}\left(b^{-n}\right)$ and $L^{u}\left(b^{-n}\right)$ corresponding to μ^{s} and μ^{u}. It is clear that

$$
L^{s}\left(b^{-n}\right) \geqq L^{s}\left(c^{-n}\right) \quad \text { and } \quad L^{s}\left(b^{-n}\right) \geqq L^{s}\left(d^{-n}\right)
$$

From (2.4) we have

$$
\begin{equation*}
L^{s}\left(b^{-n}\right) \geqq \frac{1}{n} \log _{c} \sum_{U \in A_{n}^{s}} \mu^{s}(U)^{2}+\frac{1}{n} \log _{d} \sum_{V \in A_{n}^{u}} \mu^{u}(V)^{2} \tag{5.8}
\end{equation*}
$$

We introduce therefore the sequences $L^{s}\left(c^{-n}\right)$ and $L^{u}\left(d^{-n}\right)$ corresponding to μ^{s} and μ^{u}. It is clear that

$$
L^{s}\left(c^{-n}\right) \geqq \frac{1}{n} \log _{c} \sum_{U \in A_{n}^{s}} \mu^{s}(U)^{2}=a_{n}^{s}
$$

and

$$
L^{s}\left(d^{-n}\right) \geqq \frac{1}{n} \log _{d} \sum_{V \in A_{n}^{u}} \mu^{u}(V)^{2}=a_{n}^{u}
$$

We have then from the above formulas and (2.7)

$$
\varliminf_{n \rightarrow+\infty} L^{s}\left(c^{-n}\right) \geqq \lim _{n \rightarrow+\infty} a_{n}^{s}=\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{s} d \rho}
$$

and

$$
\underline{\lim }_{n \rightarrow+\infty} L^{u}\left(d^{-n}\right) \geqq \lim _{n \rightarrow+\infty} a_{n}^{u}=\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{u} d \rho}
$$

Since the measure ρ is arbitrary and with (2.3) we get

$$
\lim _{n \rightarrow+\infty} L^{s}\left(c^{-n}\right) \geqq \sup _{\substack{\rho \in M_{g}(\Lambda) \\ \rho \text { ergodic }}}\left[\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{s} d \rho}\right]=\sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{s} d \rho}\right]
$$

and

$$
\lim _{n \rightarrow+\infty} L^{u}\left(d^{-n}\right) \geqq \sup _{\substack{\rho \in M_{g}(\Lambda) \\ \rho \operatorname{ergodic}}}\left[\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{u} d \rho}\right]=\sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{u} d \rho}\right]
$$

Using (5.7) it becomes

$$
\begin{equation*}
\varliminf_{r \rightarrow 0} L(r) \geqq \sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{s} d \rho}\right]+\sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{u} d \rho}\right] \tag{5.9}
\end{equation*}
$$

We prove a sort of converse of (5.9) in the same way as Theorem 3.1, i.e.

$$
\varlimsup_{r \rightarrow 0} L^{s}(r) \leqq \sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{s} d \rho}\right]
$$

and

$$
\varlimsup_{r \rightarrow 0} L^{u}(r) \leqq \sup _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}-2 h-2 P_{\varphi}}{\int-J^{u} d \rho}\right]
$$

We have thus obtained

$$
\lim _{r \rightarrow 0} L(r)=\lim _{r \rightarrow 0} L^{s}(r)+\lim _{r \rightarrow 0} L^{u}(r)
$$

or equivalently

$$
-\lim _{r \rightarrow 0} L(r)=M(1)=M^{s}(1)+M^{u}(1) .
$$

This proves the theorem for $\beta=1$. The proof is analogous for any real β.
This function M verifies the following properties:
Proposition 5.2. The function M is real analytic on \mathbb{R}.
Proof of Proposition 5.2. Consider the functions defined on \mathbb{R}^{2} by

$$
G^{s}(x, y)=P\left[(x+1) h+y J^{s}\right]
$$

and

$$
G^{u}(x, y)=P\left[(x+1) h+y J^{u}\right] .
$$

From Proposition 4.2, we have for any real β,

$$
\begin{equation*}
G^{s}\left(\beta,-M^{s}(\beta)\right)=G^{u}\left(\beta,-M^{u}(\beta)\right)=0 \tag{5.10}
\end{equation*}
$$

Consider the Hölder continuous functions

$$
\varphi_{\beta}^{s}=(\beta+1) h-M^{s}(\beta) \quad \text { and } \quad \varphi_{\beta}^{u}=(\beta+1) h-M^{u}(\beta)
$$

and their Gibbs measures μ_{β}^{s} and μ_{β}^{u}. We have then, differentiating (5.10),

$$
\begin{equation*}
\left(\frac{\partial G^{s}}{\partial y}\right)\left(\beta,-M^{s}(\beta)\right)=\int J^{s} d \mu_{\beta}^{s}<0 \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial G^{u}}{\partial y}\right)\left(\beta,-M^{u}(\beta)\right)=\int J^{u} d \mu_{\beta}^{u}<0 \tag{5.12}
\end{equation*}
$$

and the analycity of the functions M^{s} and M^{u} by the implicit function theorem [R]. The functions M^{s} and M^{u} are therefore real analytic on \mathbb{R}, and $M=M^{s}+M^{u}$ also.

Proposition 5.3. The function M is strictly increasing and

- either M is linear: this is the case when J^{s} and J^{u} are homologous to a constant, i.e. $=c+K \circ g-K\left(\right.$ where $c \in \mathbb{R}$ and $\left.K \in C^{\gamma}(\Lambda)\right)$,
- or the function M is strictly concave.

Proof of Proposition 5.3. Using (5.10), (5.11), (5.12) and (4.3) we get for any real β, that $\left(M^{s}\right)^{\prime}(\beta)$ which is given by:

$$
\begin{equation*}
\left(M^{s}\right)^{\prime}(\beta)=\frac{h}{\int-J^{s} d \mu_{\beta}^{s}} \tag{5.13}
\end{equation*}
$$

is positive, and $\left(M^{u}\right)^{\prime}(\beta)$ which is given by:

$$
\begin{equation*}
\left(M^{u}\right)^{\prime}(\beta)=\frac{h}{\int-J^{u} d \mu_{\beta}^{u}} \tag{5.14}
\end{equation*}
$$

is also positive. Therefore for any real β we have $M^{\prime}(\beta)$ positive since

$$
M^{\prime}(\beta)=\left(M^{s}\right)^{\prime}(\beta)+\left(M^{s}\right)^{\prime}(\beta)
$$

In the case when J^{s} and J^{u} are homologous to a constant, then the measures μ_{β}^{s} and μ_{β}^{u} are constant when β varies in \mathbb{R}, and by (5.13) and (5.14) the functions $\left(M^{s}\right)^{\prime}$ and $\left(M^{u}\right)^{\prime}$ are constants as well. Therefore M^{s}, M^{u} and thus M are linear on \mathbb{R}. If we are in the case where the transformation g is Anosov, then the measure μ is absolutely continuous with respect to the Lebesgue measure [B], and g is differentiably conjugate to an automorphism of the torus [De].

In the other case, we have for any real β either

$$
\begin{equation*}
\left(M^{s}\right)^{\prime \prime}(\beta)=\frac{h^{2}}{\left(\int J^{s} d \mu_{\beta}^{s}\right)^{3}}\left(\frac{\partial^{2} G^{s}}{\partial y^{2}}\right)\left(\beta,-M^{s}(\beta)\right)<0 \tag{5.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(M^{u}\right)^{\prime \prime}(\beta)=\frac{h^{2}}{\left(\int J^{u} d \mu_{\beta}^{u}\right)^{3}}\left(\frac{\partial^{2} G^{u}}{\partial y^{2}}\right)\left(\beta,-M^{u}(\beta)\right)<0 \tag{5.16}
\end{equation*}
$$

from $[\mathrm{M} ; \mathrm{Ma} ; \mathrm{R} ; \mathrm{SI}]$. We have then

$$
M^{\prime \prime}(\beta)=\left(M^{s}\right)^{\prime \prime}(\beta)+\left(M^{u}\right)^{\prime \prime}(\beta)<0
$$

We shall study the correlation dimension M associated to a Gibbs measure μ. Like in [SII], we define the Hölder continuous functions ξ^{s} (resp. ξ^{u}) satisfying $P\left(\xi^{s}\right)=0\left(=P\left(\xi^{u}\right)\right)$ in such a way that the associated family of Gibbs measures μ^{s} (resp. μ^{u}) on the stable (resp. unstable) manifold verify: there exist constants c and C such that

$$
\begin{equation*}
c \leqq \frac{d \mu}{d\left(\mu^{s} \times \mu^{u}\right)} \leqq C \tag{5.17}
\end{equation*}
$$

We decompose as in (5.1) along the stable and unstable manifolds, and following the same steps we prove
Theorem 5.4. We have for any real β,

$$
\begin{aligned}
M(\beta)= & \lim _{r \rightarrow 0} \frac{\log \int \mu(B(x, r))^{\beta} \mu(d x)}{\log r} \\
= & M^{s}(\beta)+M^{u}(\beta) \\
= & \inf _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+(\beta+1) \int\left(\xi^{s}-P_{\varphi}\right) d \rho}{\int J^{s} d \rho}\right] \\
& +\inf _{\rho \in M_{g}(\Lambda)}\left[\frac{h_{\rho}+(\beta+1) \int\left(\xi^{u}-P_{\varphi}\right) d \rho}{\int J^{u} d \rho}\right] .
\end{aligned}
$$

We have also
Proposition 5.5. The function M is real analytic on \mathbb{R} and strictly increasing moreover

- either M is linear: it is the case when J^{s} is homologous to $c \xi^{s}$, i.e $J^{s}=c \xi^{s}+K \circ g-K$, where $K \in C^{\gamma}(\Lambda)$, and J^{u} is homologous to $c^{\prime} \xi^{u}$.
- or the function M is strictly concave.

Proof of Proposition 5.2. Consider the Hölder continuous functions $\left(\in C^{\gamma}(\Lambda)\right)$

$$
\varphi_{\beta}^{s}=(\beta+1) \xi^{s}-M^{s}(\beta) J^{s} \quad \text { and } \quad \varphi_{\beta}^{u}=(\beta+1) \xi^{u}-M^{u}(\beta) J^{u}
$$

and the associated Gibbs measures μ_{β}^{s} and μ_{β}^{u}. We have then for any real β,

$$
G^{s}\left(\beta,-M^{s}(\beta)\right)=G^{u}\left(\beta,-M^{u}(\beta)\right)=0,
$$

where the functions G^{s} and G^{u} are defined on \mathbb{R}^{2} by

$$
\begin{equation*}
G^{s}(x, y)=P\left[(x+1) \xi^{s}+y J^{s}\right] \tag{5.18}
\end{equation*}
$$

and

$$
\begin{equation*}
G^{u}(x, y)=P\left[(x+1) \xi^{u}+y J^{u}\right] . \tag{5.19}
\end{equation*}
$$

We have then for any real β,

$$
\begin{equation*}
\left(M^{s}\right)^{\prime}(\beta)=\frac{\int\left(\xi^{s}-P_{\varphi}\right) d \mu_{\beta}^{s}}{\int J^{s} d \mu_{\beta}^{s}}>0 \tag{5.20}
\end{equation*}
$$

and symmetrically

$$
\begin{equation*}
\left(M^{u}\right)^{\prime}(\beta)=\frac{\int\left(\xi^{u}-P_{\varphi}\right) d \mu_{\beta}^{u}}{\int J^{u} d \mu_{\beta}^{u}}>0, \tag{5.21}
\end{equation*}
$$

which implies

$$
\forall \beta \in \mathbb{R}, \quad M^{\prime}(\beta)=\left(M^{u}\right)^{\prime}(\beta)+\left(M^{s}\right)^{\prime}(\beta)>0 .
$$

When J^{s} is homologous to $c \xi^{s}$, the measures μ_{β}^{s} are constant when β varies, and then the function $\left(M^{s}\right)^{\prime}$ is constant (the same property for J^{u} and $c^{\prime} \xi^{u}$). Otherwise following (4.4) and [SII] we prove that M^{s} or M^{u} is strictly concave, and à fortiori $M\left(=M^{s}+M^{u}\right)$.

Acknowledgement. We want to thank François Ledrappier for the suggestions and the talks which have motivated this work

References

[B] Bowen, R : Equilibrium states and the ergodic theory of Anosov diffeomorphism Lect Notes in Math 470, Berlin, Heidelberg, New York: Springer, 1973
[Br] Brown, G, Michon, G, Peyrière, J : On the multifractal analysis of measures J Stat Phys 66, 775-790 (1992)
[C] Collet, P, Lebowitz, J -L , Porzio, A : The dimension spectrum of some dynamical systems J Stat Phys 47, 609-644 (1987)
[De] De la Llave, R.: Invariants for smooth conjugacy of hyperbolic dynamical systems II. Commun. Math Phys. 109, 369-378 (1987)
[D] Denker, M., Grillenberger, C., Sigmund, K.: Ergodic theory on compact spaces. Lect. Notes in Math. 527, Berlin, Heidelberg, New York: Springer, 1976
[G] Grassberger, P, Hentschel, V., Procaccia, I.: On the characterization of chaotic motions. Lect. Notes Physics 179, Berlin, Heidelberg, New York: Springer, 1983, pp. 212-221
[L] Ledrappier, F.: On the dimension of some graphs. Contemp. Math. 135, 285-293 (1992)
[LY] Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms. Part II. Relations between entropy, exponents and dimension. Ann. Math 122, 540-574 (1985)
[M] Mañé, R.: The Hausdorff dimension of horseshoes of diffeomorphisms of surfaces. Bol. Soc Bras. Mat. 20, 2, 1-24 (1990)
[Ma] Manning, A.: A relation between Lyapunov exponents, Hausdorff dimension and entropy. Ergod. Th. and Dynam. Sys. 1, 451-459 (1981)
[P] Pesin, Ya.B.: On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions. J. Stat. Phys. 71, 529-547 (1993)
[R] Ruelle, D.: Thermodynamic Formalism. Reading, MA. Addison-Wesley, 1978
[SI] Simpelaere, D.: Dimension spectrum of Axiom A diffeomorphisms. I: The Bowen-Margulis measure J. Stat. Phys. 76, 1329-1358 (1994)
[SII] Simpelaere, D.: Dimension spectrum of Axiom A diffeomorphisms. II: Gibbs measures. J Stat. Phys. 76, 1359-1375 (1994)
[SIII] Simpelaere, D : Multifractal decomposition of the Sierpinski carpet. Chaos, Solitons and Fractals 11, 2153-2170 (1995)

Communicated by J -P. Eckmann

