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Abstract: We demonstrate the existence of solutions to the full 3 x 3 system of com-
pressible Euler equations in one space dimension, up to an arbitrary time T > 0,
in the case when the initial data has arbitrarily large total variation, and sufficiently
small supnorm. The result applies to periodic solutions of the Euler equations, a
nonlinear model for sound wave propagation in gas dynamics. Our analysis estab-
lishes a growth rate for the total variation that depends on a new length scale d
that we identify in the problem. This length scale plays no role in 2 x 2 systems,
(or any system possessing a full set of Riemann coordinates), nor in the small total
variation problem for n x n systems, the cases originally addressed by Glimm in
1965. Recent work by a number of authors has demonstrated that when the total
variation is sufficiently large, solutions of 3 x 3 systems of conservation laws can
in general blow up in finite time, (independent of the supnorm), due to amplifying
instabilities created by the non-trivial Lie algebra of the vector fields that define
the elementary waves. For the large total variation problem, there is an interaction
between large scale effects that amplify and small scale effects that are stable, and
we show that the length scale on which this interaction occurs is d. In the limit
d —> oo, we recover Glimm's theorem, and we observe that there exist linearly de-
generate systems within the class considered for which the growth rate we obtain
is sharp.

1. Introduction

We consider the initial value problem for the system of compressible Euler equations
in one space dimension,
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Pt + (pυ)x = 0 ,

(pι;), + (pv2 + p)x = 0 , (1.1)

£, + ((E + p)v)x = 0 ,

where p is the density, v the velocity, p the pressure, and £ the energy of the
fluid. This is the special case of the general initial value problem for a system of
conservation laws,

ut + f(u)x = 0, u(x,0) = uo(x), (1.2)

where for (1.1), u = (p,pv,E). We let rι denote the zth (normalized) right eigen-
vector and λi the zth eigenvalue of the Jacobian matrix D / ,

Z ) / . r ' = V , / = 1,2,3,

and refer to the eigenpair (Λ,r*) as the zth characteristic field, or zth wave family.
When discussing the general system (1.2), we always assume, as is the case for
(1.1), that the system is strictly hyperbolic (/l;=M7) and either genuinely nonlinear
(rι VΛ φO) or linearly degenerate (rι VAZ = 0) in each characteristic field, and
that solutions take values in a small neighborhood % of a reference state w, cf. [13].

System (1.1) represents the zero dissipation limit of the compressible Navier-
Stokes equations. It is well known that shock-waves form in solutions of (1.1) even
in the presence of smooth data, and the shock waves encode the dissipation that
carries over to the zero dissipation limit. Shock waves introduce time-irreversibility,
loss of information, and the increase of entropy (in a generalized sense), and this
leads to the decay of solutions for general systems of type (1.2), cf. [2,13].

For convenience, we study the Lagrangian version of the Euler system [13],

vt + Px = 0, (1.3)

Et + (pv)x = 0 ,

where the conserved quantities are (l/p,v,E). For smooth solutions, (1.3) implies

£ = 0,

where S is the entropy, [13]. This "entropy equation" implies that the entropy
decouples from the solution in smooth regions, which is characteristic of a Riemann
coordinate. A wave (or eigen-) family has a Riemann coordinate w : °U —> R if the
left eigenvector of the flux matrix can be written as the gradient of that function,

£ . Df = λί9 where t = Vuw .

For system (1.3), the second eigenvalue (corresponding to the entropy) satisfies
λ2 = 0. We thus refer to 2-waves as contact discontinuities or entropy jumps.

More generally, and with the goal in mind of isolating a particular nonlinear
aspect of the Euler equations, we consider in this paper any 3 x 3 system within the
class of conservation laws that possess a Riemann coordinate for one of the families.
In analogy with (1.1), we assume for convenience that the second family has a
Riemann coordinate, and is also linearly degenerate. After a suitable normalization,
this class has the same (unsigned) Lie bracket components as the Euler system. For
any system in this class, we obtain a large time existence theorem for initial data
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of arbitrarily large total variation and sufficiently small supnorm. The main estimate
involves a new length scale that must be accounted for, and to motivate this, we
first recall the earlier work of Glimm.

Note that when the equation of state is of the form p — p(p), (the case
of isothermal and isentropic flow, [13]), the first two equations in (1.3) un-
couple from the third, and system (1.1) reduces to the 2 x 2 system that we refer
to as the /?-system. There is a well developed existence theory for 2 x 2 systems of
conservation laws, but for three equations, the only general existence theorems that
apply to the full nonlinear system (1.3) are based essentially on methods of analysis
first introduced by Glimm in 1965: methods that only apply when the initial total
variation is sufficiently small, or when the system possesses a full set of Riemann
coordinates (like 2 x 2 systems), cf. [13]. A full set of Riemann coordinates deter-
mines a coordinate system in which the coordinate vector-fields are eigenvectors of
the flux, and thus have pairwise vanishing Lie brackets [r\rJ] = 0. These systems
are referred to as rich systems by Serre, who has shown the applicability of the
methods of compensated compactness to these systems, cf. [11,12]. In the small
variation case for general systems, Grimm's theorem can be stated as follows, [3]:

Theorem (Glimm 1965). If the total variation of the initial data UQ(X) is smaller
than a threshold value Vcτ ιU

TV{uo( )} < F c r i t ,

then a global weak solution with shocks exists for all time and

TV{u('9t)} < CTV{uo( )},

where Vcr[t and C depend only on the flux function f in the neighborhood of the
solution.

In [17], it was shown that

(1.4)

where A is a measure of the strength of the geometric coupling of the wave families,
which is determined by the flux:

{μf|} (1.5)
where

[rV] = Σ4V. (1.6)
i

In 1970, Glimm and Lax went on to prove that for 2 x 2 systems like the p-
system, periodic solutions decay at a rate 0(1/t) in the total variation, so long as
the oscillation of the initial data is sufficiently small, see [4]. (The oscillation is
equivalent to the supnorm Sup|w( ) — u\9 once an origin u is chosen.) This was a
triumph for the mathematical theory of shock-waves because it provides a quantita-
tive estimate of the dissipation present in the zero dissipation limit of gas dynamics.
However, the methods of Glimm and Lax give only a short time existence theo-
rem for periodic solutions of the 3 x 3 system (1.1). Little is known about the

1 See e.g, [10], where large total variation is allowed among components that are almost
planar

2 The result was extended by Zumbrun to n x n systems which possess a full set of Riemann
coordinates, [20]
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3 x 3 case, the simplest setting in which the true physical entropy effects the time-
irreversibility. The long time existence problem for periodic solutions of the full
Euler system (1.1)—(1.2) has remained open since that time.

In this paper we prove the following theorem which demonstrates the large time
stability of solutions for systems which possess a Riemann coordinate in one of the
characteristic families, as does the Euler system. The theorem applies to solutions
defined in a small enough neighborhood °li of a reference state u — ύ:

Theorem 1. Consider any 3 x 3 strictly hyperbolic system (1.2) that has a Riemann
coordinate for one wave family in a neighborhood °U. Let V$ > 0,d > 0 and
T > 0 be given arbitrarily. Then there exists an ε = ε(Vo,d,T), such that, if the
initial data wo( ) of the Cauchy problem (1.2) satisfies

Sup|iio( )-fi | S e, (1.7)

TV(uo('))^ Vo, (1.8)

and

IIrf < Pent, (i 9)

then the conservation law admits a weak solution up to time T with bounded
supnorm and bounded total variation, and

TV{u(;t)}^ Voexp(KT/d), (1.10)

where K is a constant depending on the equations, and ||MO( )II</ denotes the
maximum total variation of the function u over intervals of length d.

Theorem 1 identifies a new length scale d in the Cauchy problem, and deter-
mines a corresponding growth rate for the total variation of the solution, cf. [6]. It
gives the existence of solutions up to an arbitrary time T in the case when the initial
data has arbitrarily large total variation and sufficiently small supnorm. Indeed, the
theorem really is a large total variation result for the Euler equations, because by
taking the initial sup-norm sufficiently small, it allows for the case in which waves
of arbitrarily large total variation all interact before time T. Using finite speed of
propagation, Theorem 1 directly implies the large time existence of periodic solu-
tions of the Euler equations, a nonlinear model for sound wave propagation in gas
dynamics.

Our proof is based on new functional and new estimates for the Glimm scheme,
the identification of a new length scale in the problem, and the introduction of a
new norm \\ \\d, which we call the "d-norm," that is natural for estimating the
nonlinearities in the problem. There is no corresponding finite length scale that
plays a similar role in 2 x 2 systems, or in n x n systems when the total variation
of the initial data is sufficiently small.

The difficulty when the total variation is large and the system does not possess
a full set of Riemann coordinates, (e.g., periodic solutions of (1.1) or (1.3)), is that
when 7y{wo( )} > VCnX, there is a de-stabilizing, amplification effect due to the
non-trivial Lie algebra of eigenvector fields {r1}. For 2 x 2 systems, this geometric
effect is not present because vector fields in the plane can always be rescaled to
have pairwise vanishing Lie brackets. For 3 x 3 systems like (1.1), the Lie brackets
play a dominant role, and recent studies of the geometrical optics approximation of
(1.2) have demonstrated that certain 3 x 3 systems are resonant, and solutions can
blow up in a finite time, independent of the supnorm, when the Lie algebra structure
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of {rz} has a special form. (See [5,9,6].) Thus Theorem 1 demonstrates the large
time stability of periodic solutions of (13), thus ruling out resonant blowup in the
Euler equations

To understand this de-stabilizing effect when the Lie algebra of {r1} is nontrivial,
consider that for general systems, the nonlinear coupling of characteristic fields is
determined by the nonlinear geometry of the eigen-fields (λj,r*). The nonlinear
coupling of different fields is manifested in the scattering of new waves when two
waves from different families interact, and the Lie algebra of the eigenvector fields
rι encodes the description of the scattering process to leading (quadratic) order.
The effect of interaction on a particular wave family is given by components of
the Lie bracket of the eigenvector fields associated with the incident waves, times
the product of the strengths of the incident waves, (an inherently quadratic effect),
with an error that is at most cubic in incident wave strengths, [17]. The quadratic
interaction effects become destabilizing when the total variation is large, even when
the supnorm of the solution stays small, due to the new waves that are generated
as a result of interactions. Indeed, when the supnorm is small, the waves in the
solution are weak, and in this case the combined quadratic effects of a small number
of interactions are dominated by the incident waves. For example, if the incident
waves have strength O(ε), then the cumulative effect of 0(1) interactions is O(ε2),
which is small. This corresponds to a total variation of O(ε), namely 0(1) waves of
strength ε. Increasing the total variation to 0(1) while wave strengths remain small
requires 0(1/ε) waves, so that there will be 0(1/ε2) interactions. The cumulative
effect of these interactions is then 0(1), and this drives the growth of the total
variation of the solution when the initial total variation exceeds a critical value.
This explains, in principle, why the large total variation, small oscillation problem
is inherently different from the small total variation problem originally addressed
by Glimm: as long as the total variation remains small, the quadratic effects can be
estimated by the strengths of the initial waves. However, as the initial total variation
increases, cumulative quadratic effects become dominant. These quadratic effects
cause solutions to grow in amplitude, and in some cases this leads to resonance,
and to the finite time blow-up of solutions.

This growth of solutions for general systems leads us to look for time-dependent
bounds for the total variation of the solution, when the initial total variation is
large. Thus, suppose that the total variation at time t in a solution of (1.2) is given
by V(t), and suppose that V(t) —» oo as t increases. The observation that system
(1.2) is invariant under the scaling (x,t) —> (ocx,oct) means that by scaling, we can
construct a solution that grows without bound in arbitrarily short finite times. This
leads us to conclude that the norm on the initial data that controls the growth of the
solution cannot be invariant under the scaling (x,t) —> (ax, at), as are the supnorm
and the total variation norm. Said differently, by this argument there must be another
length scale in the problem, call it d, which should determine the rate of growth
of solutions when the total variation of the initial data is large and the supnorm is
small.

With this in mind, we define the length scale d, which appears in the growth
rate estimate Qxp(KT/d) in Theorem 1, as the length of the largest interval
over which the total variation of the initial data is smaller than the critical total
variation Fcrit required for Glimm's method. For 3 x 3 systems with a Riemann
coordinate, we relax this to require only the total variation in the Riemann
coordinate be less than Vcra over intervals of length d. We define the d-norm
of a function of bounded variation to be the supremum of the total variation over
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intervals of length d,
\\uQ\\d = SupTV[a,a+d](u0).

a

The d-noτm scales like a length under rescalings (x, t) —> (αx, at). Thus Theorem 1
states that, for systems with the same (unsigned) Lie bracket components as the
Euler system (1.3), the total variation grows no worse than O(l)cxp(KT/d), so long
as ||MO(")IU < Pent. Thus the d-novm controls the growth rate of solutions in the
class of systems considered here. Moreover, the examples given in [18,15] show
that this growth rate is sharp for the system

ut + (w + 2uv)x = 0 ,

Όt = 0, (1.11)

wt + (ι/(l - 4v2) - 2vw)x = 0 ,

a linearly degenerate system contained within the class of systems to which
Theorem 1 applies.

The length scale d plays no role in 2 x 2 systems, nor in n x n systems possess-
ing a full set of Riemann coordinates, nor when the initial total variation is less than
Font. Indeed, exp(KT/d) —> 1 as d —•> oo, and our growth rate estimate reduces to
the time independent estimate obtained by Glimm in the limit Vo < Vcτ[t. Moreover,
in the limit d —> oo, the d-norm and total variation coincide, and so our restriction
on the initial data reduces to Glimm's. Thus we conclude that d represents a new
length scale that is relevant to the Euler system (1.3) when the initial total variation
is large.

In Sect. 2 we show that for any ε > 0, and any function / of bounded variation
over x G R, there is a length d such that

ll/IU<e
Thus, for fixed initial data of bounded total variation and small supnorm, the length
scale d is determined by the data. Our new length scale d is the small scale on
which interaction effects do not accumulate, so that the growth of the solution is
apparent only on the larger scale of the support of the initial data. Because there
are 0(1) waves on this small length scale, the heuristic argument above indicates
that interactions on this scale do not drive the growth of the solution. Rather, the
growth of the solution is driven by the long-range effects of multiple interactions
which occur over the longer scale of the support of the solution, which is the
larger length scale. This heuristic point of view motivates our method of analysis,
and clarifies the principles used in obtaining the equations of weakly nonlinear
geometric optics, [5,9,6].

To prove Theorem 1, we use an extension of the method of re-orderings which
was introduced by Young in 1991 [17]. The idea in the method of re-orderings is to
sup the value of functionals over all possible "future" re-orderings of waves, each
re-ordering representing a possible order in which waves could interact in the actual
solution. By sup'ing over all possible re-orderings, one can obtain sharp estimates
for functionals without having to determine the true ordering of interactions in an
actual solution, a determination that would require refined estimates for the wave
speeds as they evolve (nonlinearly) in the problem. In [17], Young used the method
of re-orderings to account for a cancellation in the quadratic effects arising from
the Lie brackets of the eigenvector fields - a cancellation that is based on the
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bilinearity of the bracket. The idea is that, when one computes the sup, over se-
quences of consecutive waves of the same family at a given time t > 0, of the sums
of the (signed) strengths of the waves in the sequence, one has an estimate for the
supnorm of the solution at time t. Then, if one estimates this value by sup'ing
over all possible reorderings of the initial waves with cumulative quadratic effects
included, one obtains an estimate for the supnorm that increases only third order,
instead of second order, at each interaction. The point is that this measure of the sup-
norm accounts for a cancellation in quadratic effects based on the bilinearity of the
bracket - and by accounting for the cancellation, the improved third order estimate
for the increase in the supnorm at interactions leads to an improvement in Glimm's
original estimate of the supnorm at t > 0. Based on this better estimate, Young
used a strategy of proof set out in [14] to show that any Glimm solution satisfying
TV{uo( )} < FCrit is stable in the supnorm, while Glimm's original argument only
demonstrated bounds in the total variation norm:

Theorem (Young 1991). Let u(x,t) denote any Glimm solution to which Glimm's
original assumptions apply, so that

τ h e n TV{uo(-)}<Vcήt. (1.12)

Sup|κ( ,0-w| < CSup|ttO( )-w| , (1.13)

where C depends only on values of the flux f in a neighborhood of the solution.

In this paper, we use the method of re-orderings to define a functional F*
to bound the total variation, a functional β* to account for potential interac-
tions (analogous to Glimm's original g), as well as the functional P from [17]
to bound the supnorm. The functionals V* and Q* are evaluated on a sequence
of waves by sup'ing over all possible re-orderings of the waves up to time T9

while accounting for all cumulative quadratic effects of interactions. (Our nota-
tion is that a * on the functional indicates that it is analogous to Glimm's, but
includes all cumulative quadratic effects. The functional P is not starred as it is
defined only slightly differently than in [17], where quadratic effects were counted
but did not accumulate.) More specifically, these Glimm type functionals are de-
fined at each time step of an approximate Glimm scheme solution as sups over
all possible wave configurations that can be generated up to time T assuming
that wave strengths are given exactly by the leading order linear and quadratic
effects at interaction, these effects being determined by the Lie bracket structure
constants at the state ύ alone. In this way, F* is defined so that the change in
V* between the incoming and the outgoing waves of an interaction diamond is
non-positive except for third order errors; while the functional β* decreases by
order D, the sum of the products of approaching waves entering the diamond, when
the supnorm is small. The method of reorderings thus allows us to use analogous
definitions of the functionals to Glimm's, only now they are exact at the quadratic
level, whereas Glimm's were exact only at the linear level. In this way, the errors
in our quadratic model (compared to the fully nonlinear problem) are third order.
We demonstrate that the error between the change in the functionals recorded at the
quadratic level and the change recorded in the full nonlinear problem is bounded
by a third order error equal to the supnorm of the solution times D. Specifically,
(we use the same notation as [17]),

P(J+)-P(J-)^KPSD, (1.14)

V*(J+) - FV_) ̂  KrSD , (1.15)
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and

(1.16)

where KP, Kv and Xρ are positive constants that can be fixed apriori. We reiterate
that in the large variation problem we must incorporate all future quadratic effects
of interactions up to time T into the definitions of the functionals V* and Q*; and
moreover, the quadratic effects represent the dominant contribution to the magnitude
of these functionals. The functionals are constructed to satisfy the estimates (1.15)-
(1.16) so that we can apply the proof strategy set out in [14]. (See also Glimm's
original paper.)

If we let the "quadratic model" refer to the model for wave interactions in which
the scattered waves are determined exactly by the Lie bracket structure constants at
the state w, then the value of the functionals V*, P and Q* on a given sequence of
waves is determined entirely at the quadratic level; and the problem of estimating the
"third order errors" between the quadratic model and the full nonlinear problem, is
equivalent to the problem of the continuity of the functionals defined at the quadratic
level alone. The d-norm works perfectly for this method of analysis because it is
stable under perturbation by a set of waves which sum to an arbitrarily small total
variation. The third order errors introduce such waves into the scheme that are
not accounted for at the quadratic level. In fact, the generation of wave strengths
in the full nonlinear problem is a small perturbation of the strengths computed at
the quadratic level alone, so that the quadratic system plays the same role in our
argument that the linear system plays in Glimm's original argument.

Although we address the problem of 3 x 3 systems that have the same Lie
bracket structure as Euler, our method of reducing the nonlinear problem to the
problem of obtaining estimates up to the quadratic level, applies in principle to the
large total variation small oscillation problem for systems of conservation laws in
general. In order to state the general results that our methods can establish, we now
discuss the mathematical issues in more detail.

The key to getting bounds in Glimm's method lies with the quadratic error po-
tential Q, which is the global extension of the local interaction error. The potential
Q is constructed by a priori inserting an error term for each pair of approaching
waves, so that this term may be removed from Q when those waves interact. To
motivate the definition of Q*9 note that the errors due to two consecutive groups
of interactions (reorderings of waves) should be the sum of the errors due to the
reorderings taken separately. We then need a continuity property to account for
higher-order errors. This is the statement that the potential is stable under small
perturbations of wave strengths. We extend the method of reorderings to include
in Q* all of the additional approaching waves generated by cumulative quadratic
effects, so that <g* is exact at the quadratic level. The new feature in our potential is
that the interaction terms are given by wave strengths at the time of interactions (as
estimated by projecting forward the quadratic effects of earlier interactions), rather
than the initial wave strengths. We then show that continuity of the functional Q*9

uniform in mesh length Ax, is sufficient for the existence of solutions to general
systems. In general, our bounds will depend on time and other factors, and restric-
tions used in bounding Q* represent restrictions on the solution. Our methods are
sufficient to prove the following theorem that applies to any system of conserva-
tion laws (1.2) that is strictly hyperbolic, and either genuinely nonlinear or linearly
degenerate in each characteristic field: (We let ||wo||oo = Sup|wo( ') — u\, which is
equivalent to the oscillation since ύ = UQ(-OO).)
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Theorem 2. Suppose that the nonlinear functional Q* is bounded and continuous
with time-dependent bounds. Then given any T and Vo, there is an ε — ε(Vo, T) > 0
such that if the initial data UQ of the Cauchy problem (1.2) satisfies

Halloo us and TV(u0) £ Vo ,

then the conservation law admits a weak solution up to time T with bounded
oscillation and total variation. Moreover, the total variation of the solution is
bounded by V*(t = 0) + O(s).

Note that for resonant systems, Theorem 2 is vacuous after the blowup time,
because Q* will not be bounded.

We now discuss the class of systems considered in this paper. Motivated by gas
dynamics, we restrict ourselves to the class of 3 x 3 conservation laws possessing a
Riemann coordinate w. We show in the next section that after normalization, such
systems have the same (unsigned) Lie bracket structure constants as does (1.3).
The existence of the Riemann coordinate means that for smooth solutions, we can
derive a transport equation

wt + λk(u)wx = 0

for the Riemann coordinate. This represents a weak decoupling of that family from
the system, in that w is constant along ^-characteristics

and so no growth in w occurs in smooth regions. Although the formation and inter-
action of weak shocks generates "entropy" w, this is a higher order effect which
does not change the qualitative behavior of solutions. Indeed, the change in en-
tropy upon shock formation and interaction is cubic in incident wave strength, so
is neglected in our quadratic model. This allows us to treat the degenerate field
as a static background source for the generation of sound waves. Moreover, the
assumption means that all sound waves interact linearly up to cubic errors, which
can again be ignored.

With these assumptions, we can describe the scattering of sound waves in our
quadratic model, as follows. A single interaction of a sound wave with a contact
causes a sound wave of the opposite family to be reflected, whose strength is the
(weighted) product of the incident wave strengths. This reflected sound wave then
interacts with other contacts, so that a pattern of multiply reflected and transmitted
waves emerges. Our assumption implies that we can treat each scattered sound wave
separately, and combine these linearly. We refer to a single scattered wave and its
trajectory as a path.

A path is thus given by an initial wave, together with a list of interactions,
where after interaction the path follows the reflected wave. We need only consider
interactions between sound waves and entropy jumps. The strength of the wave con-
tributed by an interaction is then the product of the incident sound wave strength
with the corresponding entropy jump, and this entropy jump is determined by the
initial configuration. The contribution due to a single path, which is a series of inter-
actions, can then be calculated, and adding up contributions due to each path yields
the following path integral formula. The solution is represented in the quadratic
model by a sequence of individual waves y = (yi,...,yn), and the interactions up
to a certain time are represented by a reordering τ.
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Theorem 3. Suppose that the initial approximation is represented by y and the
approximation after reordering is δ = τy. Then the reordered sound wave δt at
position /, (which represents the relative position of a wave in an approximate
Glimm scheme solution), is given by

<5ί = Σ 7 / Σ Λ ( * » Σ Ύkr-ykr,
j r ΠrUJ)

where Πr(j, i) is the collection of paths starting at j and ending at ί and consisting
of r interactions. Here yy is the sound wave initially at position j , and the y^s
are the strengths of the contacts which determine a particular path (the indices
j and k refer to relative wave positions)) A is a weight which is independent of
wave strengths.

Once we have found this formula, we look for bounds for the functionals. Our
approach is as follows: first suppose that each entropy jump is bounded by β. The
contribution of a single path with r interactions is then (βΛ)r. We are then left
with the task of counting the number of paths which connect j to / through r in-
teractions. To count the paths, we observe that a path starting at a fixed point
can be determined by a sequence of interaction times t\ < < tr. Thus the
number of paths is bounded by the number of choices of times tq = qΔt, that is
(T/Aty Combining these and using the binomial theorem then gives an exponen-
tial bound for the total variation generated by a single sound wave. Although this
bound depends on the mesh length Ax, a similar argument is used to get bounds
independent of Ax. For this, instead of considering each entropy jump separately,
we group paths into "blocks" contained in x-intervals of length d, each of which
generates only a small amount of growth. We overestimate the contribution due to
each block by adjusting the length scale d downward, and count the number of
decompositions into blocks as above. In this way, we get bounds for the Glimm
approximation, uniform in the mesh length Ax.

Theorem 4. If the sequence y is such that its d-norm δ satisfies

6Λδ < 1/2, for some fixed d > 0 ,

then the total variation of the reordered sequence τy is bounded, and satisfies

V(τy) S V(y)+V(y)Qxp(SΛδTλ/d).

In particular, this bound is uniform as the mesh size Ax —> 0. Here λ and A are
constants determined by the flux.

As a corollary, we get the following (precise) re-statement of Theorem 1 which
gives a large time large variation existence theorem for the Euler equations. This in-
cludes the important case of space-periodic solutions. In particular, we have shown
that the Euler equations are non-resonant, so that solutions do not blow up in finite
time.

Corollary. Suppose that system (1.2) possesses a Riemann coordinate w. Suppose
also that we are given large numbers Vo and Γ, and positive d. Then there exists
an ε > 0, such that if the initial data satisfies

TV(u0) < Vo, IKHoo < β and \\uo\\d = δ < 1/12/1,
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then a weak solution u(x,t) G °ll exists up to time T. Moreover, this solution has
exponentially bounded total variation,

TV(u(-,t)) < TV(uo)exp(SλΛδt/d) + O(ε),

with similar bounds for the other norms. The finite speed of propagation then
gives the same result for periodic initial data uo, in which case the initial bounds
apply on an interval of dependence up to time T.

Note that Vo and T can be arbitrarily specified, as long as the sup-norm of the
data is small enough. The constants λ and A are bounds for the wave-speed and
interaction coefficients, respectively, and are determined by the flux. The requirement
that δ < \JY1A serves to identify the appropriate length scale d.

Our theorem includes the case of initial data having Lipschitz continuous en-
tropy. If the entropy W{UQ) is Lipschitz, the ratio δ/d is bounded by the Lips-
chitz constant, and the theorem holds, where now the length-scale d is determined
by the Lipschitz constant K, namely d < 1/12ΛK, and the corresponding growth
rate is Qxp(SλΛKt). The Lipschitz norm has a length scale built in, but unlike the
d-norm, is not stable under perturbation by weak waves, and so is not suitable
for our analysis.

As a final comment, we note that one does not expect solutions to the equations
of gas dynamics to grow exponentially, since the thermo-dynamic entropy is convex.
In this case, the extra requirement that the total entropy J S be non-increasing
seems to proscribe growth of the Z2-norm of solutions. This convexity of entropy
is an extra symmetry, forcing the non-zero interaction coefficients to have opposite
sign, which in turn leads to cancellation among newly generated waves, see [16].
In contrast, the system (1.11) is constructed to have constant wave-speeds and to
possess a 2-Riemann coordinate, so that the nonlinearity is entirely manifested in the
geometric coupling of different wave families. Moreover, although system (1.11) has
the same nonzero Lie bracket components as the Euler system (1.3), the interaction
coefficients in this example have the same sign, not alternating signs like Euler, and
this is essential for the argument in [18] demonstrating that periodic solutions of
(1.11) exhibit exponential growth, with growth rate given exactly by O(KT/d), as in
the theorem above. This example indicates that the length-scale d and corresponding
J-norm are the correct quantities needed to describe the mechanism for growth of
solutions identified here and it means that, in the absence of extra assumptions,
our theorem is sharp.3

The paper is organized as follows. In Sect. 2, we recall Glimm's method and
show that norms can be measured in terms of wave strengths. In Sect. 3, we re-
call and extend the method of reorderings and interaction maps, and describe the
effects of the interactions represented by a reordering. In Sect. 4 we define the
functionals and describe their properties. In Sect. 5 we carry out the induction for
Glimm's method and prove Theorem 2. These results can be extended to general
systems at the cost of clumsy notation. We then restrict ourselves to systems with
a Riemann coordinate, and in Sect. 6 we define paths and derive the path integral
formula. In Sect. 7, we count paths and show that the functionals are bounded and
continuous.

3 See [1] for an interesting new regularity result for solutions generated by Glimm's method
that is related to the problem of the stability of solutions in the ί/-norm.
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2. Preliminaries

2.1. The Glίmm Scheme. The proof of Theorem 1 is based on an analysis of ap-
proximate solutions generated by the Glimm scheme [3,13]. Our procedure is to
obtain bounds for Glimm-type functionals that take account of interactions up to
the quadratic level, and then to apply a general method of analysis that estimates
norms for solutions in the fully nonlinear problem by these functionals. The gen-
eral method for reducing the problem to the quadratic level applies in principle
to an arbitrary N x N system - and we really need only restrict to 3 x 3 systems
possessing a Riemann coordinate in order to demonstrate that our Glimm-type func-
tionals are bounded and continuous. (The presence of resonance demonstrates that
boundedness and continuity of the functionals will fail in general without special
assumptions that restrict the Lie algebra of the eigenvector fields r\) Thus we now
develop the theory for N x N systems and we do not restrict to 3 x 3 systems until
Sect. 6. However, to keep notation as simple as possible, in Sect. 3.2 we describe
the interaction maps in detail only for 3 x 3 systems.

We begin by recalling Glimm's approximation ΰ of the Cauchy problem (1.2),
and establish notation. We also describe Glimm's space-like /-curves, and define the
functionals which will be used to show that the oscillation and total variation of the
approximation are bounded for all times t. The bound on the oscillation allows us
to define the approximation for all times, and the bound on total variation is used
to extract a subsequence of approximations which converges to an exact (weak)
solution of (1.2) as the grid size tends to zero.

We partition R x R + by setting Xj = jΔx and tk = kAt, where j and k > 0 are
integers. The Glimm approximation consists of Riemann solutions pieced together in
such a way that ΰ is an exact weak solution in each of the strips tk < t < tk+\. Let
a — (αi,fl2? ) be an infinite equidistributed sequence, with each a^ taking values
in the interval (—1,+1); see [3,8,13]. This is the random sampling sequence, which
is used to choose the approximation ύ on the line t = tk. We use a staggered grid
with sampling points θj £ R x R+, where j + k is odd, defined by

ή = (Xj + akAx9tk). (2.1)

We define ΰ as follows: for each j an odd integer, define constants u® e °ll
by t/j = UO(XJ). Supposing that we have defined ύ(x,t) for all x e R and t < tk,
together with constant states wj, for all integers j and / < k with j + / odd, we
show how to define the approximation ϋ(x,t) for times t < tk+\. For each integer
j such that j + k is odd, define the constant Uj by

ukj = ύ(θkj-) = lim ΰ(xj + akAx,t), (2.2)

and define ΰ on the line t = tk by

ΰ(x,tk) = tή, for Xj_x < x < xj+ι . (2.3)

Now define the approximation ύ in the strip tk < t < tk+\ by solving a Rie-
mann problem at each grid point (xj+\,tk). The Riemann problem is the initial value
problem for a jump discontinuity between constant states. We let (uL\\uR) denote
the solution of the Riemann problem for left state uι and right state UR, which
consists of a sequence of admissible elementary waves (shock waves, rarefaction
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waves, or contact discontinuities), one from each eigenfamily, as first constructed
by Lax, cf. [2,13]. Thus, in Glimm's scheme, for each i (= j -f 1) with i + k even,
we solve the Riemann problem (wf_1||wf+1), centered at the point (xutk) Therefore,
we have N waves leaving each point (xi,tk), with the constant states u\_λ and uk

i+x

to the left and right, respectively. These "local" Riemann solutions can be pieced
together to give an exact solution along the vertical segments x = xj,tk < t < tk+i,
for those j for which j + k is odd, since the adjacent Riemann solutions share the
states Uj.

This construction is valid as long as the individual waves do not meet: we thus
impose a Courant-Friedrichs-Lewy (CFL) condition. This asserts that the mesh
sizes in the grid are chosen so that

Δx > At s u p {\λi(u)\ : M G ^ } . (2.4)
ί

We now describe Glimm's /-curves and establish notation for the sequel. We wish
to bound the sup- and T.V.- norms of the approximation ΰ( 9t) as a function of x
for each time t. Notice, that for all times t between the lines t = tk and t = ί^+i? the
approximation w( ,t) consists of exactly the same constant states and intermediate
waves. It is therefore necessary only to keep track of the waves occurring in the
scheme. We define the functionals on the class of /-curves in terms of those waves
which cross each /-curve.

An /-curve is a continuous space-like curve made up of line segments joining
sampling points θj and either θkj~l or 0*+j (but not both). In other words, an /-curve
is given by the assigning to each integer j a positive /(y), with j + l(j) odd,
satisfying l(j + 1) = l(j) ± 1, and the /-curve consists of the segments connecting
all points θf^ and θι^ι\ For each integer k ^ 0, there is a unique /-curve Jk
connecting all points θ^and 0*LJj}. Thus all waves appearing in the scheme between
times tk and tk+\ cross the curve Jk. In particular, Jo is the unique /-curve which
meets all mesh points on the line t = 0.

The /-curves admit a partial ordering given as follows: curve Jf' precedes curve
J" if the curve J" lies towards later time; that is, if θfJ) and θjU) lie on J' and
J", respectively, then l(j) ^ l'(j) for each j . Clearly Jo is the minimal curve. If
J+ is an immediate successor of J_, then there is a single integer / , such that
l-U) = 1+U) for j + / , and / + ( / ) = /__(/) + 2.

The difference between these curves J + and J- forms the diamond Aj centered
at the point (Xj,tk), where k — / - ( / ) + 1. That is, the diamond Aj consists of the
segments joining the points θj_{ to θj±ι and θj±ι to θj+ι. Thus for each j and
k > 0 withy + k even, there is unique diamond Aj enclosing the mesh point (Xj,tk)
We can compare diamonds to /-curves, by saying that a diamond A precedes / if
it lies below J , or simply if the point (xjJk) enclosed in the diamond lies below
the /-curve J. Figure 1 is a schematic of the Glimm approximations together with
/-curves and a single diamond.

We shall be considering those waves which cross a particular /-curve J, and
we shall write γj E J if the wave y7 crosses J. By a sequence of waves we mean
a collection γ = (y\9...,y») of consecutive single waves yj separated by constant
states, which are usually suppressed. Thus there is a single constant state uj between
the waves yj and yy+i, and Uj is connected to Uj-\ by a wave strength y7. We write
y — (y1 ?.. .,yn) C J for a sequence of waves crossing J. Similarly, we refer to
waves and sequences thereof entering or leaving a diamond A. If the single wave
yj is a &-wave, we shall say that it is in the kth family.
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\Λ V

Fig. 1. The difference scheme

2.2. Norms. Glimm's original analysis uses the oscillation and total variation norms,
given for a function u(x) by

and

t|| = sup \u(x) — u(xf)\ , (2.5)

i = sup Σ \u(xi+\) — u(xi)\ , (2.6)

respectively, the sum being taken over increasing finite partitions {*,-}. Note that the
oscillation is equivalent to the sup-norm if an origin u is specified, but the former
is more convenient for our purposes, and we shall use both terms to mean the
oscillation. We always assume that solutions take values in a small neighborhood
% of u.

In this paper, we shall also require an estimate of the local variation of the
solution over intervals of length d. We thus define the d-novm

\\u\\d = sup TV[a,a+d] (μ( ))
a

to be the maximum variation of a function u(x) over intervals of length d. Note
that the <i-norm increases at most linearly with d, \\u\\d+d' ^ \\u\\d + ||«||</' In the
sequel, we shall require that the d-norm be small for some positive d, and the
largest d for which this is small enough will determine the lengthscale on which
wave interactions produce no significant growth effect. Any growth in solutions is
driven by cumulative wave interactions on the larger lengthscale of the support of
the solution. Our requirement that the d-norm be small represents no real restriction,
according to the following lemma.

Lemma 2.1. Suppose that the total variation of w( ) is finite. Then, given any
ε > 0, there is a positive d {depending on the function u) such that

NU ^ IMI (2.7)

where llwll is the oscillation.
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Since we are restricting ourselves to solutions with small oscillation, we can
always arrange that some <i-norm is small by choosing ε small enough in the lemma.
Our lengthscale is then determined by finding the largest d such that the d-noτm of
the solution is smaller than some constant which depends on the conservation law.
In the lemma, our choice of d depends on the function u, so that the lengthscale
is determined by the initial data. We shall see that this lengthscale in turn affects
the rate of growth of solutions.

Proof. Suppose that the total variation of u{ ) is given by V, and let η be given.
Choose some partition x0 < x\ < < xn such that the total variation calculated
by summing over all indices but one is near F, that is

V < Σ \u{xM) - u(xi)\ + \u(Xj+ι) - u(xj-ι )| + ε ,
ίφy-lj

for each j . Now let

d = min |x7- — x/_i| ,
I

and let any interval [a, b] with b — a g d be given. Then there is a j such that

Xj-i S a ύ b S */+i> and so we have

Σ \u(xi+1) - u(Xi)\ + TV[aM(u) £ V .

Thus we obtain

TV[a,b](u) < \u(Xj+\)- u(Xj-i)\ + S ,

and the lemma is proved. D

Our approximations are built up from Riemann solutions, so that they are piece-
wise constant with interpolations between (some of the) constant states, and can be
treated as piecewise constant when considering oscillation and variation norms. It is
convenient to consider functionals which are equivalent to these norms, but which
are defined in terms of wave strengths without explicit reference to the intermedi-
ate states. Our notation is as follows. We consider the sequence of constant states
{WO,...,MΛ} separated by the wave sequence γ = (γl9...9yn) of index (c\9...9cn)9

cf. [17]. This means that the wave separating constant states w/_i and w, is a wave of
(signed) strength yt from the cf family, where ct lies between 1 and N. (Although
we can consider any wave sequence y = (y\,...,yn), we have in mind sequences of
consecutive waves along an /-curve of the Glimm scheme.) We define the strength
of a wave yz of the cf1 family with left state uι and right state UR by

yi = lCι(u).(uR-uL), (2.8)

where lCi(β) is the cf left eigenvector of Df evaluated at the origin ύ. (We let
7/ refer to both the wave as well as the signed strength of the wave.) Note that a
given normalization of the eigenvectors {rJ} determines the wave strength measure
(2.8) through the normalization

For genuinely nonlinear fields, a positive strength means that the wave is a rare-
faction, while a negative strength indicates a shock. For any wave sequence
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y = ι ..,yπ), we define

i=\
and S(y) = max

Ά<J2

n

Σ 7!
i=J\,Ci=r

B. Temple, R. Young

(2.9)

where the latter denotes the largest sum of signed strengths of consecutive waves
in the same family that occurs among 7i,...,y«. This measure of the sup-norm
accounts for cancellation between shock and rarefaction waves, cf. [17]. Similarly,
we define a functional for the local variation of the entropy,

i k=i

where the sum is over 2-waves (c* = 2 ) , and the distance between the 2-waves yt

and 7/ is less than d. Note that the limits of the sum in the definition of H will
depend on the mesh size Ax <C d. It is convenient to define the strength of a 2-wave
by the difference in the Riemann coordinate (entropy jump) across the wave.

These functionals are exact forms of the corresponding norms for linear equa-
tions, and the following lemma shows that they can be used for the nonlinear case
as long as the oscillation is small enough.

Lemma 2.2. If the total variation of the approximation ΰ is bounded and the oscil-
lation is small enough, these quantities are equivalent as norms to the functionals
V and S defined in (2.9), respectively. For each k, we have

(2.10)

where 0(1) is a constant depending on f and V. Here r( denotes the ith right
eigenvector of the matrix Df, evaluated at the extreme left state u$. In the sequel
we assume that w0 = UQ{—OO) — ύ is fixed.

The advantage gained by using the functionals S and V comes in being able
to evaluate these quantities in terms of the wave strengths only, without having to
know the intermediate constant states Uj explicitly.

Proof Here and later, unless explicitly shown, all vector quantities are evaluated at
the state UQ — u, which we treat as the origin. Let O\ denote a constant depending
only on / . According to Lax's solution of the Riemann problem [2], we have

uk = uk-ι (2.11)

which we rewrite as

We immediately obtain

S(γ) = sup = sup
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Similarly,

433

>(1 + N ) , (2.12)

so that V(γ) and TV(ύ) are equivalent. We now show that some multiple of S
bounds the oscillation | |ΰ| | .

Define

n=Σ\

= uk- [uo+ Σ Ίjr°
V

and
= max \Ej | ,

7 = *

so that we must find a bound for each Ak. From (2.11) we get

w*+i = uk + y/c+i rCk+ι + |yjfe+i|Oi(S' + |ŵ  - uo\),

where r^+! is evaluated at wO Then

\Uk - Ek-

Σ yjrq

^k, Cj=q

so that
-Ak ^

Taking AQ = 0 and summing, we get

it+l

7=1

We now write |y^+i| = Vk+\ — Vk, and view Ak as a function of
have a discrete Gronwall inequality,

k+\
Λk+ι S OλSV

Thus,

k, so that we

7=1

where (9(1) depends on / and V, and the lemma is proved. D

We note that by extending this expansion to include exact second order terms,
a similar result holds, namely

irCi + \ Σ ykCi Σ
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Note that for large V, the quadratic terms in this expansion are of size O(SV), and
so are comparable to the linear terms.

2.3. Riemann Coordinates. We recall the definition of a Riemann coordinate, and
note the difference between Riemann coordinates and Riemann invariants as defined
by Lax. In this paper, we shall exclusively deal with Riemann coordinates.

Definition 2.3. A λ>Riemann coordinate for system (1.2) is a function w : % —> R
whose gradient Vuw = h(u) is a kth left eigenvector of the flux matrix Df, so that

for the corresponding eigenvalue λk(u).

The definition implies that for smooth solutions, we can derive a transport
equation

wt + λk(u)wx = 0

for the Riemann coordinate, although we cannot in general rewrite this in conserva-
tion form. This represents a weak decoupling of the Riemann coordinate from the
system, in that w is constant along ^-characteristics

dx

and so no growth in w occurs in smooth regions. Although the formation and
interaction of weak shocks generates "entropy" w, we shall see that this is a higher
order effect which does not change the qualitative behavior of solutions.

We remark that this definition is more restrictive than Lax's definition of a
Riemann invariant, namely a function v satisfying rk Vϋ = 0. Riemann invariants
always exist for each family, but the existence of a Riemann coordinate implies
the presence of certain symmetries. Indeed, a £-Riemann coordinate is a y-Riemann
invariant for each jή=k, and these are equivalent for 2 x 2 systems, but Riemann
coordinates do not exist for general systems of three or more equations.

In the equations of gas dynamics, a consequence of the Law of Thermodynamics
is that the entropy S is a Riemann coordinate. We interpret the entropy equation
(for smooth solutions) as saying that changes in entropy are advected, but as there
is no source term in the equation, no entropy is generated to leading order. Indeed,
we shall see that all changes in entropy due to interactions of weak shocks are
cubic in wave strength.

In the sequel we restrict our attention to 3 x 3 systems that possess a 2-Riemann
coordinate, and we will refer to this as the entropy. For systems with a Riemann
coordinate, the corresponding Lie algebra structure constant, or "interaction coef-
ficient," vanishes. The following two lemmas provide a canonical form for the
structure constants, cf. [19]. We include the proofs for completeness.

Lemma 2.4. Let the Lie algebra structure constants λf be defined by

[r\rk] = YjAfri, (2.13)
i

and assume there exists a p-Riemann coordinate. Then we have

ΛJ* = 0 forallj,k. (2.14)
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Moreover, for general hyperbolic systems (1.2), a judicious choice of normal-
ization of the eigenvector fields {r1} can further simplify the structure constants at
the state ύ:

Lemma 2.5. Assume (1.2) is hyperbolic. There exists a normalization of rι such
that

Λ{k(u) = 0 for i=j or i = k . (2.15)

Proof To establish (2.14), assume first that

Vw = h{u),

so that

(rJ-V)w = δij. (2.16)

Now differentiate (2.16) along rk to obtain

(r* Vr7') Vw + D2w{rk,rj) = 0 . (2.17)

But since D2w(rk,rJ) is symmetric in (rk,rJ), we conclude from (2.17) that

U (rk Vr-7' - rj Vr*) = /,- - [rk,rj] = 0 ,

from which (2.14) follows directly.

To establish (2.15), we must normalize the vector fields in such a way that all
the coefficients ήf vanish at the point ί e f , unless z, j , and k are distinct.

To this end, suppose that for each p, we are given a function zp, with

Zp(u) = 0 and Vuzp = ^ flp7 /;

y

for some functions aPJ . We form the vectors

so that r̂ lw = rp\a, and calculate directly that

rJ VMr^ = ^(βit/' * + rj . Vr^) . (2.18)

Now, if/Γ/ are the interaction coefficients corresponding to the r^'s,

sLj — ti \r , r j ,

we have
A[k = ^^-^{akjδik + Λf - α ^ ^ ) . (2.19)

We now choose the functions z^, which determine α̂ y, in a convenient way. We
would like to set a^ = A^', so that yί^7 = 0, for each k+j. To do this throughout
the neighborhood % is not generally possible, but we can do it at the origin ύ.

For example, we may choose

so that throughout °U,

ίp (fp VfP) = <?p(app + ip (rP • Vrp)) = 0 .
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γ α β
αβΛ3

Fig. 2. Interactions

This choice of the function app amounts to rinding a solution zp of the first order
equation

rP >Vzp = -ίp (rp -Vrp)

in tfl, where the right-hand side is known. This equation can be solved for prescribed
Cauchy data on any non-characteristic hypersurface. We choose this surface and data
so that the interaction coefficients vanish at the point ύ. For example, we choose a
hyperplane whose tangent space at ύ is the span of the vectors 4, where jή=p, and
take Cauchy data zp which satisfies

Vzp so that r* - Vzp\a = for

Now, since apj = rJ Vzp, we conclude from (2.19) that

Ajk(u) = Λf(u) for z, j and k distinct, and

Ajk(u) = 0 otherwise . D

In Sect. 6 we restrict to 3 x 3 systems in which the eigenvector fields {r1} are
normalized so that (2.14) (with p = 2) and (2.15) hold, in which case the only
nonzero coefficients Aik at the state ύ are

and
Ax = A\\ύ),

A, = Af(ύ).

(2.20)

(2.21)

2.4. Interactions. The Riemann problem is the initial value problem in which the
data consists of two constant states, whose solution consists of N + 1 constant
states separated by elementary waves. Suppose we are given two adjacent Riemann
solutions, α separating uL from uM, and β separating uM from uR. The Riemann
interaction problem is to resolve the Riemann problem with constant states uι and
uR, and to express the resulting waves in terms of the strengths α and β. If the
resulting waves are given by ε̂ ? then we have

Si = di + βi + + O(\\u - uo\\)D(oc,β% (2.22)

where A\ = Aj \a are the interaction coefficients, given by the Lie brackets of
eigenvector fields (2.13). Estimate (2.22) is a refinement of Glimm's original es-
timate, cf. [17]. Here D is a quadratic functional measuring the amount of wave
interaction, and is defined as follows: we say two waves are approaching if they
would eventually interact in the absence of all other waves; this is the case when
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the wave starting on the left is in the faster family, or both waves are in the
same family and one of them is a shock. The amount of interaction D is then
defined by

D(*,β)=Σ\"pβg\> ( 2 2 3 )
App

the sum being over all approaching pairs of waves. Note that all second order terms
in the estimate (2.22) appear in D, so that

εi = ai + βi + O(D), (2.24)

and moreover the coefficients Λjk in (2.22) can be evaluated at the origin ύ rather
than at the specific states uι, etc.

Restricting to 3 x 3 systems possessing a Riemann coordinate, we assume that
Λ\ and Λ$ given by (2.20) and (2.21) are the only nonzero interaction coefficients
at the state ύ. With these simplifying assumptions, we can represent the interactions
which occur schematically, with all strengths of outgoing waves given to within
a third order error, as in Fig. 2. We again mention the fact that no new entropy
waves are generated to leading order. This observation will be crucial in Sects. 6
and 7, and indeed it is known that without some assumption being made, solutions
can explode in amplitude in finite time, [5,18].

3. The Method of Reorderings

We recall the method of reorderings and define the nonlinear functionals which will
be used to bound the oscillation and total variation of the Glimm approximants. The
main idea in Glimm's analysis is to build a decreasing potential which measures
the errors produced from future interactions. For initial data having small total
variation, this potential was constructed by Glimm, and was shown to be bounded
by the square of the total variation. Similarly, in case there is a coordinate system
of Riemann invariants, a quadratic functional is sufficient.

However, in general systems of three or more equations, when the initial total
variation is large, the quadratic effects of interactions become important and lead to
a variety of destabilizing phenomena. In this case we must update the potential for
interaction effects as new waves are scattered by earlier interactions.

It is enough to consider only quadratic effects, as these control higher order
effects. It is important to note, however, that for general systems, it is not possi-
ble to bound the quadratic effects, and the solution may grow unboundedly unless
restrictions are placed on the Lie algebra of eigenvector fields. Our discussion is
general, but the notation for the interaction maps is developed in Sect. 3.2 only for
3 x 3 systems possessing a Riemann coordinate.

3.1. Reorderings. We briefly recall the theory of reorderings introduced in [17], and
use these to build the nonlinear functionals. Our notation is as follows: we suppose
that the mesh-size Ax is fixed, and consider the Glimm approximation corresponding
to this mesh-size on a given spacelike /-curve. By finite speed of propagation we
assume without loss of generality that the approximation is compactly supported.
The approximation then consists of a sequence of constant states {uo,...,un}9 each
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pair of states being separated by a single wave. We shall refer to the wave sequence
γ = (γι,...9γn), where the wave yt separates the states «, _i and w, . If yt is a c -wave,
we say that (c\9...9cn) is the index of the wave sequence. The index c, identifies
the family of yi9 so that the wave strength determines the wave completely; for this
reason we do not distinguish between the wave and its strength.

We shall model the evolution of the Glimm approximation through changes in
this wave sequence, as follows. The propagation and interaction of waves corre-
spond to changes in the order of the wave sequence, and consequent changes in the
strengths of the individual waves. We shall model these phenomena in an abstract
setting, thus reducing the problem to an algebraic one. The symmetric group Sn acts
on the waves by permuting them, and we shall also allow waves to merge. This
allows us to more accurately capture interaction errors and nonlinear decay, while
requiring more care in definitions. We shall first consider a large class of maps,
and then restrict to those which are admissible, both from a physical point of view,
and as determined by Glimm's scheme.

A surjective map τ : {1,...,«} —•> {l,...,/w} defines an action on sequences of
n waves through permutation of subscripts. That is, the map τ acts on the wave
sequence y — (71,...,y«) by shifting the wave yz from position / to position τ(ί).
If the new sequence is δ — τ(y), we have δτ(η « y, , these being equal at the linear
level. We say the map τ reorders, or is a reordering of, the sequence y. We similarly
define the action of τ on the index c = c(y) by permutation of subscripts. In order
for the reordered index to be single-valued, we shall require that if τ{ϊ) = τ(j),
then Ci = Cj. This corresponds to the collapse of two waves of the same family into
a single wave. Note that an abstract reordering keeps track of the possible future
relative positions of the original waves, but does not tell us actual positions, nor
how the strengths of these waves change.

We can define a composition of maps as long as we take care that domains and
ranges match up correctly, for example, if τ maps n numbers to m and σ maps m
numbers to p9 then the composition στ is a well-defined map of n numbers to p. In
the sequel we shall implicitly regard all compositions as consistent, without further
regard for the domains of maps.

The permutation τ identifies the positions of the reordered waves, but also carries
information about the interactions that must have occurred in reordering the waves.
In order to get at this structure, we define the crossing set Cτ by

Cτ = {(./,*) \j<k and τ(j) > τ(*)} ,

so that Cτ identifies the initial positions of those pairs of waves which will cross
under the action of τ. Similarly, since our maps are not necessarily injective, we
identify the merge set

Mτ = {(M) I j < k and τ(j) = τ(k)} ,

consisting of those pairs of waves which are joined under the action of τ. It is
convenient to define the interaction set Iτ as the union of crossing and merge sets.
We extend the action of σ, and refer to the pre-image under σ of Cτ as

σ'Cx = {(j,k)\(σj,σk)eCτ},

with similar notation for other sets.
We now isolate those maps which give rise to "physical" reorderings of waves.

Due to hyperbolicity, in order for a pair of waves to cross, that is to pass through
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each other, the wave on the left should travel faster than that on the right. Physically,
waves in the same family may merge to form one wave, but never cross. Thus for
a reordering τ of the wave sequence y, we require that in order for the waves y,
and yk to cross (where j < k), the wave yy should be in the faster family, while
waves which merge should be in the same family. We express this symbolically as

Condition R: For every pair (j\k) e Cτ, we must have Cj > q , (R) while if
(j\k) G Mτ, then Cj — c#.

We say that the reordering τ of y is admissible if it satisfies (R), and we write
τ e A(γ), where A(y) is the set of all admissible reorderings of the sequence y. We
note that the set A(γ) is determined only by the index c = c(y) of the sequence,
and does not depend on the strengths (or actual speeds) of the individual waves,
so that any reordering admissible for the sequence y is admissible for all sequences
with the same index as y. We now enumerate some of the properties of admissible
reorderings, which can be derived directly from Condition (R) cf. [17].

The product of admissible reorderings is admissible. Physically, once a pair
of waves has crossed, these waves will diverge from each other, and any pair of
waves can cross or merge at most once. Given a composition of two admissible
reorderings, we express the composite crossing and merge sets as

Cσ τ = C τ Uτ / C σ , (3.1)

and
Mστ =MτU τ'Mσ , (3.2)

where U denotes a disjoint union.
According to Condition (R), even though the inverse τ'(j) of j is not well-

defined, its index <V(y) is. This enables us to check admissibility of a map σ of the
reordered sequence τ(y), by verifying that if (y, k) e /σ, then either cτ/(y ) > cτι^
or <V(y) = <V(&)ί a s appropriate.

In order for a pair of waves to cross or merge, all waves between them initially
must cross or merge with one of them before they can interact. That is, only adjacent
pairs of waves may cross or merge, and any admissible reordering consists of a
series of pairwise interactions of adjacent pairs of single waves. This observation
allows us to factor reorderings into admissible pairwise interactions.

We have two types of pairwise interactions, namely transpositions and joins.
The transposition K = (k : k + 1) flips k and k + 1 while leaving all other places
fixed, while the join φp maps positions p and p + 1 back to p, and adjusts the
other positions accordingly. Thus φp(ί) = i — 1 for i > /?, and other places are left
fixed. In order for these pairwise interactions to be admissible, we require Ck > cjt+i
or cp = Cp+\9 respectively. Note that each join contributes to the merge set only,
while each transposition contributes to the crossing set only, that is

Iφ = Mψ and Iκ = Cκ ,

while Cφ = Mκ = 0. In particular, joins do not contribute to crossing sets, although
they may cause the labels of crossing waves to change.

We shall factor our reorderings into products of these pairwise interactions, and
will make heavy use of induction when considering arbitrary reorderings. Note that
this factorization is not unique, and indeed we shall consider maps with different
(admissible) factorizations to be distinct as reorderings. Thus each reordering has
an implicitly given factorization.
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Each factorization of the reordering σ = λs λ\, where each λr is a join or
transposition, determines a time-like ordering on the interaction set 7σ, as follows.
We say the pair (i,j) interacts before the pair (k, /), and write (i,j) <σ (k, /), if there
is a reordering μ, defined by μ = λm λ\ for some m, under which the pair (i,j)
interacts, but under which the pair (k, I) does not interact. That is, (i9j) <σ (k, I)
if (i,j) G Iμ, while (k, I) (JΞ Iμ. The factorization may be recovered by specifying
an order relation on the set Iσ. We cannot, however, arbitrarily order the crossing
set 7σ, for Condition (R) implies that certain wave pairs will always cross before
others.

Corresponding to each crossing pair (ij) e Iσ of the factored reordering
a — λs λ\, we associate a "subordering" μ of σ, as follows. We set μ to be the
largest reordering μ = λm λ\, under which the pair (i9j) does not interact. Thus
if μ is associated to (i,j), and we set λ = λm+\, then the pair (ij) interacts under
the product λμ, and in fact we must have μ(i) + 1 = μ(j), and Iχ — {μ(i9j)}. With
this notation, we see that (k, I) <σ (/,/) if and only if (k9/) G Iμ. For the product
% = στ of factored reorderings, it is clear that {ij) <π τ'(k, /), for each (i,j) G Iτ and
(A:, /) G /σ, and the relation <π extends the order relations defined by the factoriza-
tions of σ and τ, respectively. We note that not all interacting pairs are comparable:
indeed, if (j,k) G Mτ, and (τi,τj) G Cσ, then both (z,y) and (i,k) G Cσ τ, but these
cannot be compared under <στ.

As was noted in [17], reorderings respect consecutive subsequences, so that there
is a space-like ordering principle for waves generated by interactions with a fixed
wave, namely the order is preserved or reversed. Other properties of reorderings
mentioned in [17] are also valid here. Although the present definition of a reorder-
ing is slightly more general than was used in [17], our claims are straightforward
applications of Condition (R), and more details can be found there.

3.2. Interaction Maps. We now recall the definition of interaction maps, making
some changes for our particular assumptions. When two waves of different families
interact, they generate waves of other families. This effect is accounted for by
changing the strength of a nearby wave in the corresponding family. Interaction
maps keep track of the waves whose strengths change as a result of the interaction.
Thus given a factored reordering σ, an interaction map ισ acts on the crossing set
Cσ as follows: the integer ισ(j,k) refers to the wave whose strength is changed due
to the interaction of the waves y7 and ŷ  We are using reorderings and interaction
maps to model quadratic effects only, and so at this stage will ignore all cubic and
higher-order effects, and treat quadratic effects as exact.

To simplify the notation, we describe the interaction maps for the class of 3 x 3
systems possessing a Riemann coordinate. We refer to this field as the entropy
field, and to the others as acoustic fields. With this assumption, the only quadratic
effects of interactions that arise come from the interaction of sound waves (i.e. 1-
and 3-waves) with entropy changes (2-waves): in this case the affected wave is
simply the nearest sound wave of the third family. We remark that although this
assumption simplifies our notation and definitions somewhat, it is not necessary for
the construction: see [17] for the general construction for systems of N equations.

Before defining interaction maps, we consider in detail what happens inside a
diamond. Here we assume that our sampling is random in time, but uniform in
space. Suppose for definiteness that a 3-wave enters the diamond from the left, and
this is about to interact with a 2-wave entering the same diamond, see Fig. 3. Then
the 2-wave must enter the diamond from the right, and moreover there must be a
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Fig. 3. A Single Diamond

1-wave (possibly of zero strength) entering the diamond between these two waves,
also from the right. Thus the 3-wave first crosses the 1-wave, with no quadratic
effects, and then interacts with the 2-wave, reflecting a quadratic 1-wave to the
right of the original 1-wave. Up to third order, the effect of random sampling is to
combine these waves linearly into a single Riemann solution emanating from the
center of the diamond. For our purposes, we note that the newly generated 1-wave
is combined with the first 1-wave to the left of the interacting pair at the time of
interaction. Similar remarks hold for other interactions.

Using the intuition from the argument above, we now define the interaction
maps. Suppose that we are given a factored reordering σ, which in turn determines
an ordering <σ on the interaction set Iσ. Corresponding to each pair (i,j) G /σ, we
associate a subordering μ. We note that quadratic effects are generated only by pairs
of waves that cross, and moreover, interactions between pairs of sound waves (i.e.
3-waves with 1-waves) generate only cubic effects, and can thus be ignored. We
therefore define the interaction map ισ action on those wave pairs in the crossing
set Cσ which include a 2-wave only.

In contrast to [17], we shall define interaction maps explicitly, and check that
they satisfy the desired conditions. Thus, given a crossing pair (j,k) G Cτ, we let
μ be its associated reordering, and define

? ;
v \ci=c,μ(i)<μ(j)}, if c = 1 ,

min{ί I ct = c,μ(k) < μ(i)}, if c = 3 ,
(3.3)

where c G {1,3} is the index of the third (acoustic) family, which is affected by
but is not part of the interaction. This defines the interaction map for those pairs
of interacting waves which generate quadratic effects. We note that since our def-
inition is explicit, a factored reordering has a uniquely defined interaction map, in
contrast to the general case described in [17], where several interaction maps may
be associated to a single factorization.

We now check that interaction maps as defined here satisfy the conditions stated
in [17]. It is evident from our definition that the interaction maps defined here
satisfy conditions (i) to (iv) stated in [17], when appropriately interpreted. These
conditions imply that interaction maps respect the order of waves, so that those
waves generated by the interaction of consecutive waves of one family with a fixed
wave are also consecutive. The other condition concerned interaction maps for those
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reorderings which are compositions: in this case the condition is not identical, since
our reorderings are not invertible. The correct condition in this context is as follows.
Recall that Cστ = Cτ U τfCσ, and suppose that interaction maps ισ,ιτ and ιστ have
been defined according to the above definition. Then we have

ιστ = ιτ on C τ, (3.4)
and

τιστ = ιστ o n τ ' C σ , (3.5)

which holds because our definition of ιστ(j\k) relies only on the associated reorder-
ing μ, which is well-defined for each interacting pair. Of course, these statements
make sense only for those wave pairs on which the interaction maps are defined.

We remark that instead of defining the interaction maps explicitly as we have
done, we could have defined them by (backwards) induction, as in [17]. An in-
ductive definition requires a choice, because reorderings are no longer invertible.
However, if we require (3.3) to hold for transpositions, then Condition (R) and (3.5)
fully determine the composite interaction map, leading to the above definition.

3.3. Changes in Wave Strengths. Now that we have defined interaction maps, which
identify those waves whose strengths are affected by the interaction of nearby waves,
it remains to give a detailed description of the changes in wave strengths due to
specific reorderings. We shall describe these changes inductively, and later derive a
compact formula for general reorderings. We are interested only in quadratic effects,
and so shall ignore anything that is cubic or higher order in wave strengths.

Our notation is as follows: we start with a sequence γ = (yi,...,yΛ) of waves,
with index c = (c\,... ,cπ). Then the class A(γ) of admissible (factored) reorderings
is determined by c, and we suppose we are given some admissible reordering, say
τ. This has the interaction map ιτ associated to it, as described above. We shall now
describe the reordered sequence δ = τ(y) consisting of the waves in new positions
and with strengths adjusted appropriately. We remark that the index d = τ(c) is
already known, namely dk = cτ/£, which is well-defined by (R).

Recall that we are implicitly assuming that each reordering is factored, and
indeed, different factorizations lead to different results. In order to proceed with the
induction, we first describe the effects of a single pairwise interaction.

Consider the single join φ — φp. As described earlier, this models the merging
of two waves from the same family into one wave. The effect of two nonlinear
waves from the same family interacting is to add their strengths linearly, with
errors of third order. Thus, since we are ignoring cubic effects, we shall simply
add the wave strengths. The two waves to be merged are yp and yp+\. If δ = φ(γ)
is the reordered sequence, we have

δp = yp + yP+i, (3.6)
and

δΦU) = 7/> for y + /?,/?+ 1 . (3.7)

We now consider a transposition, which models the interaction of two waves
from different families. According to our normalization, the incident waves them-
selves are not affected (except for cubic errors). The effect of the interaction is
to generate a new wave in the third family, whose strength is the product of inci-
dent wave strengths, appropriately weighted. Since we are assuming that the second
family has a Riemann coordinate, there are no new 2-waves generated. This was
anticipated in our definition of interaction maps, and simplifies the notation. For
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the definitions in full generality, see [17]. For other families, we do not allow new
waves to be created, but instead adjust the strength of the nearest wave of the correct
family, as described by the interaction map. This is exactly the effect of sampling
in Glimm's scheme, as can be seen in Fig. 3, and corresponds to "conservation of
the number of waves."

We again start with the sequence γ9 and let the transposition be given by
K = (k : k + 1), and we shall describe the reordered sequence δ = κ(y). Let i =
ικ(k, k + 1) refer to the wave whose strength is affected by the interaction, noting
that Ci is that family distinct from those of the interacting waves, namely c^ and
Ck+\. Then, since we are modelling only quadratic terms, we have

<5ιc(i) = li + ΛCiykyk+u (3.8)
and

δκij) = γj9 fory + ϊ . (3.9)

Note that apart from adjusting the strength of yz by the Lie bracket term, we have
also switched the relative positions of y^ and yk+\, as required. In particular, if we
assume the existence of a 2-Riemann coordinate, we have Λ2 = 0, so the transpo-
sition of a 3- and 1-wave pair has no effect on wave strengths.

We now inductively define the reordered wave sequence σ(y) for an arbitrary
reordering σ. Since σ is a factored reordering, we may write σ = λs λ\, where
each λj is either a join or transposition. We simply define

where each successive step has been described above.
Although this definition is unwieldly for reorderings in general systems, we shall

see that in our case it leads to a manageable expression in terms of path integrals.
The advantage in this definition is that it yields an exact expression at the quadratic
level, in the sense that if local interactions were exact at second order, then this
formula would be exact. By contrast, in [17], by considering second order terms
in initial waves only, we get an approximation after two interactions (dropping
brackets of brackets), and the errors so generated become significant when the total
variation is large.

Again, we emphasize that although we have defined the reordered wave se-
quence for special systems, our definitions hold for general systems of N equations.
However, without some assumptions on the interaction coefficients A(9 the reordered
sequences become difficult to work with. Knowing that some solutions blow up, we
must make some assumptions on the interaction coefficients to obtain bounds.

4. The Functionals

In this section we define the nonlinear Glimm functionals and describe the problems
of continuity and boundedness of these functionals. Our aim is to describe the total
variation and sup-norm of the Glimm approximation at large times. Recall that these
approximations are represented at any time step, or, more generally, on any space-
like /-curve, as a sequence of waves. We shall define the nonlinear functionals in
terms of these wave sequences and their reorderings. To obtain bounds on norms
at large times, we must bound the functionals. The functionals include quadratic
effects, and in order to get estimates which include all other nonlinear effects, we
will need a continuity property for the functionals.
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4.1. The Classical Induction. Before describing the functionals and their properties
in detail, we briefly recall Glimm's original argument for bounding the total variation
of the approximate solutions. Given a spacelike curve J , we define the total variation
and error potential by

W = Σ K i and Q(J)=Σ\"j\\*k\,
App

respectively. Here the α/s range over waves crossing the curve / , and the
second sum is over approaching wave pairs, that is those which will interact at
some later time. The local error Q(A) — D(A) for waves entering a diamond is
described similarly.

Since wave pairs interact once only, for any space-like curve J , we have

Q(J) g V(J)2 ,

which we refer to as boundedness of the functional Q (in terms of V).
For the induction step, we argue as follows, referring to Fig. 1 for notation. The

waves entering the diamond A combine linearly in each family, up to a quadratic
error which is bounded by D(A). Thus we have

V(J+)^ V(J-) + aD(A)9 (4.1)

where c is some generic constant depending only on the conservation law. We view
this as a statement of the continuity of V. The corresponding statement for Q is
more interesting. First, there are fewer approaching waves crossing J+, as some
waves have crossed inside the diamond. This means that there are fewer terms in
Q(J+), and indeed the missing terms appear in Q(A). Thus we would like to write

"β(/+) + β(Λ) = β(./-) . M (4.2)

However, this relation is not exact, as some of the waves have changed due to
the interactions in the diamond, so that Q(J+) is defined using waves of different
strengths. We are thus led to a question of continuity: namely, if we change wave
strengths locally (at a single diamond), what is the change in the global functional
β ? Glimm argued that since each wave approaches a subset of all other waves, and
those waves leaving a single diamond may not interact, the total error in Q is the
difference in wave strength multiplied by V, and so obtained the inequality

Q(J+) S Q(J-)~ Q(A) + c2D(A)V(J-), (4.3)

where D(A) = Q(A) bounds the difference in wave strength. We combine (4.1) and
(4.3) by induction: if V(J-) is small enough, say V(J-) < l/2c2, then

so this functional is decreasing. Thus we have the bound

V{J+)

and if Vo is small enough, then the inductive hypothesis is satisfied and we get total
variation bounds, as required. In the sequel we will define β* to be an extension
of Q which includes cumulative quadratic effects in such a way that (4.2) holds
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exactly at the quadratic level, and the higher order errors due to interaction will be
estimated by the continuity properties of the functional Q*.

4.2. Definition of the Functίonals. The above argument required Vo to be small
to get bounds on the total variation for large times. To get results for large total
variation, we must more accurately describe the effects of interactions by taking
quadratic effects into account. We will use the method of reorderings to do so.
In [17], we constructed a potential P for the sup-norm, which included (some)
quadratic effects. In that paper, the boundedness and continuity of this functional P
were discussed, without identifying them as such. Here we shall describe analogous
functionals F* and β* for the total variation and the quadratic error potential,
respectively. Our notation will be that the * indicates that the functional is the
usual functional with cumulative quadratic effects included. For convenience we
will assume the existence of a 2-Riemann coordinate, although the functionals can
be defined for general systems.

In Sect. 2.2 we described the total variation, sup-norm and local d-variation of
a sequence of constant states separated by waves. We shall similarly define all
other functionals in terms of these wave sequences, and the extension to space-
like curves is then clear, namely taking the supremum over all (consecutive) wave
sequences crossing that curve. Thus we suppose that we are given a wave sequence
γ = (yi,...,yw), together with the associated machinery of reorderings described
earlier.

Since we know that time-independent bounds are not available, we shall implic-
itly fix a time T of existence, and restrict the class of reorderings appropriately.
That is, we admit only those reorderings corresponding to interactions taking place
up to time T. Thus, because the system is hyperbolic, certain pairs of waves (ini-
tially very far apart) will not cross in time Γ, even though they are approaching.
Note that the number of interacting pairs still depends on the mesh size. Henceforth
the class of reorderings will be restricted to interactions taking place before time
Γ, and we shall make the dependence on T explicit only when convenient.

In [17], we defined the action of a reordering on a wave sequence, and then
defined the potential P as the supremum of the sup-norm of reordered sequences,
over all reorderings. That is, we defined a new wave sequence ιτy, and defined

P(y) = sup S(ιτy),
τ

the sup being taken over all admissible reorderings and interaction maps. Note that
the sequence ιτy is not the same as the sequence τy described in this paper, as the
present treatment includes cumulative quadratic effects (brackets of brackets).

Our potential for the total variation is analogously defined as the supremum over
reorderings of the variation of the reordered sequence,

V*(y) = sup V(τγ),
τ

Note that our construction included quadratic effects, and so the functional V* should
describe the total variation at large times, except for (accumulated) cubic errors.
We know that local cubic errors are controlled by quadratic terms, and continuity
of the functional F* will allow us to control the cumulative cubic errors.

We will use the local variation of the entropy of the solution in our estimates,
and so we need a functional that measures this quantity. Since entropy jumps
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are represented by 2-waves, we define a functional H which measures the local
J-variation by

H(y) = sup Σ W , (4-4)

where the sum is over 2-waves between /0 and id, and the supremum is over in-
dices chosen such that γiQ and yid are at most distance d apart in the approximation.
This quantity is bounded by ||w|U> if we define the strengths of each 2-wave as the
entropy jump across that wave. Moreover, the fact that entropy is a Riemann coordi-
nate implies that 2-waves undergo only cubic errors in wave interactions. In terms of
reorderings, this means that the only elementary interactions resulting in changes in
2-wave strengths are merges of 2-waves, which do not increase the local 2-variation.
Thus for any reordering τ, we have H(τy) ^ H(y). We emphasize that this func-
tional has this special property only for systems possessing a Riemann coordinate.

Finally, we must define the quadratic error potential. As in Glimm's original
construction, we wish to define a functional that decreases across a diamond, so
that this decrease balances the increase in norms due to interaction error. The local
interaction error is given by O(l)D at quadratic level and O(l)SD when quadratic
terms are included (see (2.22)). Moreover, our error potential Q* should reduce to
D for local interactions, as does Q. We know that when considering the Glimm error
potential Q, the error term involving V (and forcing V to be small) appeared when
we were considering continuity of Q. We thus look for a functional Q* satisfying
a similar functional equation (4.2), but with better continuity properties.

The contribution to the error potential due to a pair of waves interacting is
the product of their strengths. This product of strengths appears as a term in Q.
However, the error appears only when the pair actually interacts, and at the time of
interaction, these strengths will have been changed by earlier interactions. We thus
build the functional Q* by again taking products of wave strengths, but measuring
them at the time of interaction, rather than initially. This is accomplished via the
method of reorderings, as follows.

Suppose we are given a reordering τ of the sequence y. Then the set Iτ deter-
mines which wave pairs interact, and thus which terms should appear in Q*. We
now find the strength of the waves at the time of interaction. To each interact-
ing pair (j\k) e Iτ, we associated the "sub-ordering" μ of τ. The strengths of the
waves jj and y^ when this pair interacts, are just the corresponding strengths in
the partially reordered sequence μ(y). Note that this is consistent with our inductive
definition of the reordered wave sequence.

We are now in a position to define the functional g*. With notation as above,
we denote by yμ and y£ the reordered waves yj and γ^ before they interact, that is

yμj = ηf a n d yμ

k = ηk, ,

where / = μ(j\ k' = μ(k) and η = μ(y) is the partially reordered sequence. Note
that the partial reordering μ is defined for all interacting wave pairs, and is different
for each interacting pair. We now define

β (y,τ)= tf£ tfΐ tfΐ
App Cτ Mτ

where the ' on the second sum indicates that the sum is over approaching waves
only, that is those for which one of yμ and yμ

k (with Cj = ck) is negative. This is the
usual property that rarefaction waves of the same family produce no error. We also
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impose the restriction that each interacting pair appear only once in the sum: thus if
(kj) G Mμ9 so that both (j9 k) G Iτ and (j, /) G /τ, and yμ

k = yμ, the corresponding
term |yy||y£| should not appear twice. Finally, define the quadratic error potential
Q*(J) by

where the sup is over all finite consecutive wave sequences y in J, and admissible
factored reorderings τ G A(y).

4.3. Properties of the Functionals. We now describe the algebraic relations for F*
and Q* which will be used in the sequel, and describe in detail what we mean by
continuity and boundedness. We wish to bound the functionals at later times by
the initial functionals, if possible. In order to do this, we shall describe the change
in functionals under a reordering, which corresponds to one or more diamonds. In
describing the change in functionals, we shall see that our inductive definition of re-
ordered wave sequences leads to exact functional relations, thus explicitly separating
the continuity properties as described above.

To describe the change in functionals, we consider the composition of reorder-
ings. Thus suppose that τ G A(γ)9 and let δ = τ(y) be the reordered sequence. Now
if σ G A(δ), the composition στ is admissible for y. According to our inductive
description of reordered wave sequences, we have exactly

σ(δ) = στ(y),

and we use this to compare the functionals at different times. Since this relation
holds for any σ G A(δ), we immediately find

V\δ) = V\τy) S V*(γ),

which says that the functional for the total variation does not increase with time.
Note that here we are considering only quadratic terms, and so cubic errors have
not yet been taken into account. We will need continuity of the functionals in order
to deal with these cubic effects.

We now write down an algebraic relation for the quadratic error potential Q*.
Using the same notation, we wish to compare Q*(δ9σ) and Q*(y, στ). Note that if μ
is associated to the interacting pair (τj9τk) G Iσ, then the sub-ordering associated to
the corresponding pair (j9k) G Cστ is μτ, and indeed we have δ^ = yμτ, etc. Thus
each term in Q*(δ9σ) appears in Q*(y9στ). Conversely, those terms in Q*(y9 στ)
which do not appear in Q*(δ9 σ) are exactly those which interact under τ. Also, since
the reordering associated to an interacting pair does not depend on later interactions,
these terms are exactly those in Q*(y9τ)9 and we have

ρ*(7,στ) = ρ*(τ 7,σ) + ρ * ( 7 , τ ) . (4.5)

If τ is the reordering associated with a single diamond A between J_ and J+9 and
σ is the reordering associated with changes between J + and some later time Γ,
we interpret this relation as g*(7_) « Q*(J+) + Q*(Δ)9 so that the quadratic error
potential does indeed decrease by the right amount. A more precise estimate can
be stated once we have established continuity of the functionals.

Now that we have found the appropriate functional relations, which are exact at
the quadratic level, we shall investigate what is needed to complete our induction
argument. Since we will be bounding the functionals by their initial values, it is
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clear that they must be bounded initially. Since the functional F* is a potential for
the total variation, we require that it be bounded initially in terms of the variation
V9 whereas the functional P which bounds the sup-norm at later times, must be
bounded by S.

Our induction is on diamonds (or reorderings) in the Glimm scheme, that is on
series of interactions, each of which produces quadratic effects plus errors which
are cubic. As we have noted, our functional relations are exact only at the quadratic
level. Thus when applying our formalism to the Glimm approximations, we must
account for these errors. We first informally describe how this is accomplished.

We model the interaction of waves inside a diamond by a reordering which
adjusts the wave strengths to account for the quadratic effects. From our interaction
estimate (2.22), we know that the cubic errors are bounded by O(SD), where the
sup-norm S is small and we have control over D(A) « Q*(A). Thus suppose that y
represents the waves entering a diamond, and δ represents those leaving. We have
that for some reordering p,

We have seen that we can compare the functionals defined on the sequences y and
p(γ), and would like to compare these to those defined on δ. Since p(y) and δ are
close, this is a problem of continuity of the functionals.

The continuity property of functionals can be described as follows: suppose that
the wave sequences δ and δ' have the same index, but the wave strengths differ in
a single position, say p. We shall say that some functional B is continuous, if

\B(δ)-B(δ')\ <KB\δp-δ'p\.

We require that Kβ be independent of the number of waves and mesh-size, while
it may depend on norms of the solution or time. The requirement is that our esti-
mates be uniform in mesh parameters, so that we can pass to the limit of Glimm
approximations. Supposing that the sequences differ in one wave only is convenient
and represents no restriction.

A similar remark holds for boundedness: we would like to know that the func-
tionals, which represent norms at future times, can be bounded in terms of initial
quantities. Thus we would like to know that

B(δ)<Bo(Vo9Sθ9T9...)9

where the arguments of Bo are known initially, VQ = V(δ), etc. Of course, these
bounds should be appropriate, so a bound for the sup-norm potential P in terms of
Vo alone would not be useful. We remark that in most circumstances, boundedness
and continuity of functionals are equivalent, although they are conceptually different.
In particular, if the bounds are smooth functions of norms, then the functionals are
also continuous. This is just the statement that differentiable functions are Lipschitz
continuous.

5. Existence of Solutions

We are now in a position to fill in the details of the existence theorem. We will
make assumptions on the boundedness and continuity of the functionals, and then
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derive our result. This means that the problem is essentially reduced to an alge-
braic one, namely rinding bounds for the functionals which are described by finite
sequences of waves. In the following sections, we find time-dependent bounds for
the functionals, so that we get existence for arbitrarily large finite times. In general,
any assumptions made in bounding the functionals translate to restrictions on the
solution to the Cauchy problem. Throughout we assume implicitly that the sup-norm
is small enough that all our estimates are uniform.

The bounds for the nonlinear functionals V* and β* will depend on the time
T of existence of solutions, as well as the total variation of the solution, and the
local J-variation of the entropy. This local variation is measured in terms of the
functional H defined earlier. For completeness, we shall make the time dependence
explicit in the induction.

We use the notation developed earlier and state our assumptions in terms of the
functionals. First, we assume the nonlinear functionals are bounded,

V*(y)S V0*(V,T) and Q*(y) ^ QZ(V,T) 9 (5.1)

where VQ and Ql are increasing functions of their arguments, and V = V(γ) is
the total variation of the sequence y. We note that in general these bounds also
depend on other quantities, although we will not make them explicit here. Indeed,
our bounds will depend on the lengthscale d, and corresponding sup- and d-norms.
Next, we assume that these functionals are continuous,

V*(γ)-V*(γ')^Kv(V,T)\γ-γ'\ (5.2)
and

Q*(y) - β*(/) ^ Kβ(V, T)\γ - y'\ , (5.3)

for sequences γ and / differing in one wave in each family, and having the same
index. Again Kv and KQ are increasing functions of their arguments, and may
depend on other quantities. We remark that these assumptions are equivalent when
the bounds are smooth functions.

In [17] it was shown that the functional P for the supnorm is both continuous
and bounded with explicit bounds, namely

P(y) g S(y) + ΛS(y)V(y), and P(y) - P{y') ύ KP\y - y'\ ,

where Kp — O(1)V, and 0(1) and A depend only on the conservation law. We
shall also make use of Glimm's estimate

V(J+) S V{J-) + ΛD(A). (5.4)

Theorem 1. Suppose that the nonlinear functionals satisfy boundedness and con-
tinuity properties (5.1)—(5.3). Then given any T and Vo, there is an ε > 0 such
that if the initial data wo of the Cauchy problem (1.2) satisfies

IMIoo ύ ε and TV(u0) ^ Vo ,

then the conservation law admits a weak solution with bounded oscillation and
total variation. Moreover, the total variation of the solution is bounded up to time
T9 with bound Vξ + O(ε), and analogous bounds are available for other norms.

We remark that ε is defined in terms of Fo and KQ9 SO that ε —• 0 as VQ —> oo.
In our analysis, KQ depends on time, so that we get solutions for arbitrarily large
but finite times. That is, given any time T, we have ε = ε(Vo,T) and we have
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existence up to time T. Similarly, any other assumptions which are made in finding
KQ must be imposed on the initial data. In our case, we require that the entropy of
the initial data has local variation.

||w(wo)IU ύ Ά < 1/3Λ for some d > 0 .

Here A = max{ylf} is the maximum of the nonzero interaction coefficients, and is
determined by the flux. For clarity in the proof, we shall make the dependence on
the local variation H « ||w(w)IU of the entropy explicit.

Although our main application is to 3 x 3 systems having a Riemann coor-
dinate, this theorem holds for general N x N systems, with appropriate modifica-
tions. The functionals V* and Q* are again defined inductively on reorderings, and
any restrictions made in finding bounds for V* and Q* must hold for the initial
data.

Corollary 5.1. Boundedness and continuity of the functionals F* and Q* are suf-
ficient conditions for existence of solutions to general N x N systems. That is,
we can choose ε > 0, depending on the bounds, such that the conclusions of the
theorem follow.

In general, such bounds are not available for large times when the total variation
is large, and solutions are known to grow without bound, [5,18]. Any restrictions
used in finding the bounds for V* and Q* must again be imposed on the initial
data and the solution.

Proof As usual, we proceed by induction on space-like /-curves. There are two
steps, first comparing the functionals evaluated at successive /-curves, and then
carrying out the induction. We use the notation of Sect. 2.1, so that curves J_ and
J+ differ by a single diamond A, and Jo is the initial /-curve. Again, since we are
anticipating time-dependent bounds, we restrict the class of admissible reorderings
to those spanning the finite time T.

Referring to Fig. 1, we suppose that the waves crossing curve J- form the se-
quence y, and those crossing J+ are given by the sequence δ. Also, let the reordering
τ represent the interactions inside the diamond A. According to (2.22), the local
error is O(l)SD(A), and we have

δ = τ(γ) + O(l)S(γ)D(A).

By this we mean that the sequences δ and τ(y) have the same index, and the wave
strengths differ only in those waves leaving A, and in particular no pair of these
waves approach, see [17].

Since the reordering τ models the diamond A, we expect that the quadratic
errors β*(y,τ) and D(A) are comparable. In fact, the only difference between these
is that in Q* we measure each quadratic term at the time of interaction. Since τ is
a local reordering modeling only a single diamond, there are a limited number of
interactions, so that the difference between these is cubic, and we have

β*(y,τ) = D(A) + O(l)S(J-)D(A).

We wish to compare the functionals for the sequences δ and y, respectively.
This in turn reduces to the continuity of the functionals, as follows. Consider the
functional V*9 which satisfies V*(τy) ^ V*(y). We know that the sequences τ(y)
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and δ have the same index, and that a few of the individual wave strengths differ
by O(SD). Then by continuity of F* in (5.2), we have

V*(δ)-V\τγ)<KvΣ\δp-(τy)p\

^ KVO(\)S(J.)D(Δ),

where 0(1) is uniform in a neighborhood and depends only on the flux. Now
V*(J+) = V*(δ) for some sequence δ, and since the corresponding sequence γ lies
on J_, we have

V*(J+) S V*(y) + KvO(l)SD

^ V*(J-) + KvO(l)SD9 (5.5)

which is the desired comparison of V*(J+) and V*(J-). As similar relation holds
for the sup-norm functional P, namely

P(J+) ύ P(y) + κPθ(i)SD

(l + KPO(l)D(Δ)), (5.6)

for some sequence δ and corresponding ycJ~, see [17]. We obtain a similar
estimate for the change in the local variation H of the entropy. Since H is defined
in terms of the 2-waves only, and wave interactions have no quadratic effects on
2-waves, we have

H(J+)^H(J_)+KHSD, (5.7)

where KH depends only on the conservation law. We have implicitly used alge-
braic relations for F*,P and H, saying that these decrease at quadratic level after
interaction.

We treat the quadratic error potential similarly: the error potential for / + is given
by Q*(δ, σ), where σ is an arbitrary reordering of <5, representing wave interactions
up to some later time. Given the corresponding sequence y C J_, we shall compare
this to β*(τy, σ) by invoking the continuity (5.3) of β*. We then use the functional
relation (4.5) for Q* to compare that with Q*(y9στ), which is in turn smaller than
Q*(J-). Carrying out the details, we have:

Q*(δ,σ) £ Q*(τγ9σ)

ύ β*(7,στ) - Q*(γ9τ)+KQO(l)S(γ}D(Δ),

which, when maximizing over σ, leads to

βV+) ^ Q\J-)-D{Δ){\ ~ O(l)KQS), (5.8)

where we have used the local estimate β*(y,τ) « D(Δ). Thus we see that as long
as S is small enough, the functional Q* decreases by some fraction of D.

We now proceed with the induction. The new feature of the induction is that
the constants K depend on the solution, so we must choose the initial sup-norm
e small enough that we get a uniform decrease in Q*. Our separation of the sup-
and total variation norms, together with the small error in β*, allows us to carry
out the induction for large variation, as in [14]. In the local estimates above, we
evaluated the K's at ./_: as these are increasing functions of their arguments, we
shall overestimate them in the induction. In order to simplify notation, we include
all O(l) terms depending on the flux into the AΓ's.
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Given an initial total variation Fo, we set

Q*o=Q*o(Vo,2η;T),

where 2η is an upper bound for the local variation H, and define

(5.9)
and

M = (1 + ΛVo)e2KpQo , (5.10)

where we have set

KP=KP(W,2η;T) and KQ = KQ(W,2η;T) .

We will show that

S(J) S MSo and V(J) ^ FT

and //(./) ^ 2*7, as long as So is small enough and Ho ^ 77.
Choose the bound ε > 0 for So small enough that

SMKQ < 1/2 and 2εMKHQ% < η ,

and suppose for the induction that

/_) S W, (5.11)

^ ^ - ^ (5.12)
and

H(J-) + 2SoMKHQ\J-) ύ 2η . (5.13)

These assumptions imply that S(J-) < P(Jo)e2KpQo ^ MS0. By (5.8) we have

6 V + ) - β*( /-) ^ - ^ ( ^ ) ( 1 -KQMSO) £ -D/2 , (5.14)

and so also £> ^ 2 ( β V - ) - β*(Λ)) τ h e n by (5.4), we have

V(J+) + 2ΛQ\J+) ^ V(J-) + 2ΛQ*(J_) ̂  W,

and by (5.7),

H(J+) + 2SoMKHQ*(J+) ^ H(J-) + 2SoMKHQ*(J-) g 2η .

Similarly, by (5.6) and (5.14),

P(J+) ^ P(J^)(l + KPD)

where we have used 1 + x < ex. This completes the inductive step, and we have
the bounds

V(J+) < W and S(J+) < MS0 ,

and H(J+) < 2η.
We have not made use of the functional V* in proving existence of solutions.

Instead, F* gives us an estimate of the growth of the total variation of the solution.
In particular, the dependence on time T of F* gives an upper bound for the growth
of total variation, which in turn drives the growth in the other norms. To see this,
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observe that we are overestimating V by adding the factor 2ΛQ*9 which controls
the local error ΛD in V. As we have seen, however, the local error in F* is KVSD,
which is much smaller. Thus we can control the growth of V* by adding a smaller
multiple of Q*. Indeed, letting c = 2Kv(W,2η; T)MSQ and using the bounds found
above, we have

so that V(J+) < V£ + CQQ, where c contains the small factor So. Now we see that
for small values of ε, the total variation at later times is approximately given by the
functional V*. Furthermore, a knowledge of the initial wave configuration and the
(non-local) reordering corresponding to the union of all diamonds below J+ should
give an accurate approximation for the actual variation along J+. It appears that
one should be able describe the pointwise large-time behaviour of the solution in
this way. D

6. The Path Integral

In order to apply the general theorems of Sect. 5 to a given system, one must
obtain the boundedness and continuity properties (5.1)—(5.3) for the functionals in
this case. In particular, these conditions must hold for special reasons because they
fail when T is larger than the blowup time in a resonant system of type (1.2).
We now obtain the estimates (5.1)—(5.3) for 3 x 3 systems possessing a Riemann
coordinate. In this case, our growth rate bounds will be determined by the d-norm,
supnorm and total variation norms of the initial data. Thus we assume the existence
of a Riemann coordinate, and use this to express reordered sequences in terms of
a path integral formula. Given a wave sequence and set of reorderings, we have
seen how the strengths of these waves change under the interactions represented
by that reordering. However, our description is thus far inductive, and the resulting
quantities are difficult to analyze. Our assumption means that the entropy field
decouples, and can be treated as static at the quadratic level. This simplification
allows us to describe reordered sequences in terms of a path integral formula.

6.1. Paths in Reorderings. Our first task is to describe paths in the framework
of reorderings. The cause of instability in our systems is the generation of new
waves due to interactions, which is compounded when these new waves themselves
interact and generate more waves. In our construction, the generation of new waves
is avoided by adjusting the strengths of nearby waves, thus conserving the number of
waves. We now address the question of how these changes of strength accumulate.

When a pair (j,k) of waves interact, we identify the wave yt whose strength
is to be adjusted via an interaction map, namely / = ιτ(j\k). The new (scattered)
wave may now go on and interact with other waves, each time generating yet
another wave. In our model we are merely adding each scattered wave strength
to an existing wave: this means that those waves with which the scattered wave
will interact are already known, namely they are those waves which interact with
/ = ιτ(j,k) after the pair (j,k) has interacted. We can now inductively describe a
series of interactions, keeping track of the accumulated strength due to quadratic
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Fig. 4. Scattering pattern with a single path

effects of these interactions. Figure 4 illustrates the scattering of a single sound
wave, and a single path which is part of that pattern.

Given a wave sequence and (factored) reordering τ, which determines the inter-
action map ϊτ, we make the following definition of a scattering path, which describes
the changing position of a sound wave or a (multiply) scattered sound wave as it
interacts with contact discontinuities.

Definition 6.1. An r-path in τ is a set {{jp,kP)\ 1 ίk P ίk ?*} C Cτ, satisfying

and
p^χ) = j p

for each p < r. We shall say that the path begins at j \ and ends at τ(y r+i) =
τιτ(jr,kr). We analogously define a 0-path to be any index /, and say that it starts
at i and ends at τ{i).

A path is thus a means of tracking the position at which an accumulation of
interaction effects is concentrated. In this definition, the kp's represent the contact
discontinuities (2-waves) which scatter the sound waves, while j p represents the
sound wave which has been generated as the result of the previous p — 1 inter-
actions. The kp's can be viewed as the relative positions of the contact waves
which scatter the sound waves, although the actual position of the contact changes
due to sampling shifts. We shall see that we can also extract the accumulated wave
strength associated to the interactions represented by that path.

As usual, we have defined paths independent of the actual strengths of waves
appearing in the sequence, so that only the index of the wave sequence is needed to
determine the possible paths in any reordering. We remark that paths feature only
members of the crossing set Cτ, as these are the only interactions which generate
quadratic effects by generating reflected waves.

According to our assumptions and our definition of interaction maps, images
under ιτ are 1- and 3-waves only. Thus in the above definition it is implicit that
each kp (for p > 1) refers to a 2-wave, while j p refers to a 1- or 3-wave, alternating
between these as p changes. We extend this convention to (j\,k\), so that all non-
trivial paths start at the 1- or 3-waves y7l. We denote the set of all r-paths in τ
beginning at p = j \ and ending at q = τ(y'r+i) by Πr(p,q,τ).

As we have done previously, we now consider compositions of reorderings, and
the paths associated to these. We would like to know that paths can be constructed
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inductively, and that all paths can be obtained by a suitable local construction. The
compound structure of paths is described in the following lemma. We shall use the
symbol πτ to refer to an arbitrary path in τ, so πτ C Cτ. Our notation is that used
earlier, so τ reorders the sequence y, and σ reorders τ(y), and the composition στ
makes sense.

Lemma 6.2. A path πστ in στ determines unique paths πτ and πσ in τ and σ,
respectively, via the definitions

πτ = πστΠCτ, (6.1)
and

πσ = τπστ Π Cσ , (6.2)

respectively. We say that πστ projects to πτ and πσ. Conversely, given paths πτ

and πσ in τ and σ, respectively, such that πσ starts at the end ofπτ, we can always
find a path πστ in στ which projects to πτ and πσ.

We note that different paths in στ may project to the same paths in σ and τ, in
case τ is not one-to-one. When convenient, we shall denote a path which projects
to πτ and πσ by πσ o πτ.

Proof. Suppose that the path πστ consists of {{jp,kP)\^ ίk P ίk s}. Since these pairs
are ordered by <στ, and all pairs in Cτ cross before those in τ'Cσ, there is a unique
r such that {(jp,kp)\l ^ p ^ r} C Cτ, and this is the path πτ. To get a path in
σ, we must advance the other crossing pairs by τ: thus {(τjp,τkp)\r + 1 ^ p ^ s}
is a subset of Cσ, and that it forms a path follows immediately from the fact that
xιστ = fτ on τ'Cσ. That these paths can be described in the above set notation is
clear.

For the converse, we must be more careful, as the path πστ is not uniquely
defined in general. Suppose that πτ is given by {(7^,^)11 ^ p ^ r}, and πσ C Cσ

is {(lq,mq)\\ ^ q ^ s}, with τιτ{jr,kr) = l\. We wish to construct a path πστ which
projects to these paths. It is clear that we should just copy πτ initially, so it remains
to extend πστ in a way that projects to πσ. Since τ is not necessarily one-to-one, there
will be some choice involved, although the choice is restricted by the requirements
for a path. For each q, choose kr+q E τ'(mq). These are the only choices we have,
as each j p + \ is determined inductively by j p + \ = ιστ(jp,kP) It remains to check
that the path πστ = {{jp,kp)\\ g p g r + s} projects back to πσ. To see this, note
that τ(kr+q) = mq and, by induction,

τ(jp+ι) = πστ(JPΛp) = ισ(τjp,τkp) = f(lp-r,kp-r) = lp-r+\ .

This completes the proof of the lemma. D

In view of this lemma, we can describe the paths in a particular reordering by
induction, after describing the paths for the elementary interactions, namely joins
and transpositions. For a join φ = φp, there are no non-trivial paths: however, there
are two 0-paths which end at the same point, namely {p} and {p+ 1}. There is
a single 1-path for the transposition K = (k : k + 1), namely the path {(k,k + 1 ) }
which coincides with the entire crossing set.

We emphasize the fact used in the above proof that any path is uniquely de-
termined by the starting sound wave j \ and the contact waves kp, for a given
interaction map. Also note that the only choice in the path πστ came in the choice
of the kr+q's. In particular, if τ is one-to-one on the A 's (which are contacts), the
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path πστ = πσ o π τ is uniquely determined, and a knowledge of all paths in τ and
σ, respectively, gives a full description of the set of paths in στ. In fact, by con-
sidering the gas dynamics equations in the Lagrangian formalism, (so λι = 0), and
sampling randomly in time only, we can ensure that this is always the case.

The results of the lemma can be interpreted in terms of the sets Ur as

ΠrU, U στ) C U i W * , Uσ)o i7s(y, *, τ) , (6.3)
s,k

with equality when τ is one-to-one on contacts (2-waves). This abstract statement
says that all paths of length r in στ are built up of paths of length s in τ concatenated
with paths of length r — s in σ. Note that the only restriction on the shorter paths
is that the end of the first be the beginning of the second, but this could be in a
number of different positions. Comparing (6.3) to the arithmetical relation

M\ ( N

leads to a bound on the number of paths.

Corollary 6.3. If the reordering τ is one-to-one on contacts and spans N time-steps,
then

where #Πr(j, ,τ) denotes the number of r-paths in τ, starting at any given j .

Proof According to our construction, there is only one 2-wave entering or leaving
each diamond. Also, each sound wave passes through a single diamond at each time
step, so that it interacts with at most one contact at that time step. This means that
any contact with which a particular sound wave interacts can be uniquely identified
by the time of interaction. We extend this idea to count the total number of paths
starting at a fixed point. Figure 4 illustrates this "projection" of interactions of a
single sound wave and a path onto interaction times.

We wish to count the number of paths in τ which begin at position j . Thus
suppose {(jq,kq)} is a path, with j \ — j . We know that the path is uniquely deter-
mined by the sound wave yΊ, which is given, and the positions kq of the 2-waves
appearing in the path. Now, for each j q , we can uniquely identify a time step tq

at which the crossing pair (jq,kq) interacts. We thus have a projection of the path
onto an increasing sequence of time-steps t\ < h < < tr. Moreover, since only
one contact enters each diamond, different paths lead to different projections. This
means that the number of paths starting at j is bounded by the number of increas-
ing interaction times 0 < t\ < ti < < tr. Since each tq — qΔt corresponds to
an integer (counting time-steps), and there are at most N time-steps, we have

ma >Ό

We will later use a similar path-counting technique in obtaining bounds for the
nonlinear functionals. Although we require that 2-waves do not merge in this proof,
in finding bounds we will not require a one-to-one map from paths to sequences of
interaction times.
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6.2. Path Integral Formula. We now use the abstract paths to get a useful for-
mulation of the wave strengths in the reordered sequence τ(y). Recall that we are
assuming the existence of a 2-Riemann coordinate, so that all images under in-
teraction maps are either 1- or 3-waves. We now make the further simplifying
assumption that 2-waves do not merge. This is true for gas dynamics as long as
we use the Lagrangian formalism, for which the entropy has zero wave-speed. This
assumption for 2-waves allows us to treat perturbations in that family (i.e. entropy
fluctuations) as a static background source for changes in sound waves, which is
fixed in time.

We can make the statement that no 2-waves merge more precise by adding an
extra requirement to Condition (R), namely that if the pair (j,k) e Mτ, then we
must have cj = Ckή=2. This extra condition further restricts the set of admissible
reorderings, but does not change any of our previous assertions in any way. Hence-
forth we shall assume that this extra condition is satisfied implicitly. We remark
THAT THIS assumption is merely technical, as allowing two 2-waves to remain
adjacent in the scheme instead of merging merely increases the set of reorderings
and paths, but this increase does not affect the functional bounds at all, as the
variation of the sequence never increases after a merge. A more formal analysis of
this idea can be found in [17].

Since our definition uses only the index of a wave sequence, a path tracks
only the position of the scattered wave we are tracing. In order to fully describe
interaction effects, we must also take the actual wave strengths into account. Before
writing down the path integral formula, we consider the strength associated to a
single path. Thus suppose we are given a path πτ = {(jP,kp)}. This represents the
wave generated as a result of the multiple interactions occurring in π τ. We wish to
find the strength contributed by this scattering path. As before, we assume that each
Ckp — 2, and take cjλ = 3, say. We shall trace the strength of the scattered wave
as the path is traversed, as in Fig. 4. Thus the original strength is y7l, and when
this wave interacts with jk{, the reflected wave has strength ε ( 1 ) =jjljklA\. This
reflected wave then interacts with wave yk2, to produce ε ^ = ε^y^Λθ This process
continues inductively, and after r interactions, say r even, the wave generated by
this series of interactions has strength

εC) = eC- V Λ 3 - γh7h • • • ykr(ΛιΛ3f
2 .

This then is the amount of wave strength generated as a result of the interactions
represented by the path π τ. In this calculation, we have used the fact that 2-waves y^p

do not change at all across interactions. This observation allows us to use the initial
2-wave strength at later times. Moreover, because there is a 2-Riemann invariant,
interactions between 3- and 1-waves have no (quadratic) effect, which means that
different scattering patterns combine linearly, leading to the path integral formula,
stated in the following theorem.

Theorem 2. Given the wave sequence y = (yi,...,y«) and factored reordering τ, let

δ — τ(-y) be the reordered wave sequence. Then for any i, the reordered wave δi

is given by the path integral formula

Πr(j,i,τ)
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Here Πr(j\i,τ) is the collection of all r-paths in τ starting j \ =j and ending at
i = τιτ(jr,kr), and the weight Λ(i,r) is given by

Λ(i, r) = Λ[}r+l)/2]Λ[f\ where c = c^ and d = 4 - c .

We remark that this formula is applicable for all waves, although it is highly
redundant for 2-waves. Indeed, no non-trivial paths end at 2-waves, and these do
not merge, so that δτi = yt for 2-waves. Merges of sound waves are also implicit in
the formula, as paths corresponding to merged waves end at the same place. The
weight A(i,r) consists of r = [(r + l)/2] + [r/2] factors Λ9 each corresponding to
one reflection, and does not depend on the particular choice of path.

Proof The proof is by induction on the factors of the reordering τ = λt λ\. If τ
is a single join φ = φq, then there are no non-trivial paths, and the 0-paths {q} and
{q + 1} end at q, while other 0-paths {/} end at φ(j). The formula then reduces to
the definition of the sequence φ(y). Similarly, if τ is a transposition K = {k : k + 1),
all 0-paths {/'} end at κ(j), and the 1-path {(k,k+ 1)} ends at κι = i = ικ(k,k + 1).
Thus the formula reduces to δk{j) = 7/ for j + i, and δj = γκ/j + ykyk+\ΛCi, which is
again the definition of the sequence κ(y).

Now suppose that the path integral formula holds for τ. We consider the com-
positions φqτ and KX separately. First consider the join φ — φq. Recall that φq maps
q and q + 1 to q, and changes the positions of all other waves appropriately. If
a = τ(y) is given by the path integral formula, we must describe the new sequence
δ' = φ{δ) = φτ(y). First, for j + q, we have simply δj = δφ/j, which is the sum
over the sets Π( , φ'j,τ). For the merged wave, we have δ'q = δq -f δq+\, which is
the sum over both sets 77( ,q, τ) and J7( ,q + l,τ). In the set notation of (6.3),
we can express the set of paths in φτ as

Πr(pJ,φτ) = Πr(p9φ'j9τ)9 for j + q, (6.4)

and

Πr(pJ9φτ) = Πr(p9q9τ)\JΠr(p,q+l9τ)9 (6.5)

for each starting position p. These are exactly the sets over which we sum to get
the δj9s. Moreover, the terms which are being summed are not changed, so that the
path integral formula holds for φτ.

We now consider the reordering κτ9 where K = (k : k + 1). Again we suppose
that δ = τ(y) is given by the path integral formula, and we wish to show that the
same is true for δ' = rcδ = κτ(y). For j^ικ(k,k + 1 ) , we have δj = δκtj9 while by
(6.3), r-paths in Kτ ending at j are exactly those in τ which end at κfj, that is
Πr(p9j9κτ) = Πr(p9κ'j9τ). Again we sum the same terms, so the formula holds
for those j + ικ(k,k+\).

It remains to check the path integral formula for the wave <S , where κ'i — i =
ικ(k,k+ 1). According to the definition, we have

where c = cτ/, , and we must express this in terms of the y's. According to our
assumptions, either δk or δk+\ must be a 2-wave, and the other a sound wave from
the c' family, where c1 — 4 — c. For definiteness, we suppose that δk is the 2-wave,
the other case being similar. Then δk = yτ>k by induction. Also, the waves δt and
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δk+\ are given inductively by the path integral formula. Thus we have

= <5, H

= Σ Q

Vδk+λy.

Σ
Πr{ ' ,iV

r ' J7Γ(
Σ yy,7kι •••γkrΛ(k + l, r).

(6.6)

(6.7)

(6.8)

By the remark following Lemma 6.2, any r-path in τ which ends at position k + 1
extends to a unique (r + 1 )-path in KT. Since τ is one-to-one on 2-waves, the
(r + l) s t pair of this path must be the pair (ιτ(jr,kr),τ'k) G Cκτ, and the extended
path ends at /. Moreover, since δk+\ is a c'-wave and <5Z is a c-wave, we have

Thus the second sum above is exactly the sum over paths in KT which include the
pair τ'(k9 k + 1) and end at /, while the first sum is over paths ending at / but not
including the pair τ'(k, k + 1). Since these are exactly all paths in KT which ends
at /, the path integral formula holds for <5 , and the theorem is proved. D

7. The Functional Bounds

We now find time-dependent bounds for the nonlinear functional for systems with
a Riemann coordinate. By the results of Sect. 5, these bounds are all that are needed
to deduce large-time existence of solutions. We shall derive the bounds in steps,
first bounding the functional V*9 and obtaining the bound for Q* and continuity of
the functional as corollaries.

Before proceeding, we recall our assumptions in detail. We are assuming that
the second (entropy) family possesses a Riemann coordinate, so that the second in-
teraction coefficient Λ^ vanishes. Denoting the Riemann coordinate by w : °U —> R,
the strength of a 2-wave (which is a contact discontinuity) is defined by

γ = W(UR) - W(UL) , (7.1)

where uL and uR are the states on either side of the wave. In particular, given a
sequence of constant states separated by waves, the strength of all 2-waves can
be found through the Riemann coordinate w. For convenience, we also assume
that the second family is linearly degenerate, so that no 2-waves merge. We shall
see that our bounds, and hence conditions for existence, depend on the entropy
of the initial data. This is not surprising, because the (degenerate) entropy field
does not grow or decay to leading order, so that entropy jumps in the solution
persist.

Our estimates will depend on the local variation of the entropy of the data,
quantified by the J-norm defined earlier,

which we require to be small for some d > 0. This is a weak assumption which
simply says that the variation of the entropy is spread out over intervals of length d,
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and so does not accumulate at any point. Since we are dealing with wave sequences
only, we shall use the functional for the local <i-variation of the sequence,

# 0 0 = sup Σ \yt\,

where the sum (and sup) are over 2-waves positioned in an interval of length d. It
is clear that H is bounded by ||w(w)IU Throughout this section, we assume that d
is a fixed positive number, and the local ^/-variation H is smaller than a constant
determined only by the conservation law.

We begin by considering the functional F* for the total variation. Recall that F*
is defined as the supremum of quantities V(τy), where γ is a wave sequence and τ is
an admissible reordering. We shall find a bound for V* by expressing the reordered
sequence τy in terms of the path integral formula, and bounding the total variation
of this reordered sequence. Since our bounds are time-dependent, we further restrict
the class of reorderings to those which correspond to wave configurations up to
time T, which we fix for the rest of this section.

The idea of the proof is as follows: according to the path integral formula, the
amount of scattered wave strength generated by a single wave is

where we sum over all r-paths emanating from that wave. Now if each ykr were
bounded by β, then this is bounded by

according to Corollary 6.3. Now using the binomial theorem, we get the bound
(1 + βΛ)Nτ ^ Qxp(βΛNτ). Although this bound depends on the mesh size through
the number NT of time-steps, we modify the method to obtain uniform bounds by
accounting for the d-norm of the initial data. We know that when the variation is
small, it does not grow. In particular, on the local lengthscale d, the local variation
is small and growth will not occur. We therefore overestimate the amplification
due to interactions on the small lengthscale d9 and then combine these into the
full lengthscale of the support of the solution, to bound the growth of the solution
as above. Thus, instead of considering each 2-wave separately, we group them
into "blocks" of size d, and use β as an estimate for the amount of wave strength
generated by each block. The number of blocks is then NT = O(T/d), and we obtain
uniform bounds by the above argument.

We proceed with the details. Fix the total variation V = V(y), time of existence
Γ, mesh size Ax = λAt, as well as the local total ^/-variation of entropy δ = H(γ).
We restrict the class of reorderings to those corresponding to a set of diamonds
lying below the curve t = T. We prove the following theorem which gives the
growth bound for V*, and thus establishes the growth rate bound in Theorem 1 at
the quadratic level.

Theorem 3. If the sequence y is such that η = H(γ) satisfies

6Λη < 111, for some fixed d > 0 ,
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then the functional V* is bounded,

V*(γ) S V(y) + V(γ)cxp(SΛηTλ/d).

In particular, this bound is uniform as the mesh size zljc —̂  0.

Proof Since F* is defined by F* = supτ V(τγ), we choose a reordering τ and look
for a bound for the variation of the reordered sequence.

According to the path integral formula in Theorem 2, the reordered sequence
S = τγ is given by

<5« = Σ τ / ΈAUr) Σ yki -yitr, (7.2)
j r^Ό Πr(jJ,τ)

where Πr(j,i,τ) is the collection of r-paths in τ from j = j \ to / = τιτ(jr,kr), and

A{i,r) = 4 ( r + 1 ) / 2 ] 4" / 2 ] W e h a v e v(τy) = v(δ) = Σ , l^i a n d rearranging the sum
gives

V(τγ)£Σ\Vj\Σ Σ \lkrykr\A\ (7.3)
j r^Q Πrih ' ,τ)

where now the sum is over all paths in τ beginning at j , and we have set
A = max{|yli|, IΛ3I}. We shall find bound for each amplification factor

Aj=Σ Σ lŷ  ^ K , (7.4)
r^l i7Γ(y, ,τ)

which measures the amount of total variation generated by multiple scattering of
the sound wave yj. The functional F* is then clearly bounded,

where A is the bound for the amplification factor.
We first estimate the amplification factor due to a group of 2-waves having

small total variation: this will be used to estimate the contribution due to blocks
of size 3d.

Claim. If the total variation of 2-waves appearing in Aj is small, that is
Έk\yk\Λ < G < h then so is Aj,

To see this, we simply write

ύ Σ

We will use this to over-estimate the contribution due to each block.
We now partition paths into blocks, as follows. For a fixed sound wave y7

located at some point Xj of space, we partition the real line into (non-overlapping)
intervals

Im = (XJ + md,xj + (m + 1 )d]



462 B. Temple, R. Young

of length d. We also define the extended intervals

Im-

j + (m - l)d,xj + (m + 2)d] ,

m U / m + i

(7.5)

(7.6)

of length 3d. We shall say that y*. (or simply £/) lies in the interval /m, if the
spatial position of the wave y^ is in Im initially (i.e. before any wave interact).

Suppose we are given a single path starting at j , and determined by the set
{&i,...,A:r}, each hi referring to the corresponding 2-wave ŷ .. We partition the path
into blocks as follows. Let rπ\ be such that k\ lies in the interval Imχ. Define the
first block B\ to be the maximal set of &;'s such that &i,..., A;̂  lie in the extended
interval ϊmχ. Now let m2 refer to the interval Imi containing the first wave not in
ϊmι, that is kbι+\, see Fig. 5. Now define b2 and the block B2 to be the largest set
of V s such that kbι+u...9kbι+b2 lie in ϊmi.

Continuing this process, we partition the path into blocks B\,...,Bf9 with the
following useful properties. All 2-waves in a single block lie in an interval of length
3d, and therefore have maximum total variation 3δ. We will thus be able to apply
the above claim to each block, regardless of the number of waves in that block.
Moreover, according to our construction, the distance between consecutive blocks
is at least d. This will allow us to bound the number of blocks.

With these definitions in hand, we now reconsider the amplification factor Aj.
By partitioning each path into blocks, we can rewrite

-y^Λ" (7.7)

where ] Γ ^ = r and each group of waves comes from block Bj. According to our
construction, each block Bj comes from a set of waves occupying a spatial interval

Fig. 5. Decomposition into blocks
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of length 3d, and so having local 3 J-variation given by 3<5. We can thus apply the
claim above and bound each of these terms,

etc., since 3Λδ < 1/4. Using this bound in (7.7) then gives

where # J γ is the number of ways of choosing £ blocks B\9...9Bf.
Finally, we count the number of ways of choosing £ blocks, using the method of

Corollary 6.3. Since block are separated in space by distance d, and wave-speeds
are finite, it takes at least d/λ units of time to move between blocks. We again
track the block by projecting to corresponding times of first interaction inside each
block. Thus we must choose times t\ < - < fy < T9 where each ti+\ — tt > d/λ.
In Corollary 6.3, because each scattered wave had a known direction, the interaction
times were enough to uniquely determine the path. In the present case, however, an
even number of interactions in one block will not effect a direction change, so that
there is a corresponding choice of direction for each interaction time (i.e. the next
block could be either to the left or right of the present block). Thus the choices
of £ times together with £ directions determine all possible ways of choosing £
blocks, and we have

# ^ < (Tλld\2<

Thus we finally obtain a bound for the amplification factor,

(7.8)

A/ (7.9)

^ &φ(SΛδTλ/d), (7.10)

where we have again used the binomial theorem. We note that this amplification
factor is uniform in the mesh size. Finally, inserting this bound for the amplification
factor into (7.3) yields the total variation bound, thus completing the proof. D

We remark that in bounding the amplification by partitioning paths into blocks,
we have made heavy use of Lemma 6.2, which says that complex paths project to
and are built up from smaller paths.

It is remarkable that the bound reduces to finding the amplification due to the
passage of a single weak sound wave through a fluctuating entropy field, and that
the amplification is essentially independent of the strength of the sound wave. The
theorem shows that we have a bound for the variational potential V*. We shall use
this to show that the quadratic error potential Q* is bounded, and the functionals
F* and Q* are continuous.

Corollary 7.1. Under the assumptions of Theorem 3, the quadratic error potential
Q* is also bounded, namely

Q*(y,τ) ^ V2Qxp(\6ΛδTλ/d).



464 B. Temple, R Young

Note that this can be viewed as analogous to the bound for Glimm's quadratic
error potential, Q ^ F 2 , where we must now replace V by the potential V* for the
variation.

Proof. Given y and τ, by Eq. (4.2) we have

Cr Mτ

where the sub-ordering μ is associated to the each pair (y, k) e Cτ. We now expand
each jj by the path integral formula, and rearrange the sum to get the bound. The
idea is that since each wave pair interacts only once, and we can bound the amount
of total variation generated by each wave, the total is bounded by the square of the
variation bound. Using the path integral formula, we have

I r Πr(l,k,μ)

with the analogous formula for jj. Now, since paths in μ are paths in τ, we have
Πr(l,k,μ) C Πr(l,k,τ)9 so that we may use the amplification factor of the theo-
rem to bound the total variation, even though the partial reordering μ changes for
different interacting pairs. Substituting in the bounds found above, we get

(7.12)

(7-13)

and the result follows. D

We now address the problem of continuity of the functionals. Starting with two
sequences which differ in one wave only, and a fixed reordering, we must show
that the resulting sequences differ by an appropriately small amount.

As above, we start with a sequence y and reordering τ. We have seen that the
reordered sequence δ = τy has bounded variation. We now wish to describe the
effect of perturbing a single wave in the initial sequence. Thus, suppose that y' is a
sequence which coincides with y except in one position, say p. We wish to bound
the differences V*(y) - V*(y') and Q*(y9τ) - β*(/,τ) by a multiple of \yp - yf

p\.

Corollary 7.2. The functionals F* and Q* are continuous: that is, there are func-
tions Ky(V,H) and KQ(V,H), also depending on time T9 such that

\V*(y) - r ( / ) | ^ Kv{V,H)\yp - γ'p\, (7.14)
and

\Q*(y) - β ' ( / ) | ^ KQ(V,H)\yp - y'p\ . (7.15)

Proof Since the bound for the functional F* depends smoothly on the quantities
H(y) and V(γ)9 and these norms change by at most \yp — y'p\9 we have

dV* dV*
/ \V()V(')\ + \ H ( ) H ( ' ) \ ( 7 . 1 6 )V(y)\ +

^KF{V,H)\yp-y'\, (7.17)
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where Kv is an increasing function of its arguments, and we have set

V = sup{V(yXV(y')} and H = sup{//(y), / / ( / ) } .

It is clear that g* is also continuous. D

Theorems 1 and 4 now follow from the general theorems of Sect. 5, using the
bounds established in Theorem 3 and Corollaries 7.1 and 7.2, which are applicable
to systems possessing a Riemann coordinate, which include the systems (1.1) and
(1.11).
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