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Abstract: Let n be an integer. Denote by An one of the following two graded vector
spaces: (a) the space of all multilinear Poisson polynomials of degree n (with a
grading described below), or (b) the cohomology of the space of all w-uples of
complex numbers z 1 ? . . . ,zw with z/φz/ for / Φ y . We prove that the natural action of
Σn on each homogeneous component of An can be extended to an "hidden" Σn+\-
action and we compute the corresponding character (the Γn-character being already
given by Klyaschko and Lehrer-Solomon formulas).

Introduction

Let n be an integer, let X be a symplectic manifold and let SCn(X) be the Q-vector
space generated by all multilinear maps from (C°°(X))n to C°°(X) that we can ob-
tain by composing the multiplication of functions and the Poisson bracket. It is clear
that this space depends only on the dimension of X. Indeed for άimX ^ (n — 1),
SCn(X) is the space of all multilinear free Poisson polynomials into n variables (see
[M], Sect. 7) and it will be denoted by SCn or by SCn(oo). The group Σn acts in an
obvious way on SCn. Indeed there is a less obvious action of Σn+\ on SCn which
is defined as follows. Let p e SCn and let w G Σn+ι, where Σn+\ is identified with
the group of permutations of {0,...,«}. There exists a unique q G SCn such that
ίx/w(θ)<7(/w(i), ,/w(/o) = fx /oX/i, .-,/«) for any compactly supported smooth
functions /o,...,/« on a symplectic manifold X of dimension ^ n — 1, where the
integral over X refers to the Liouville measure (see [M], Theorem 1.5). Then the
Σn+\ -action is defined by the requirement w p = q. This "hidden" Σn+\ -action
extends the natural Σn -action. Also the space SCn has a natural structure of graded
coalgebra ([M], Sect. 3) which is preserved by the action of the symmetric group.

Denote by Un the space of all «-uple of complex numbers z\9... ,zn with z/ φz;

for /φy and by SC* the dual of SCn. It turns out that the algebras H*(Un) and SC*
have a very similar presentation (see [A] for the first one and [M] for the other
one). Also it is natural to ask the following question: can the natural Σn-action on
H*(Un) be extended to a Σn+\-actίonΊ In this paper, we describe such an action
on the cohomology with rational coefficients. However we prove that for n ^ 4, no
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extension of the Σn -action stabilizes the integral structure of the cohomology. Thus
this action does not come from an action of the group Σn+\ on the topological space
Un. This is why, in order to describe the additional generator of Σn+\, we need to
use a multivalued map from Un to itself instead of an ordinary map. It is easy to
prove that the inverse image of this correspondence acts as a ring automorphism of

//*(£/»).
Denote by V the natural permutation Σn+\ -representation on Qw+1 and define a

grading VQ Θ V\ of V by requiring that FQ is the trivial component and V\ is its
unique equivariant complement. Another natural question is to compute the Σn+\
character of each homogenous component ofH*(Un) and SCn. As the Σn-character
of these representations is already given by Lehrer-Solomon formula [LS] and the
Klyaschko formula [K], the Σn+\ -character can be deduced from the following:

Theorem. As graded Σn+\-modules there are natural isomorphisms H*(Un+\)~
H*(Un)®V and SC*+l ~ SC* ® V, where on the left side the actions are the
natural one and on the right side they are the "hidden" actions.

By looking at the component of higher degree, we recover the Getzler and
Kapranov formula Lie(« + 1) ~ Lie(w) ® V\, where Lie(«) denotes the space of
multilinear Lie Polynomials in ^-variables (see [GK], Introduction and Corollary
(6.8)).

1. The Involution Associated to a Suspensive System

By definition an arrangement of hyperplanes H is a finite by collection of linear
hyperplanes in a complex vector space E. We then denote UH the complement in
E of the union of all hyperplanes of H. In this section we will associate to any
suspensive system υ (see the definition below) an involution σv of H*(Uπ) (unless
stated otherwise, the cohomology is the Q-valued cohomology).

(1.1). Definition of a suspensive system. Let H be an arrangement of hyperplanes
in a complex vector space E. A basis ( M I , . . . , M Λ ) of E* is called a suspensive
system if and only if it satisfies the following three requirements:

(i) the hyperplanes uι = 0 belong to H for any /,
(ii) any other hyperplane in H is defined by an equation a Uj + b Uj = 0

for some ij G {1,2,...,«} and a,b G C*,
(iii) if ker(α w/ + b Uj) belongs to H, so is ker(Z? wz -f a Uj) for any a,b G

C*, 1 g / < j ^ n.

Only very special arrangements of hyperplanes have one or more suspensive
systems. For example we can prove that the existence of a suspensive system implies
that the algebra //*(£///) is quadratic. As we will not use this fact, the proof is left
to the reader.

(1.2). Multivalued functions and inverse images. Let X,Y be manifold. We will
use the following formal definition of multivalued functions from X to Y. Let N be
an integer. By definition a TV-valued function from X to Y is a triple F = (Z9X9Y)
consisting of a manifold Z and two smooth maps p: Z —»X and q: Z -» Y such that
p is an TV-fold covering. The manifold Z is called the graph of F. Less formally,
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we denote a N-valued map as F: X —> Y and we say that F associates to any x e X
the set with multiplicity F(x) = q(p~l)(x). In order to simplify the notation we will
make no differences between a TV-valued function F and the NM valued function
M F which associates to c the same set F(x) with M times the multiplicities
(e.g. in Formula 2.2) because the induced maps in cohomology are the same. The
composition of a TV-valued map F: X —» T and a TV'-valued map F': T —> Y is the
NN'-valued map F' oF : X —> Y whose the graph is Z xτ Zf, where Z,Z' are the
graphs of F and F'. Similarly one defines the product of complex valued multivalued
functions. Let F: X —> Y be a TV-valued map. Given a form ω over 7, denote
by F(ω) the form whose value at x G X is l/TV(^zG/?_ι(jc)g*(ωz)). Also denote

by F*: H*(Y) —»H*(X) the map induced in cohomology. The definition of the
inverse image F* of the multivalued map F behaves like the usual inverse image
of ordinary maps except that

(i) in general F* is not a ring morphism (because of the finite integral),

(ii) in general F* is not defined over the integral cohomology (because of the
factor I/TV).

However if q*(H*(Y)) is contained in the subspace H*(X) of H*(Z\ then F*
is a ring morphism (that is why there is a factor I/TV in the definition of F*).

(1.3). Let s = (MI, ..., um) be a suspensive system of an arrangement of hypeφlanes

H. Set Δs = Πι<z< m

 u2ί Set FS(UI) = δs/Ui, where δs = Δ\lm. We have F5(β u{ +
b Uj) = δs (b Uj + α w/)/(w z M/) Hence FJ is a well-defined m-valued map
from £/// to itself.

Lemma 1.3. The inverse map F* is a ring morphism. Moreover we have (F*)2 ~ 1.

Proof. It follows from the Brieskorn Theorem that the cohomology of UH is gen-
erated by the forms dl/l, where / runs over the space of linear forms defining
the arrangement of hyperplanes (see [Br,O,OS,OT]). As d(δs)/δs is a combina-
tion with rational coefficients of such forms, it follows that q*H*(Uπ) C //*(£///),
where q is as before. Hence it follows from (1.2) that F* is a ring moφhism.
Clearly F2 is the n2-valued map which sends u G UH to the set with multiplicity
{x y u\x9 y G μn}, where μn is the set of «-roots of unity. As C* acts trivially
on H*(UH) we have (F/)2 - 1. Q.E.D.

The map F* will be called the involution associated with the suspensive
system s.

2. Hidden Automorphisms of the Cohomology of the Arrangement
Associated with a Graph

(2.1). By graph we mean non-oriented graph with simple edges and no loops. Let
Γ be a graph, with a set of vertices V and set of edges E. Set EΓ = {(zυ)vev G

Cv\^υevzυ — 0}. For each edge (v9u) of Γ one associates the hypeφlane zu = zv

of EΓ and we denote by Hp the collection of all hypeφlanes associated to edges
of Γ. Its complement in EΓ will be denoted by Ur
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(2.2). A suspension point of Γ is a vertex which is connected to all other vertices
of the graph. If s is a suspension point, then the linear form zs — zv for vή=s is a
suspensive system. Denote by σs the associated involution of//*(t/r). We will use
the following formulas. Let s9 v, w be three distinct points in F, with s suspensive.
We have

Fs(zΌ -zw) = δs(zv - zw)/(zs - zv)(zs - zw) ,

and

Fs(zυ-zs) = δs/(zv-zs) .

From this we deduce Fsδt = δs δt/(zs — zt)
2 and Fsδs = δs, where s91 are distinct

suspensive points.

(2.3). Let Γ be a graph and let S be the set of suspension points. We denote
the vertices by positive integers 1 , 2 , . . . , A W , where m is the number of vertices. Set
S+ = S U {0}. For any set Z, denote by Σz the full permutation group of Z and
for z,z' G Z denote by rZtZ/ the substitution exchanging z and z'. The group ΣS acts
naturally on Γ by fixing all vertices outside S. So ΣS acts naturally on Up. Let
G be the group of automorphisms of H*(Up) generated by the involutions σ j5 for
ses.

Theorem 2.3. The group G contains ΣS and is naturally isomorphic to Σs+. For
such an isomorphism the involution σs is identified with r$iS.

Proof. Let s, t G S and let j be a vertex of Γ different from s and t. Using formulas
(2.2) one gets FsoFto Fs(zs - zy ) = (z, - z/), and Fs o Ft o ̂ (z5 - z,) = (z, - z,s), up
to some multivalued constant factor. Hence we have σs o σt o σs = rStt. Moreover
we obviously have wσsw~l = σW(S). Thus there exists a unique moφhism Θ from G
to Σs+ sending σs to rotS. Using the presentation of Σs+ by generators and relations,
it is easy to prove that Θ is an isomorphism. Q.E.D

(2.4). Denote by Kn the complete graph with n vertices. Note that UKn is homo-
topic to the space Un from the introduction. The following statement is an obvious
consequence of Theorem 2.3.

Corollary 2.4. The group of automorphisms of the algebra H*(Uκn) contains a
subgroup Σn+\ extending the natural Σn-action.

(2.5). Actually no Σn+\-action extending the natural Σn-action comes from an action
(or action up to homotopy) of Σn+\ on the topological space Uκn because of the
following proposition.

Proposition 2.5. Assume n ^ 4. There are no actions of Σn+\ on Hλ(UKn) extend-
ing the Σn-action and defined over the integral cohomology.

Proof. Denote by p the Σn+\ action on Hl(UKn) defined by Theorem 2.3, and let p'
be any other action on Hl(UKn) extending the natural Σn-action. For 1 ^ / < j ^
w, set Xij — d(zt — Zj)/(zi —Zj). Then Hl(UKn,Z) is a free Z-module with basis
Xij (Brieskorn Theorem [Br]). Let L be the hyperplane in Hl(UKn) containing all
vectors whose sum of coordinates are 0 and set Z/z = L Π Hl(Uκn, Z). For 1 ^ j <
i g n set Xf = xi and x = 0. Set Tt =

 and τ = τi
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1) As Σn module we have L = Lι ΘI2, where L\,L2 are the simple modules
with Young diagrams (n — 1,1) and (n — 2,2) and its complement in Hl(Uκn),
denoted by LQ, is the trivial module QT. So any Σn+\ -action extending the Σn

action will be the sum of a trivial representation and the representation with Young
diagram (n — 1,2). Moreover for such an action LQ will be invariant and L will be
a submodule.

2) It follows from the previous point that p' and p are conjugated by some
Φ e GL(Hl(UKn)). Such a Φ should act in a scalar way on L\,Lι and LQ. By
multiplying Φ by an automorphism of p we can assume that Φ is the identity on
LQ and L2,

 and acts as some non-zero scalar λ on L\.
3) Set 5 = p(/o,ι). We have s x\j = —x\j + 2/(w — 1) 7Ί and s jcz ?7 =

*/,./ — x\,ί — x\j + 2/(« — 1) Γi for 1 < z < j ^ w. It follows that p stabilizes Zz
but not H*(Uκn9Z). As Σn -module, L\ is generated by Γi — Γ2 and L2 is gen-
erated by x\t2 + *3,4 — X2,3 — *ι,4 If π denotes the projection of Hl(Uκn,Z) over
LI, we have' π(jtlV/ ) = \/(n - l j(7/ + 7)) - 2/OO - 1))Γ. Note also that we have
4*ι,2+*3,4 -*2,3 -*ι,4)=*3,4 ~ *3,2 and s(Γ2 - Γi ) = Γ2 - (Λ - l)*ι,2.

4) Set sf = p'(ro,ι ). We have s' x = s x + (l - λ)πos x if x e £2

and s' x = (l/λ)s jc + ((1 — λ)/λ)n os x if x e L\. By using the previous
formulas, one gets s'(x\ 2 + ^3 4 — *2 3 — ̂ i 4) = ^3 4 — *3 2 + (A — 1 )/(« — 1 )(Γ4 —
Γ2), and ^(Γ2 - Γi) = (ί/λ)(T2 - (n - l>ι,2) + ((ί - λ)/λ)[(n - 2)/(n - l)Γι - I/

5) Assume that p' stabilizes Hl(Uκn,Z) It follows from point 4 that 1//1 and
(λ — !)/(« — 1) should be integers. This implies λ = 1, i.e. p = p7. However p does
not stabilize Hl(UKn,Z). Q.E.D.

3. The Limit Ring SC*

Let n be an integer and let X be a symplectic manifold. Then the product and
Poisson brackets define two binary operations on C°°(X). Consider now the space
of all n-ary multilinear operators from C°° x x C°°(X) to C°°(X) that we can
get by composing the product and the bracket. Clearly this space depends only
on the dimension of X. In fact when n ^ dim X -f- 1, this space is independent
of the dimension ([M], Theorem 7.5). It is denoted by SCn(oo) or by SCn. We
have dimSCn(X) = n\ ([M], Lemma 3.7). Actually SCn has a natural structure
of graded cocommutative coalgebra ([M], Proposition 3.6). Let us denote by SC%
the component of degree k in SCn (in [M], Sect. (3.5) this grading is called the
Liouville grading). Roughly speaking SC* is the space of all n-ary maps which
involve exactly k brackets. The dual space SC* is a commutative algebra described
by the following theorem.

Theorem 3.1 ([M], Theorem 7.6). A presentation of the limit ring SC* is given by
the commuting generators xitj (for 1 ̂  i < j ^ n) and the following relations:

(*)3j = 09for 1 ̂  i <j ^n,
(b) XijXj,k = Xj,kXi,k+Xi,kXij,for any 1 ̂  / < j < k ^ n.

This algebra is very similar to Arnold's algebra H*(Uκn) (see [A]). However
SC* is strictly commutative. Actually the generators are all elements of degree 1 and
they can be described as follows. For / < j denote by τ/j the map (/!,...,//,) 6
(C°°)w —» {fi,fj}f\ " fn (where we omit the terms / and /} in the product). Then
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the family (τij)\^i<j^n is a basis of $€„ and the generators xtj is the dual basis.
The Σn+\ -action on SCn is described by the following proposition.

Proposition 3.2 (see [M], Theorem 1.5). Let X be a symplectίc manifold of di-
mension ^ n — 1. Let τ £ SCn and let σ £ Σn+\. There exists a unique θ £ SCn

such that fχ /σ(o)τ(/σ(i) Θ 0 /σ(n)) ωm = fχ /00(/ι 0 - - 0 /„) ωm, /or α/iy
compactly supported smooth functions /0, ...,/„ (where 2m = άimX).

Then !"„+! acts on the dual SC* as a group of homogeneous ring morphism.
To describe the action of the symmetric group Σn+ι, it will be convenient to define
the elements Xjj for any 1 ^ /, j ^ n as follows. We set xifi = 0 and xtj = —Xjj
for ί > j.

Lemma 3.3. (i) For ω £ Σn, we have w xitj = JtW(0,K/>
(ii) We have TO,/ Xkj = %kj +*/,/ + */,& f°r any distinct i,j,k.

(iii) We have r0j xt^ = Xk,i far any distinct i,k.

Proof. Formula (i) is obvious. Let τ/>7 be the dual basis of ΛT/J. We have

r^τkj = τkj for distinct /,£,/. Moreover we have fχ {/o,//}/ι...//-!////+1... =

Σ/>o fx {//> //}/o ... /7 . . . //- . . . Thus we get r/;0τ/,/ = Σy.>0 τ/,y. So by transposi-
tion one gets the formulas (ii) and (iii).

4. Characters of the Homogeneous Components of the Σn+\ -Modules
SCn and H*(UH)

(4.1). In this section we will set S = {!,...,«}, 5+ = 5 U {0} and S++ = S U
{0,—!}. Moreover An will denote one of the following two algebras (a) SC* or
(b) H*(UKn\

(4.2). There is a natural embedding ε : ^4W —* An+\. In case (a) it is the transpo-
sition of the natural map ε* : -S'C^+i — > SCn defined as follows: ε*P(/ι,...5/Λ) =
P(l, /ι,...,/r t) (denoted /2Λ+ι,π in [M], Sect. (3.4)). In case (b), it is the inverse
map associated to the morphism UKn+l — » C/^,, sending (Z O ,ZI,.. .,Z Λ ) to (zι,...,zn).

The natural embedding ε commutes with the Σs action but not with the
Σs+ -action. So we will twist ε to get an equivariant embedding. To do so define a
morphism τ: An — » ^4w+ι by τ = r_ι 5o o ε.

Proposition 4.3. The ring morphism τ commutes with the Σv+ -action.

Proof. As the ring An is generated by its degree one component A\ and as τ is a
ring morphism, it suffices to check the claim on Al

n what is obvious (in case (a)
this follows very easily from definitions as well).

(4.4). Set V = Qn+1. Consider V as a Σn+\, with action given by permuting the
natural basis of V. There is a grading V = VQ 0 V\ of V in such a way that FQ is
the trivial component of V and V\ is its unique Σn+\ -complement.

Theorem 4.4. As a graded Σn+ι -module, we have An+\ = An ® F, w/z^re fλe action
on An+\ is the natural action and the action on An is the hidden action described
in Sect. 2 and 3.
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Proof. With the previous notations, consider An as a subalgebra of An+\ by using
the ring morphism τ. Define elements T , for 0 ^ i ^ n as follows. In case (a)

set T[ = Σo^ sΛ In case (b) set τl = (Σo^π*/j) - V(" + IXΣfj^y)- In
both cases we have Σo<;<« ̂  = ^ Denote by £/' the subspace of An+\ generated
by the T[ and set U = U' θ Cl. We have U ~ V. Moreover in both cases we have

(i)4 + 1 =4tet/ 7 .
(ii) We have 7/ 7} = bijΣaίj,kTk, for some Z?/j and Λ/J^ in y4w.

It follows that the natural map μ\An®U^An+\ (given by multiplication)
is onto. By comparing the dimension, μ is an isomorphism. By construction μ
commutes with the Σv+ -action. Q.E.D.

(4.5). The character of the graded module An for its natural Σn-action has been
determined in each case. For case (a) it has been computed by Lehrer and
Solomon, see [LS,CT, S]. For case (b) it is usually attributed to Klyaschko, see
[Br,K,Ba,RW]. For any Σn+\ -module M denote by ch(M) its character and denote
by Ak

n the degree k component of An. Thus from Theorem 4.4, one gets a character
formula for the hidden Σn+\ -action on An as follows.

Corollary 4.5. We have ch(Ak

n) = ΣQ^l^k(-l)lch(Ak

n~{) ch(Vλ)
1, where the

character on the left side (right side) refers to the hidden (respectively natural)
Σn+\-action.

(4.6). The highest component of SCn has degree n — 1 and is isomorphic with the
space of all τ?-ary multilinear Lie polynomials denoted Lie(rc) in [GK]. Thus we get
SC"~l 0 V\ — SC%+1. This gives a quick proof of the following result of Getzler
and Kapranov.

Corollary 4.6 (Getzler and Kapranov [GK]). There is an isomorphism of Σn+\-
modules Lie(w) ® V\ ~ Lie(rc + 1).
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