Hidden $\boldsymbol{\Sigma}_{\boldsymbol{n}+1}$-Actions

Olivier Mathieu
Institut de Recherches Mathèmatiques Avancées, Université Louis Pasteur et C.N.R.S., 7, rue René Descartes, F-67084 Strasbourg Cedex, France. email: mathieu@math.u-strasbg.fr

Received: 1 January 1995 / in revised form: 5 March 1995

Abstract

Let n be an integer. Denote by A_{n} one of the following two graded vector spaces: (a) the space of all multilinear Poisson polynomials of degree n (with a grading described below), or (b) the cohomology of the space of all n-uples of complex numbers z_{1}, \ldots, z_{n} with $z_{i} \neq z_{j}$ for $i \neq j$. We prove that the natural action of Σ_{n} on each homogeneous component of A_{n} can be extended to an "hidden" $\Sigma_{n+1^{-}}$ action and we compute the corresponding character (the Σ_{n}-character being already given by Klyaschko and Lehrer-Solomon formulas).

Introduction

Let n be an integer, let X be a symplectic manifold and let $S C_{n}(X)$ be the \mathbf{Q}-vector space generated by all multilinear maps from $\left(C^{\infty}(X)\right)^{n}$ to $C^{\infty}(X)$ that we can obtain by composing the multiplication of functions and the Poisson bracket. It is clear that this space depends only on the dimension of X. Indeed for $\operatorname{dim} X \geqq(n-1)$, $S C_{n}(X)$ is the space of all multilinear free Poisson polynomials into n variables (see [M], Sect. 7) and it will be denoted by $S C_{n}$ or by $S C_{n}(\infty)$. The group Σ_{n} acts in an obvious way on $S C_{n}$. Indeed there is a less obvious action of Σ_{n+1} on $S C_{n}$ which is defined as follows. Let $p \in S C_{n}$ and let $w \in \Sigma_{n+1}$, where Σ_{n+1} is identified with the group of permutations of $\{0, \ldots, n\}$. There exists a unique $q \in S C_{n}$ such that $\int_{X} f_{w(0)} q\left(f_{w(1)}, \ldots, f_{w(n)}\right)=\int_{X} f_{0} p\left(f_{1}, \ldots, f_{n}\right)$ for any compactly supported smooth functions f_{0}, \ldots, f_{n} on a symplectic manifold X of dimension $\geqq n-1$, where the integral over X refers to the Liouville measure (see [M], Theorem 1.5). Then the Σ_{n+1}-action is defined by the requirement $w \cdot p=q$. This "hidden" Σ_{n+1}-action extends the natural Σ_{n}-action. Also the space $S C_{n}$ has a natural structure of graded coalgebra ([M], Sect. 3) which is preserved by the action of the symmetric group.

Denote by U_{n} the space of all n-uple of complex numbers z_{1}, \ldots, z_{n} with $z_{i} \neq z_{j}$ for $i \neq j$ and by $S C_{n}^{*}$ the dual of $S C_{n}$. It turns out that the algebras $H^{*}\left(U_{n}\right)$ and $S C_{n}^{*}$ have a very similar presentation (see [A] for the first one and [M] for the other one). Also it is natural to ask the following question: can the natural Σ_{n}-action on $H^{*}\left(U_{n}\right)$ be extended to a Σ_{n+1}-action? In this paper, we describe such an action on the cohomology with rational coefficients. However we prove that for $n \geqq 4$, no
extension of the Σ_{n}-action stabilizes the integral structure of the cohomology. Thus this action does not come from an action of the group Σ_{n+1} on the topological space U_{n}. This is why, in order to describe the additional generator of Σ_{n+1}, we need to use a multivalued map from U_{n} to itself instead of an ordinary map. It is easy to prove that the inverse image of this correspondence acts as a ring automorphism of $H^{*}\left(U_{n}\right)$.

Denote by V the natural permutation Σ_{n+1}-representation on \mathbf{Q}^{n+1} and define a grading $V_{0} \oplus V_{1}$ of V by requiring that V_{0} is the trivial component and V_{1} is its unique equivariant complement. Another natural question is to compute the Σ_{n+1} character of each homogenous component of $H^{*}\left(U_{n}\right)$ and $S C_{n}$. As the Σ_{n}-character of these representations is already given by Lehrer-Solomon formula [LS] and the Klyaschko formula [K], the Σ_{n+1}-character can be deduced from the following:

Theorem. As graded Σ_{n+1}-modules there are natural isomorphisms $H^{*}\left(U_{n+1}\right) \simeq$ $H^{*}\left(U_{n}\right) \otimes V$ and $S C_{n+1}^{*} \simeq S C_{n}^{*} \otimes V$, where on the left side the actions are the natural one and on the right side they are the "hidden" actions.

By looking at the component of higher degree, we recover the Getzler and Kapranov formula $\operatorname{Lie}(n+1) \simeq \operatorname{Lie}(n) \otimes V_{1}$, where $\operatorname{Lie}(n)$ denotes the space of multilinear Lie Polynomials in n-variables (see [GK], Introduction and Corollary (6.8)).

1. The Involution Associated to a Suspensive System

By definition an arrangement of hyperplanes H is a finite by collection of linear hyperplanes in a complex vector space E. We then denote U_{H} the complement in E of the union of all hyperplanes of H. In this section we will associate to any suspensive system v (see the definition below) an involution σ_{v} of $H^{*}\left(U_{H}\right)$ (unless stated otherwise, the cohomology is the \mathbf{Q}-valued cohomology).
(1.1). Definition of a suspensive system. Let H be an arrangement of hyperplanes in a complex vector space E. A basis $\left(u_{1}, \ldots, u_{n}\right)$ of E^{*} is called a suspensive system if and only if it satisfies the following three requirements:
(i) the hyperplanes $u_{i}=0$ belong to H for any i,
(ii) any other hyperplane in H is defined by an equation $a \cdot u_{i}+b \cdot u_{j}=0$ for some $i, j \in\{1,2, \ldots, n\}$ and $a, b \in \mathbf{C}^{*}$,
(iii) if $\operatorname{ker}\left(a \cdot u_{i}+b \cdot u_{j}\right)$ belongs to H, so is $\operatorname{ker}\left(b \cdot u_{i}+a \cdot u_{j}\right)$ for any $a, b \in$ $\mathbf{C}^{*}, 1 \leqq i<j \leqq n$.

Only very special arrangements of hyperplanes have one or more suspensive systems. For example we can prove that the existence of a suspensive system implies that the algebra $H^{*}\left(U_{H}\right)$ is quadratic. As we will not use this fact, the proof is left to the reader.
(1.2). Multivalued functions and inverse images. Let X, Y be manifold. We will use the following formal definition of multivalued functions from X to Y. Let N be an integer. By definition a N-valued function from X to Y is a triple $F=(Z, X, Y)$ consisting of a manifold Z and two smooth maps $p: Z \rightarrow X$ and $q: Z \rightarrow Y$ such that p is an N-fold covering. The manifold Z is called the graph of F. Less formally,
we denote a N-valued map as $F: X \rightarrow Y$ and we say that F associates to any $x \in X$ the set with multiplicity $F(x)=q\left(p^{-1}\right)(x)$. In order to simplify the notation we will make no differences between a N-valued function F and the $N M$ valued function $M \cdot F$ which associates to x the same set $F(x)$ with M times the multiplicities (e.g. in Formula 2.2) because the induced maps in cohomology are the same. The composition of a N-valued map $F: X \rightarrow T$ and a N^{\prime}-valued map $F^{\prime}: T \rightarrow Y$ is the $N N^{\prime}$-valued map $F^{\prime} \circ F: X \rightarrow Y$ whose the graph is $Z \times_{T} Z^{\prime}$, where Z, Z^{\prime} are the graphs of F and F^{\prime}. Similarly one defines the product of complex valued multivalued functions. Let $F: X \rightarrow Y$ be a N-valued map. Given a form ω over Y, denote by $F(\omega)$ the form whose value at $x \in X$ is $1 / N\left(\sum_{z \in p^{-1}(x)} q^{*}\left(\omega_{z}\right)\right)$. Also denote by $F^{*}: H^{*}(Y) \rightarrow H^{*}(X)$ the map induced in cohomology. The definition of the inverse image F^{*} of the multivalued map F behaves like the usual inverse image of ordinary maps except that
(i) in general F^{*} is not a ring morphism (because of the finite integral),
(ii) in general F^{*} is not defined over the integral cohomology (because of the factor $1 / N$).

However if $q^{*}\left(H^{*}(Y)\right)$ is contained in the subspace $H^{*}(X)$ of $H^{*}(Z)$, then F^{*} is a ring morphism (that is why there is a factor $1 / N$ in the definition of F^{*}).
(1.3). Let $s=\left(u_{1}, \ldots, u_{m}\right)$ be a suspensive system of an arrangement of hyperplanes H. Set $\Delta_{s}=\prod_{1 \leqq ı \leq m} u_{i}^{2}$. Set $F_{s}\left(u_{i}\right)=\delta_{s} / u_{i}$, where $\delta_{s}=\Delta_{s}^{1 / m}$. We have $F_{s}\left(a \cdot u_{i}+\right.$ $\left.b \cdot u_{j}\right)=\delta_{s} \cdot\left(b \cdot u_{i}+a \cdot u_{j}\right) /\left(u_{i} \cdot u_{j}\right)$. Hence F_{s} is a well-defined m-valued map from U_{H} to itself.

Lemma 1.3. The inverse map F_{s}^{*} is a ring morphism. Moreover we have $\left(F_{s}^{*}\right)^{2}=1$.
Proof. It follows from the Brieskorn Theorem that the cohomology of U_{H} is generated by the forms $d l / l$, where l runs over the space of linear forms defining the arrangement of hyperplanes (see [$\mathrm{Br}, \mathrm{O}, \mathrm{OS}, \mathrm{OT}]$). As $d\left(\delta_{s}\right) / \delta_{s}$ is a combination with rational coefficients of such forms, it follows that $q^{*} H^{*}\left(U_{H}\right) \subset H^{*}\left(U_{H}\right)$, where q is as before. Hence it follows from (1.2) that F_{s}^{*} is a ring morphism. Clearly F_{s}^{2} is the n^{2}-valued map which sends $u \in U_{H}$ to the set with multiplicity $\left\{x \cdot y \cdot u \mid x, y \in \mu_{n}\right\}$, where μ_{n} is the set of n-roots of unity. As \mathbf{C}^{*} acts trivially on $H^{*}\left(U_{H}\right)$ we have $\left(F_{s}^{*}\right)^{2}=1$. Q.E.D.

The map F_{s}^{*} will be called the involution associated with the suspensive system s.

2. Hidden Automorphisms of the Cohomology of the Arrangement Associated with a Graph

(2.1). By graph we mean non-oriented graph with simple edges and no loops. Let Γ be a graph, with a set of vertices V and set of edges E. Set $E_{\Gamma}=\left\{\left(z_{v}\right)_{v \in V} \in\right.$ $\left.\mathbf{C}^{V} \mid \sum_{v \in V} z_{v}=0\right\}$. For each edge (v, u) of Γ one associates the hyperplane $z_{u}=z_{v}$ of E_{Γ} and we denote by H_{Γ} the collection of all hyperplanes associated to edges of Γ. Its complement in E_{Γ} will be denoted by U_{Γ}.
(2.2). A suspension point of Γ is a vertex which is connected to all other vertices of the graph. If s is a suspension point, then the linear form $z_{s}-z_{v}$ for $v \neq s$ is a suspensive system. Denote by σ_{s} the associated involution of $H^{*}\left(U_{\Gamma}\right)$. We will use the following formulas. Let s, v, w be three distinct points in V, with s suspensive. We have

$$
F_{s}\left(z_{v}-z_{w}\right)=\delta_{s}\left(z_{v}-z_{w}\right) /\left(z_{s}-z_{v}\right)\left(z_{s}-z_{w}\right),
$$

and

$$
F_{s}\left(z_{v}-z_{s}\right)=\delta_{s} /\left(z_{v}-z_{s}\right) .
$$

From this we deduce $F_{s} \delta_{t}=\delta_{s} \cdot \delta_{t} /\left(z_{s}-z_{t}\right)^{2}$ and $F_{s} \delta_{s}=\delta_{s}$, where s, t are distinct suspensive points.
(2.3). Let Γ be a graph and let S be the set of suspension points. We denote the vertices by positive integers $1,2, \ldots, m$, where m is the number of vertices. Set $S^{+}=S \cup\{0\}$. For any set Z, denote by Σ_{Z} the full permutation group of Z and for $z, z^{\prime} \in Z$ denote by $r_{z, z^{\prime}}$ the substitution exchanging z and z^{\prime}. The group Σ_{S} acts naturally on Γ by fixing all vertices outside S. So Σ_{S} acts naturally on U_{Γ}. Let G be the group of automorphisms of $H^{*}\left(U_{\Gamma}\right)$ generated by the involutions σ_{s}, for $s \in S$.

Theorem 2.3. The group G contains Σ_{S} and is naturally isomorphic to $\Sigma_{S^{+}}$. For such an isomorphism the involution σ_{s} is identified with $r_{0, s}$.

Proof. Let $s, t \in S$ and let j be a vertex of Γ different from s and t. Using formulas (2.2) one gets $F_{s} \circ F_{t} \circ F_{s}\left(z_{s}-z_{j}\right)=\left(z_{t}-z_{j}\right)$, and $F_{s} \circ F_{t} \circ F_{s}\left(z_{s}-z_{t}\right)=\left(z_{t}-z_{s}\right)$, up to some multivalued constant factor. Hence we have $\sigma_{s} \circ \sigma_{t} \circ \sigma_{s}=r_{s, t}$. Moreover we obviously have $w \sigma_{s} w^{-1}=\sigma_{w(s)}$. Thus there exists a unique morphism Θ from G to $\Sigma_{S^{+}}$sending σ_{s} to $r_{0, s}$. Using the presentation of $\Sigma_{S^{+}}$by generators and relations, it is easy to prove that Θ is an isomorphism. Q.E.D
(2.4). Denote by K_{n} the complete graph with n vertices. Note that $U_{K_{n}}$ is homotopic to the space U_{n} from the introduction. The following statement is an obvious consequence of Theorem 2.3.
Corollary 2.4. The group of automorphisms of the algebra $H^{*}\left(U_{K_{n}}\right)$ contains a subgroup Σ_{n+1} extending the natural Σ_{n}-action.
(2.5). Actually no Σ_{n+1}-action extending the natural Σ_{n}-action comes from an action (or action up to homotopy) of Σ_{n+1} on the topological space $U_{K_{n}}$ because of the following proposition.
Proposition 2.5. Assume $n \geqq 4$. There are no actions of Σ_{n+1} on $H^{1}\left(U_{K_{n}}\right)$ extending the Σ_{n}-action and defined over the integral cohomology.

Proof. Denote by ρ the Σ_{n+1} action on $H^{1}\left(U_{K_{n}}\right)$ defined by Theorem 2.3, and let ρ^{\prime} be any other action on $H^{1}\left(U_{K_{n}}\right)$ extending the natural Σ_{n}-action. For $1 \leqq i<j \leqq$ n, set $x_{i, j}=d\left(z_{i}-z_{j}\right) /\left(z_{i}-z_{j}\right)$. Then $H^{1}\left(U_{K_{n}}, \mathbf{Z}\right)$ is a free \mathbf{Z}-module with basis $x_{i, j}$ (Brieskorn Theorem [Br]). Let L be the hyperplane in $H^{1}\left(U_{K_{n}}\right)$ containing all vectors whose sum of coordinates are 0 and set $L_{\mathbf{Z}}=L \cap H^{1}\left(U_{K_{n}}, \mathbf{Z}\right)$. For $1 \leqq j<$ $i \leqq n$ set $x_{i, j}=x_{j, i}$ and $x_{i, i}=0$. Set $T_{i}=\sum_{1 \leqq j \leqq n} x_{i, j}$ and $T=\sum_{1 \leqq i \leqq n} T_{i}$.

1) As Σ_{n} module we have $L=L_{1} \oplus L_{2}$, where L_{1}, L_{2} are the simple modules with Young diagrams $(n-1,1)$ and $(n-2,2)$ and its complement in $H^{1}\left(U_{K_{n}}\right)$, denoted by L_{0}, is the trivial module $\mathbf{Q} T$. So any Σ_{n+1}-action extending the Σ_{n} action will be the sum of a trivial representation and the representation with Young diagram ($n-1,2$). Moreover for such an action L_{0} will be invariant and L will be a submodule.
2) It follows from the previous point that ρ^{\prime} and ρ are conjugated by some $\Phi \in G L\left(H^{1}\left(U_{K_{n}}\right)\right)$. Such a Φ should act in a scalar way on L_{1}, L_{2} and L_{0}. By multiplying Φ by an automorphism of ρ we can assume that Φ is the identity on L_{0} and L_{2}, and acts as some non-zero scalar λ on L_{1}.
3) Set $s=\rho\left(r_{0,1}\right)$. We have $s \cdot x_{1, i}=-x_{1, i}+2 /(n-1) \cdot T_{1}$ and $s \cdot x_{i, j}=$ $x_{i, j}-x_{1, i}-x_{1, j}+2 /(n-1) \cdot T_{1}$ for $1<i<j \leqq n$. It follows that ρ stabilizes $L_{\mathbf{Z}}$ but not $H^{1}\left(U_{K_{n}}, \mathbf{Z}\right)$. As Σ_{n}-module, L_{1} is generated by $T_{1}-T_{2}$ and L_{2} is generated by $x_{1,2}+x_{3,4}-x_{2,3}-x_{1,4}$. If π denotes the projection of $H^{1}\left(U_{K_{n}}, \mathbf{Z}\right)$ over L_{1}, we have $\pi\left(x_{i, j}\right)=1 /(n-1)\left(T_{i}+T_{j}\right)-2 /(n(n-1)) T$. Note also that we have $s\left(x_{1,2}+x_{3,4}-x_{2,3}-x_{1,4}\right)=x_{3,4}-x_{3,2}$ and $s\left(T_{2}-T_{1}\right)=T_{2}-(n-1) x_{1,2}$.
4) Set $s^{\prime}=\rho^{\prime}\left(r_{0,1}\right)$. We have $s^{\prime} \cdot x=s \cdot x+(1-\lambda) \pi \circ s \cdot x$ if $x \in L_{2}$ and $s^{\prime} \cdot x=(1 / \lambda) s \cdot x+((1-\lambda) / \lambda) \pi \circ s \cdot x$ if $x \in L_{1}$. By using the previous formulas, one gets $s^{\prime}\left(x_{1,2}+x_{3,4}-x_{2,3}-x_{1,4}\right)=x_{3,4}-x_{3,2}+(\lambda-1) /(n-1)\left(T_{4}-\right.$ $\left.T_{2}\right)$, and $s^{\prime}\left(T_{2}-T_{1}\right)=(1 / \lambda)\left(T_{2}-(n-1) x_{1,2}\right)+((1-\lambda) / \lambda)\left[(n-2) /(n-1) T_{1}-1 /\right.$ $\left.(n-1)\left(\sum_{j \geqq 3} T_{j}\right)\right]$.
5) Assume that ρ^{\prime} stabilizes $H^{1}\left(U_{K_{n}}, \mathbf{Z}\right)$. It follows from point 4 that $1 / \lambda$ and $(\lambda-1) /(n-1)$ should be integers. This implies $\lambda=1$, i.e. $\rho=\rho^{\prime}$. However ρ does not stabilize $H^{1}\left(U_{K_{n}}, \mathbf{Z}\right)$. Q.E.D.

3. The Limit Ring $S C_{n}^{*}$

Let n be an integer and let X be a symplectic manifold. Then the product and Poisson brackets define two binary operations on $C^{\infty}(X)$. Consider now the space of all n-ary multilinear operators from $C^{\infty} \times \cdots \times C^{\infty}(X)$ to $C^{\infty}(X)$ that we can get by composing the product and the bracket. Clearly this space depends only on the dimension of X. In fact when $n \leqq \operatorname{dim} X+1$, this space is independent of the dimension ([M], Theorem 7.5). It is denoted by $S C_{n}(\infty)$ or by $S C_{n}$. We have $\operatorname{dim} S C_{n}(X)=n!$ ([M], Lemma 3.7). Actually $S C_{n}$ has a natural structure of graded cocommutative coalgebra ([M], Proposition 3.6). Let us denote by $S C_{n}^{k}$ the component of degree k in $S C_{n}$ (in [M], Sect. (3.5) this grading is called the Liouville grading). Roughly speaking $S C_{n}^{k}$ is the space of all n-ary maps which involve exactly k brackets. The dual space $S C_{n}^{*}$ is a commutative algebra described by the following theorem.

Theorem 3.1 ([M], Theorem 7.6). A presentation of the limit ring $S C_{n}^{*}$ is given by the commuting generators $x_{i, j}($ for $1 \leqq i<j \leqq n)$ and the following relations:
(a) $x_{i, j}^{2}=0$, for $1 \leqq i<j \leqq n$,
(b) $x_{i, j} x_{j, k}=x_{j, k} x_{i, k}+x_{i, k} x_{i, j}$, for any $1 \leqq i<j<k \leqq n$.

This algebra is very similar to Arnold's algebra $H^{*}\left(U_{K_{n}}\right)$ (see [A]). However $S C_{n}^{*}$ is strictly commutative. Actually the generators are all elements of degree 1 and they can be described as follows. For $i<j$ denote by $\tau_{i, j}$ the map $\left(f_{1}, \ldots, f_{n}\right) \in$ $\left(C^{\infty}\right)^{n} \rightarrow\left\{f_{i}, f_{j}\right\} f_{1} \ldots f_{n}$ (where we omit the terms f_{i} and f_{j} in the product). Then
the family $\left(\tau_{i, j}\right)_{1 \leqq i<j \leqq n}$ is a basis of $S C_{n}^{1}$ and the generators $x_{i, j}$ is the dual basis. The Σ_{n+1}-action on $S C_{n}$ is described by the following proposition.
Proposition 3.2 (see [M], Theorem 1.5). Let X be a symplectic manifold of dimension $\geqq n-1$. Let $\tau \in S C_{n}$ and let $\sigma \in \Sigma_{n+1}$. There exists a unique $\theta \in S C_{n}$ such that $\int_{X} f_{\sigma(0)} \tau\left(f_{\sigma(1)} \otimes \cdots \otimes f_{\sigma(n)}\right) \cdot \omega^{m}=\int_{X} f_{0} \theta\left(f_{1} \otimes \cdots \otimes f_{n}\right) \cdot \omega^{m}$, for any compactly supported smooth functions f_{0}, \ldots, f_{n} (where $2 m=\operatorname{dim} X$).

Then Σ_{n+1} acts on the dual $S C_{n}^{*}$ as a group of homogeneous ring morphism. To describe the action of the symmetric group Σ_{n+1}, it will be convenient to define the elements $x_{i, j}$ for any $1 \leqq i, j \leqq n$ as follows. We set $x_{i, i}=0$ and $x_{i, j}=-x_{j, i}$ for $i>j$.

Lemma 3.3. (i) For $\omega \in \Sigma_{n}$, we have $w \cdot x_{i, j}=x_{w(i), w(j)}$.
(ii) We have $r_{0, i} \cdot x_{k, l}=x_{k, l}+x_{l, i}+x_{i, k}$ for any distinct i, j, k.
(iii) We have $r_{0, i} \cdot x_{i, k}=x_{k, i}$ for any distinct i, k.

Proof. Formula (i) is obvious. Let $\tau_{i, j}$ be the dual basis of $x_{i, j}$. We have $r_{0, i} \tau_{k, l}=\tau_{k, l}$ for distinct i, k, l. Moreover we have $\int_{X}\left\{f_{0}, f_{l}\right\} f_{1} \ldots f_{l-1} \hat{f}_{l} f_{l+1} \ldots=$ $\sum_{j>0} \int_{X}\left\{f_{l}, f_{j}\right\} f_{0} \ldots \hat{f}_{j} \ldots \hat{f}_{l} \ldots$. Thus we get $r_{i, 0} \tau_{i, l}=\sum_{j>0} \tau_{l, j}$. So by transposition one gets the formulas (ii) and (iii).

4. Characters of the Homogeneous Components of the Σ_{n+1}-Modules $S C_{n}$ and $H^{*}\left(U_{n}\right)$

(4.1). In this section we will set $S=\{1, \ldots, n\}, S^{+}=S \cup\{0\}$ and $S^{++}=S \cup$ $\{0,-1\}$. Moreover A_{n} will denote one of the following two algebras (a) $S C_{n}^{*}$ or (b) $H^{*}\left(U_{K_{n}}\right)$.
(4.2). There is a natural embedding $\varepsilon: A_{n} \rightarrow A_{n+1}$. In case (a) it is the transposition of the natural map $\varepsilon^{*}: S C_{n+1} \rightarrow S C_{n}$ defined as follows: $\varepsilon^{*} P\left(f_{1}, \ldots, f_{n}\right)=$ $P\left(1, f_{1}, \ldots, f_{n}\right)$ (denoted $R_{n+1, n}$ in [M], Sect. (3.4)). In case (b), it is the inverse map associated to the morphism $U_{K_{n+1}} \rightarrow U_{K_{n}}$, sending $\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ to $\left(z_{1}, \ldots, z_{n}\right)$.
(4.3). The natural embedding ε commutes with the Σ_{S} action but not with the $\Sigma_{S^{+}}$-action. So we will twist ε to get an equivariant embedding. To do so define a morphism $\tau: A_{n} \rightarrow A_{n+1}$ by $\tau=r_{-1,0} \circ \varepsilon$.
Proposition 4.3. The ring morphism τ commutes with the $\Sigma_{V^{+}}$-action.
Proof. As the ring A_{n} is generated by its degree one component A_{n}^{1} and as τ is a ring morphism, it suffices to check the claim on A_{n}^{1} what is obvious (in case (a) this follows very easily from definitions as well).
(4.4). Set $V=\mathbf{Q}^{n+1}$. Consider V as a Σ_{n+1}, with action given by permuting the natural basis of V. There is a grading $V=V_{0} \oplus V_{1}$ of V in such a way that V_{0} is the trivial component of V and V_{1} is its unique Σ_{n+1}-complement.

Theorem 4.4. As a graded Σ_{n+1}-module, we have $A_{n+1}=A_{n} \otimes V$, where the action on A_{n+1} is the natural action and the action on A_{n} is the hidden action described in Sect. 2 and 3.

Proof. With the previous notations, consider A_{n} as a subalgebra of A_{n+1} by using the ring morphism τ. Define elements T_{i}^{\prime}, for $0 \leqq i \leqq n$ as follows. In case (a) set $T_{i}^{\prime}=\sum_{0 \leqq j \leqq n} x_{i, j}$. In case (b) set $T_{i}^{\prime}=\left(\sum_{0 \leqq j \leqq n} x_{i, j}\right)-1 /(n+1)\left(\sum_{i, j} x_{i, j}\right)$. In both cases we have $\sum_{0 \leqq i \leqq n} T_{i}=0$. Denote by U^{\prime} the subspace of A_{n+1} generated by the T_{i}^{\prime} and set $U=U^{\prime} \oplus \mathbf{C} 1$. We have $U \simeq V$. Moreover in both cases we have
(i) $A_{n+1}^{1}=A_{n}^{1} \oplus U^{\prime}$.
(ii) We have $T_{i} \cdot T_{j}=b_{i, j} \sum a_{i, j, k} T_{k}$, for some $b_{i, j}$ and $a_{i, j, k}$ in A_{n}.

It follows that the natural map $\mu: A_{n} \otimes U \rightarrow A_{n+1}$ (given by multiplication) is onto. By comparing the dimension, μ is an isomorphism. By construction μ commutes with the $\Sigma_{V^{+}-\text {action. }}$ Q.E.D.
(4.5). The character of the graded module A_{n} for its natural Σ_{n}-action has been determined in each case. For case (a) it has been computed by Lehrer and Solomon, see [LS, CT, S]. For case (b) it is usually attributed to Klyaschko, see [$\mathrm{Br}, \mathrm{K}, \mathrm{Ba}, \mathrm{RW}]$. For any Σ_{n+1}-module M denote by $\operatorname{ch}(M)$ its character and denote by A_{n}^{k} the degree k component of A_{n}. Thus from Theorem 4.4, one gets a character formula for the hidden Σ_{n+1}-action on A_{n} as follows.
Corollary 4.5. We have $\operatorname{ch}\left(A_{n}^{k}\right)=\sum_{0 \leqq l \leqq k}(-1)^{l} \operatorname{ch}\left(A_{n+1}^{k-l}\right) \cdot \operatorname{ch}\left(V_{1}\right)^{l}$, where the character on the left side (right side) refers to the hidden (respectively natural) Σ_{n+1}-action.
(4.6). The highest component of $S C_{n}$ has degree $n-1$ and is isomorphic with the space of all n-ary multilinear Lie polynomials denoted $\operatorname{Lie}(n)$ in [GK]. Thus we get $S C_{n}^{n-1} \otimes V_{1} \simeq S C_{n+1}^{n}$. This gives a quick proof of the following result of Getzler and Kapranov.
Corollary 4.6 (Getzler and Kapranov [GK]). There is an isomorphism of $\Sigma_{n+1^{-}}$ modules $\operatorname{Lie}(n) \otimes V_{1} \simeq \operatorname{Lie}(n+1)$.

Acknowledgements. We thank B. Keller, J.L. Loday and R. Rouquier for useful discussions.

References

[A] Arnold, V.: The cohomology ring of the colored braid group. Mat. Zametki 5, 227-231 (1969)
[Ba] Barcelo, H.: On the action of the symmetric group on the free Lie algebra and the partition lattice. J. Combin. Theory Ser. A 55, 93-129 (1990)
[Br] Brandt, A.J.: The free Lie ring and Lie representations of the full linear group. Am. Math. Soc. 56, 528-536 (1944)
[Br] Brieskorn, E.: Sur les groupes de tresses. Séminaire Bourbaki, Berlin, Heidelberg, New York: Springer Lectures Notes in Mathematics 317, 1973, pp. 21-44
[CT] Cohen, F.R., Taylor, L.R.: On the representation theory associated to the cohomology of configuration spaces. In: Algebraic Topology (Oaxtepec 1991). Providence Am. Math. Soc. Contemporary Math. 146, 1993
[GK] Getzler, E., Kapranov, M.M.: Cyclic operads and cyclic homology. Preprint
[K] Klyachko, A.A.: Lie elements in the tensor algebra. Sibirskii Matematicheskii Zhurnal 15-6, 1296-1304 (1974)
[LS] Lehrer, G.I., Solomon, L.: On the action of the symmetric group on the cohomology of the complement of its reflecting hyperplane, J. of Algebra 104, 410-424 (1986)
[M] Mathieu, O.: The symplectic operad. To appear in the Proceedings of the conference in honor of I.M. Gelfand, Rutgers (1993)
[O] Orlik, P.: Introduction to arrangements. Conference Board of the Math. Sc., A.M.S., 72 (1989)
[OS] Orlik, P., Solomon, L.: Combinatorics and topology of complements of hyperplanes, Inv. Math. 56, 167-189 (1980)
[OT] Orlik, P., Terao, H.: Arrangements of hyperplanes. Berlin, Heidelberg, New York: Springer, Grund. Math. Wiss. 300, 1992
[RW] Robinson, A., Whitehouse, S.: The tree representation of Σ_{n+1}. Warwick preprint
[S] Stanley, R.: Some aspect of groups acting on posets. J. Combinatory Theory Ser. A 32, 132-161 (1982)

Communicated by A. Connes

