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Abstract: Based on Schottky uniformization theory of Riemann surfaces, we con-
struct a universal power series for (Riemann) theta function solutions of the
KP hierarchy. Specializing this power series to the coordinates associated with
Schottky groups over p-aάic fields, we show that the p-aάic theta functions of
Mumford curves give solutions of the KP hierarchy.

Introduction

The KP (Kadomtsev-Petvyashvili) hierarchy is a system of infinitely many Lax
type partial differential equations,

flτ oo
-

(dx = d/dx,(Ln)+ : the nonnegative part of Ln for dx) which includes the KP equa-
tion

d duλ 1 d3uι ^ duΛ Λ-3m — = 0 .
4 dtl dx \ dt3 4 dx3 dx

Our final goal in this paper is to show that the p-aάic theta functions of p-aάic
(Mumford) curves give solutions of the KP hierarchy. These solutions are included
in algebro-geometric solutions for p-aάic curves constructed by Krichever [Kr].
However, one cannot express these Krichever solutions in terms of p-aάic theta
functions as is done in [Kr] for the complex case because there is no theory on
curvilinear integrals in p-aάic analysis.

Our construction of p-aάic solutions of the KP hierarchy consists of 2 steps: the
first step is to obtain a "universal" solution expressed by a formal theta function,
and the second step is to specialize this universal solution to p-aάic solutions. For
example, in the genus 1 case, the Weierstrass p-function

P(*)=^ + Σ (, Λ2 - \] (L:=Z(πτ)
2 «<EZ,-{0} \(z~u) u /
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for complex numbers τ with positive imaginary part can be regarded as an element
of Q[[z,#]][l/z](g := exp(2π\/--ΪΌ) which gives a universal elliptic solution of the
KdV (Korteweg-de Vries) hierarchy

L2 = + 2κ1(*,f1,f3,...) ,

and hence for p-adic numbers a with a\p < 1, @(z)\q=a give ;?-adic solutions
of KdV. In the genus ^ 2 case, we need Schottky uniformization theory of
algebraic curves over local fields for the construction of a universal solution and
p-adic solutions. It is known in [H, Sc] that there exist universal expressions
of meromorphic 1-forms and period integrals of Schottky uniformized Riemann
surfaces with sufficiently small handles. Based on results in [I], we give power
series expansions of these 1-forms and periods with respect to the Koebe
coordinates (the fixed points and the eigenvalues of generators of the associ-
ated Schottky groups) which, combined with the description given in [Kr] of
quasi-periodic solutions of KP in terms of Riemann theta functions, induce a
universal power series for solutions of KP from Riemann surfaces with square
roots of canonical bundles. In this expression, the KP hierarchy is reduced to
identities between certain formal power series including the universal periods
given in [I]. Since pinching handles of Riemann surfaces induces de-
generations of the solutions, one can obtain the solitonic degeneration from
the universal solution which has been described in [Mum2] for KdV and in [Go]
for KP.

As an application of the universal solution, we will construct formal solutions
of the KP hierarchy with coefficients in p-adic fields. We show that over p-adic
fields, the universal 1-forms and periods converge for the Koebe coordinates of any
Schottky group, which implies the convergence of the universal solution. Hence this
specialization of the universal solution gives solutions of KP which are seen to be
expressed explicitly by the p-adic theta functions of Schottky uniformized algebraic
curves over p-adic fields. It is shown in [Muml] that an algebraic curve over p-
adic fields can be Schottky uniformized if and only if this special fiber consists of
protective lines, in which case, such a curve is called a Mumford curve. Therefore,
we can see that the p-adic theta functions of Mumford curves give solutions of the
KP hierarchy.

Based on the above result, we propose two problems. The first is to char-
acterize these p-adic solutions of the KP hierarchy and the KP equation, which
is concerned with a p-adic version of the Novikov conjecture mainly studied in
[A-D,Mul and Sh]. The second is to construct a theory on Mumford curves "of
infinite genus" uniformized by infinitely generated Schottky groups over p-adic
fields, which will give solutions of the KP hierarchy conjectured to have infinite
dimensional orbits.

1. Riemann Surfaces and the KP Hierarchy

Let g be a positive integer. We fix a Riemann surface C of genus g, a canonical
basis {αi9bi}i£i£g of //ι(C,Z) (i.e., (α, ,fey) = δiJ9 (α,,fl/) = (&/,*/) = 0), a point
P G C, and a local coordinate u at P such that u(P) = 0. We denote the whole
data by X — (C9{αi,bi}ι^i^g,P9u). Then there exists a unique basis {ω\9...9ωg}
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of H°(C,Ωl

c) satisfying /α. ω, = 2π^δij (i,j = 1,... ,g), and

is the period matrix of (C, {α/,Z?/}ι^ ̂ ). Take rjm G C (j = 1,.. . ,0, m G N) such
that

ωy = Σ Γjm um du at P .

For each n G N, there exists a unique meromorphic 1-form ω(w) on C satisfying

ω^ is holomorphic outside P , (l l)

00 ύ \
+ Σ —um~l } du at P for some 0πm G C , (1.2)

Jco^ = 0 for any / = 1,...,# . (1-3)

For c = (Ci)ι^i^g G (Cx)0 and a vector z = (zi)\^i^g of # indeterminates, we
denote the Riemann theta function of (C9{αi9bi}\^i^g) by

( 9 , 9 oo 1 / g \n}

Π exp(π>/=TZf/)^ Πc? Σ -7 Σ^« f »
ι,y =l ι=l «=0 n- \ι=l / J

where t?= (u/)ι^ z ̂ 0. Let ίm(m G N) be indeterminates, and put t = (ίι,ί2^35 ..)
Then we define the τ-function τ(t9Xc) as an element of C[[t]] = C[[t\9t29...]] by

Λ oo \ /
τ(t,Jfc) = exp - V qnmtntm Θ c exp

\ 2 w m—ι I V

where rw = (rjm)\^j^g. For c G (Cx)^ with Θ(c)ΦO, we put

-( '-^— = 1 + Σ WA:(t ^c)^ , (1-4)
Ht^c) Λ:=l

where [z] = (z,z2/2,z3/3,...), and define two micro-diίferential operators

oo

FF(t,JΓc) = 1 + Σ ^(t,Λ:

and

with coefficients in C[[jc,t]], where t + x = (t\ +x9t29t$9...). Then it is known (cf.
[Kr, S-S]) that L(t,Xc) satisfies the KP hierarchy
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In particular,

d2 , . . .
uι(x,t2,t3) = -τ~2\ogΘ(c exp(xrι + t2r2 + £3^3)) + q\\

satisfies the KP equation

d f du\ 1 d3u\ du\ .
— 3u] ^— = 0 .

dx V 5ί3 4 ftc3

2. Schottky Uniformization

2.7. Let K be C or a complete nonarchimedean valuation field with multiplicative
valuation | . Let PGL2(K) act on Pl(K) by the Mόbius transformation. A subgroup
Γ of PGL2(K) is called a Schottky group of rank 0 over AT if there exist its free
generators γ\9...9yg and 2g open domains bounded by Jordan curves if K = C (resp.

2g open disks if K is a nonarchimedean valuation field) Ati, . . 9D±g C P1^) such
that _ _ _

£>_*) = Afc (*= 1,...,0),

and then Γ is called to be marked if selecting such a sequence y\9...9yg. Then for
each A: = !,...,#, we can take uniquely α±£ G Z)±£ and βk £ Kx such that

0 \fθίk %-k\ ^A(ΊS*\ (Ίλ\

βk

 moά(κ }' (2 1}

We call (u±k,βk)\^k^g the Koebe coordinates of (Γ;yι,...,y^). A Schottky group
Γ is called classical if we can take Z>±* (& = 1,...,^) as open disks (hence all
Schottky groups over nonarchimedean valuation fields are automatically classical
(cf. [G-v.d.P])). Then there exist μ±\,...9μ±g < 1 such that

)ι \z - a±k\ < μ±k\z -

In particular,

\βk\ < min{|[α^α_yt; a/,ay] | ;/ ,y=4= ±k}

where

denotes the cross ratio of four points. Put

FΓ = Pl(K) - U (Dk U DΓk\ HΓ =
jfc=ι r£Γ

Then Γ acts on HΓ freely and properly discontinuously, and the quotient ^-analytic
space Cr=Hr/Γ is obtained from Pl (K) — \J9

k==l D±k by identifying dDk and
3Z)_^ via yk (k = I 9 . . . 9 g ) . It is known that the A'-analytic space Cp has naturally
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the structure of a proper and smooth algebraic curve of genus g over K. More-
over, it is known that any Riemann surface can be Schottky uniformized, and
that an algebraic curve over a nonarchimedean valuation field can be Schottky
uniformized if and only if this curve is a Mumford curve, i.e., the special fiber
consists of protective lines (cf. [Ko, Muml]). Let Sκ be the subset of (P1^) x

Pl(K) x Kx)g consisting of the Koebe coordinates of all marked Schottky groups
over K. For k = — 1, . . . , — g, put βk = β-k and jk = (γ-k)~l Then γk satisfies (2.1)
also.

2.2. Proposition. Let (Γ\y\,...,yg) be a marked Schottky group over K with
Koebe coordinates (u±k,βk)\^k^g, and let Γr be the Schottky group generated
by γ\,...,γg-\. Then under βg — » 0, Cp becomes the degenerate algebraic curve
Cf obtained by identifying ag and α_^ in Cγ>.

Proof. For any ε G Kx with |ε| ^ 1, let D±g(ε) be the domains containing a±g

given by

D±g(ε) = {z G P1^); |z - a±g\ < ^/N μ±g \z - ατ,|} ,
and Put

0, ,

7*00= εβg

Then yg(ε)(dD-g(ε)) = dDg(ε). Let Γ(ε) be the subgroup of PGL2(K) generated
by y\9...,yg-\ and y^(ε). Then Γ(ε) is a Schottky group of rank g and Cr(ε> is
isomorphic to the Λ^-analytic space obtained by identifying dDk and dD-k via
yjt (A: = !,...,# — 1), SDg(ε) and 3D_^(ε) via y^(ε). Therefore, if |ε| — > 0, then
^±^(β) tend to α±^5 and hence Cr(fi) becomes C7.

2.3. Let K = C, and let the notation be as in 2.1. Taking the conjugation y, ι->
pjip~λ(i = 1, . . . , #) by a certain p G PGL2(C), we may assume that oo e FΓ which
implies that α±£ φ oc (k = !,...,#). For each / = !,...,#, let βz be the closed path
dDi counterclockwise oriented, and let Z?z be an oriented path in FΓ from a certain
point xt of dD-i to y/fe) such that bι Πbj = 0 (/φy). Then {«/,A/}i^ig^ becomes
a canonical basis of H\(Cr, Z). Let /? be a point of/7/- — ί00}^ let P be the point
of Cr corresponding to /?, and put u = z — p. Assume that βι,...9βg are sufficiently

small. Then we express ω^n\ ω/, and Zzy explicitly for (Cr,{ai,bi}\^i^g,P,u} ac-
cording to [H]. It is shown in [Sc] (see also [A]) that Σy^ly'Cz)! is uniformly
convergent on HΓ — UyG/7(°o) under the above assumption. Hence for each integer
n ^ 0, one can define a meromorphic 1-form

on Hp. Since ω(w) is Γ-invariant, this induces a meromorphic 1-form on Cr
which we denote by the same symbol, and a term-by-term integration shows that
fa ω^ = Q (i = 1, . . . , g). It is easy to see that ω(0) is holomorphic except for simple

poles of residue 1 (resp. —1) at P (resp. oo), and that ω^n\n ^ 1) satisfy (1.1)
-(1.3). For each j = !,...,#, let ω7 be the holomorphic 1-form on Cr such that

fa (Dj = 2π^/^ϊδij (i = !,...,#). Then by the classical period relation,
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Hence

= „ ___
ωj - - ) z

z

where /} (y = !,...,#) denotes a complete set of representatives of the cosets
Γ/(jj). Since

?/(*/)
/ ωy (ίj= l , . . . , 6 f ) ,J 2π

taking appropriate branches of the logarithm, we have

1 ^
—=
2πv-l

1
Σ

where //,- (ij = !,...,#) denotes a complete set of representatives of the cosets
(γ/ )\Γ/{y7 ), and ifaj is the map /}/ —> Cx given by

i (if ί=7 and y € (yz ))
[α/, α_, ; y(αy ), y(α_7 )] (otherwise).

For each z,y = 1, . . . ,g, put py = Qxp(2π\/^ΪZij). Then

We note that in [M-D], the above ω/ and pzy are obtained as holomorphic
1-forms and multiplicative periods of Schottky uniformized Mumford curves
(cf. Corollary 4.4).

3. Universal Solution of KP

3.1. Let x±k,yk (k = !,...,#),p, and z be variables, and put u = z — p. Let A be
the ring of formal power series over Z[xfζ9Uί<jl/(xi — Xj)] (ij,k G
with variables y\,...,yg9 i.e.,

t,π '
and put
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Let / be the ideal of A generated by y\,...,yg. For each k — ±1,...,±0, put
yk = jμμμ and let fk be the element of GL2(Ω) (Ω : the quotient field of A) given
by

f ίxk X-k W l 0 λ /*£ *_
Λ = ( l 1 )(θ yt)(l I

3.2. Proposition. For any f = fk(\}fk(2}'' Λ(/> satisfying k(s)+ - k(s + 1)
0 = 1,..., / - 1), put y = yk(\)yk(2) - - - yk(i} Then we have

(a) f(xj ) e A, and /(*,-) e **(i) + / for f <£ (/}} ,

(b) f(xj)-f(x-j)€yA forj*±k(l),

(c) [*,,*_,; /(*,),/(*_,)] €\+yA for iφ ±*(l),yΦ ± *(/) ,

(d) rr €

Proof, (a) We prove this by induction on /. Assume that /φ{/}) and
+ α for some α G /. Then for any / Φ — A:(l),

{
Hence

j - - i j - - i

belongs to jc/+/. Assume that / G {/}}. Then f(χj) = χj, and hence for any

(b) We prove this by induction on /. Assume that y'φ ±&(/) and f(xj) —
f ( x ~ j ) e .̂ Then by (a), /(Λ:y ) =Xk(\) + b for some δ € /, and hence for any
i φ - A ( l ) ,

belongs to A. Similarly, {f(x-j) - X-t - yt(f(x-j) -Λ:,)}"' belongs to A. Hence

(///)(*;) - (//

belongs to yytA.

(c) By (a), (f(Xj) - x.,)-1 and (f(x-j) - x,)"1 belong to A. Therefore, by (b),

(f(Xj)-X-i)(f(x-j)-Xi)

belongs to 1 -f yA.
(d) Put

c bf

' df.
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Then
/'(z) 1«-1

(/(z) - p)n+l {(afp + bf- cfP

2 - dfp} + (af - cfp)u}»+1 *

Since
x-k -x~k

and
' α — o _

-*J
df,bf,Cf and df belong to A9 and these constant terms are Xk(i)t9—Xk(i)X-k(i)t9t and
—x-k(i)t respectively, where

Hence the constant terms of Cfp + d/ and afp + bf — Cfp2 — dfp are —(*_£(/) —
/?)ί G ̂ 4^ and — (^(i) — P)(*-k(i) — p)t G ̂ ^ respectively. This implies (d).

3.3. Put φk = fkmod(Ωx)£ PGL2(Ω) for k = ±l,...,±g, and let Φ be the free
subgroup of PGL2(Ω) with generators φ\9...9φg. Then φ_yt = φ^1 and φjt(^) —
fk(z). Let Φy and Φzy be the subsets of Φ given by

- k(s + l),t(/)φ ±7} ,

± ι,*(/) Φ ±y}

Then Φy (resp. Φ^ ) is a complete set of representatives of the cosets Φ/(<jθy) (resp.
(φi)\Φ/(φj)). Hence by Proposition 3.2, one can define two 1-forms with coeffi-
cients in Ap and an element of A as follows:

Ωj — J^

Λy = JT

where
!>/ (if i =7 and φ G (φz ))

^y(^) = ^ r / Λ f \\ ( ^ \{[Xi9x-i'9φ(Xj)9φ(x-j)] (otherwise).

We introduce g variables yV2 (i = I 9 . . . 9 g ) which are square roots of yi9 and define

square roots pf G A[yl'\..., yl

g

/2] ® ZQ of Λ/ (i = 1,..., flf) by

π
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Then for two sequences w = (w/)i^/^0 and z = (zt)i^i^g of g indeterminates, the
universal theta function is defined by

θ(w exP(f))= Σ π Π ^ Π ^ Σ
v^Ίβ [i=l i<j ί=l n=Qn- \z=l

Let Qnm and 7?/w be the elements of Ap such that

m=\

and put ^m = (Rjm)ι^j£g Then we define the universal τ-f unction by

τ(t) = exp - E βimWm β w exp
111=1

which is an element of

Since τ(t) — 1 belongs to the ideal of B generated by jγ2,..., _y]/2, as in (1.4)-
(1.6), τ(t) defines a micro-differential operator L(t) with coefficients in #[[*]].

3.4. Theorem.

(a) Let (Γ;γι9...9γg) be a marked Schottky group over C with Koebe co-
ordinates (oί±k,βk)\^k^g> and let X = (CV, {0/,6z}i^/^0,/>,u) be as in 2.3 with
period matrix (^ij}\^j^g- Assume that β\9...9βg are sufficiently small, and take

β ] f 2

9 . . . 9 β g 2 such that

1 / 2 - / ι / 2 \ r Y —
Pi .L I ) 1 II

n=0 V w /

Then for any c = (c, )ιSίS9 e (C"")3 wzϊ/z β(c)φO,

(b) L(t) satisfies the KP hierarchy (1.7). /« particular,

d2

satisfies the KP equation (1.8).

Proof. Assertion (a) follows from the definition of L(t). Hence as seen in Sect. 1,

dL(t)ldtn and [(L(t)")+,L(t)] coincide for χk = α*,^/2 = ^/2,w^ = ck, p£ FΓ if
(α±λ:j βk)ι ^k^g ^ &, jβj , . . . , βg are sufficiently small and c is generic (i.e., Θ(c) φ 0).
Therefore, ^Z(t)/^ - [(Z(t)")+,Z(t)].
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3.5. By Proposition 2.2, for a marked Schottky group (Γ;yι,...,γ^) with Koebe
coordinates (a±k,βk)ι^k^g> if βi,...,/^ — > 0, then Cp becomes a degenerate curve
obtained from Pl(K) by identifying α^ and ot-k(k = !,...,#). By Proposition 3.2,

and hence L(t)\yι=...=yg==Q = Sx which we call the trivial degeneration. On the other
hand, generalizing a modified theta function in [Go, Mum2], we define

and
00 / / 00

τ(t) = exp - £) jβwΛfm 6>«5 w exp Σ
\ Z « , m - l / V \m=l

Then by Proposition 3.2,

=...=^=0 = Σ Π [xt,x-i,xj,x-jrttj Π w?
!?6{0,1» | ι < / 1=1

which induces the soliton solution (cf. [Go, Mum2]).

4. P-adic Solutions of KP

4.1. Let K be a complete nonarchimedean valuation field, and let Γ be a Schottky
group of rank g over AT. Then as seen in 2.1 (cf. [Ge]), there exist free generators
yι , . . . ,70 of Γ whose Koebe coordinates (ot±k,βk)\^k^g satisfy α/φα y (/φy) and

\βk\ < min{|[α^,α_^;α/,α7 ]|;z,7φ ±k} (k=l,...,g).

Taking the conjugation y, ̂  pytp~l(i:= l,...9g) by a certain p G PGL2(K), we
may assume that α±ι,...,α±^φoo. Then we can take ZXj-i, . . ,D±g as in 2.1 such

that FΓ 3 cxo. Hence for any k — ±1,..., ±g and c, j $ Dk U D-A:,

<

Put

r = max

Then r < 1.

4.2. Lemma. Let k ( l ) , . . . , k ( l ) G {±l,...,±g} such that &(s)φ - k(s + 1) (s
I , . . . , / — 1), and put
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Then
(a) For any x9 y G FT,

< J-2

(b) For any j φ ± &(/) αwrf z G FΓ,

τ2(ctj — α_£(/)Xα_7 — U-k(i))(ttk(\) — z)

(c) For any / φ ±£(1) andyφ ±&(/),

(α/ — <x,-i)((x,j — α_./ )ΓL=ι At(s)

< r

Proof. We prove only (a) because one can show (b) and (c) in the same way.
Since

^ max < 1,

^ max < 1,

^ max < 1,

^ max < 1,

<X—k(s) — V—k(s-l

(5=1, . . . , /- ! ) ,

= 2,...,/),

- y

we have

where

- x)(y - a- ^ Π
s=\

«A:(7) — <

which implies (a).
•}•
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4.3. Theorem. Let (Γ\y\,...,yg) and (u±k,βk)\^k^g be as in 4.1, let p be a point
of FΓ — {oo}, and put u = z — p. Then

(a) For any n ^ 0,

ω(»> = Σ rt*) du

yer (Ύ(z) - P)n+l

is uniformly convergent for z € HΓ — Uy€ry({A°°}) (Hr — Uyery(p) ifn ^ 1) in
the wider sense, and any coefficient of ω^ G K[[u]]du is convergent in K.

(b) For any j = l,...,g,

is uniformly convergent for z G HΓ in the wider sense, and any coefficient of

ω. - Y

' " ii έ
[w]]Jw w convergent in K.

(c) For any ίj = !,...,#, p,7 = ΠyGΓί;/. 1/^(7) w convergent.

Proof (a) Let / - Λ(i)Λ(2) Λ(/) such that *(,s) Φ - t(,s + 1 )(s = 1, . . . , / - 1 ),
and put

ί a b\ - f\
\c d ) ~ J \x±k=«±k>yk=βk -

Then in the same way as the proof of Proposition 3.2(d), one can show that

f \ 0 -J \x±k=«±k,yk=βk ~

) ~ ^(1) g f<*-k(

-α-*(D V !

α-fc(/-i)

^(/)

Here

τ =

and A, B and C are the sums of products ΓL=2 u*> where each us is either 1 or
one of the following:
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Hence M|,|£|,|C| ^ 1. Since

, 7 /cz + rf = τ(z - a.

395

c g g

and
αz + Z) — cpz — ί/p

- p)(z- α_y

for any z G FΓ, cz + d\ = |τ(z — α_^(/))| and |αz + b — cpz — dp\ =
(z — α_fc(7))|. Therefore, by Lemma 4.2 (a),

(az + b — cpz ~ dp)n+l

Yls=

\(z - α_Λ

0 if / -> oo .

Since ω(w) is Γ-invariant, it is uniformly convergent on HΓ — Uyer7({jp?oo}) in the
wider sense. Put

(ad — bc)(cp H- d)n 1 / cu

(ap + b- cp2 - dp)n+l \ cp + d

Since |c = |τ|, cp + rf| = \τ(p - α_^ (/))|, α - cp\

cp2 - dp\ = \τ(uk(i) - p)(p - α_*(/))|,

(ap + b-cp2 -dp)n+l
max

y — cp2 — dp

— p)\ and

a-cp

ap + b — cp2 — dp
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and hence by Lemma 4.2 (a),

M/-2

Si ^
0 if / -» oc .

Therefore, any coefficient of ω^ G K[[u]]du is convergent.
(b) Let / be as in (a), and put y = f\x±k=0ί±kίyk=βkmod(Kx). Then for

yφ ±k(l) and /Φ -*:(!),

-b — cα_/α±y — doί-ι\

kα±y + rf|

τ(α±y - α_Λ

- a_,

and

< 1,

because y(α±7) φ/)_/. Therefore,

and hence by induction on /, we have

Since

τ2(αy - α_fc(/))(α_y — α_,

:/-C/z|

|τ(α±y - α_

for any z G FΓ, by Lemma 4.2 (b),

1

z - y(αy)

1

z ~ y(α-y)

y(αy)-y(α_y)

(z-y(αy))(z-y(α_y))

τ2(αy - α_*(/))(α_y - a_W))(a*(i) - z)2

• 0 if / -> oo
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Since ω/ is Γ-invariant, it is uniformly convergent on HΓ. Similarly, one can show
that

m

Σ
k=\

is convergent for any m.
(c) Let y be as in (b), and assume that jή= ±k(l) and /φ ±k(l). Then by

Lemma 4.2(c),

^ r7 — > 0 if /

and hence />// is convergent.

oo ,

4.4. Corollary. ω/(/ = l , . . . , g f ) (resp. ω^ (n ^ l),ω(0)) are differential forms on
Cp of the first (resp. second, third) kind.

Proof. This follows from Theorem 4.3 and that ωy,ω
(w) are all Γ-invariant.

4.5. We assume that K is of characteristic 0. Let (tt±k,βk)\^k^g be as in 4.1, and
assume that

\βk
±k]

which is automatically satisfied if the residual characteristic of K is not 2. Then by
the proof of Theorem 4.3 (c),

Π - 1 (/=!,. ..,g).

,1/2
For each ί = !,...,#, fix square roots j8/ of
Then

and assume that /? 1/2

Σ π

»=o
Π

1/2is convergent and a square root of pa which we denote by pt . Let (Γιγ\,...9γg)
be the marked Schottky group over K with Koebe coordinates (a±k,βk)ι^k^g, let
P be the point of Cr corresponding to a point p of FΓ — {oo}, and put u = z — p.
Then from X = (Cp,P,u\ we construct a micro-differential operator as follows. By
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Theorem 4.3 (b), there exist uniquely qnm^jm € K such that

ωj=ΣrjmUm λdu (j=l,...,g).
m=\

2 ij

Since log|Πf= l jpJ/ ^i<jp JJ is a negative definite form for v

(cf. [M-D], Sect. 4), for c = (cz )ι^/^^ G (ΛΓX)^ and a vector z*=(z/)i^0 of gf
indeterminates,

{ ^ ί;2/2 .... flf oo l / g \ n ]

Π p Γ Π ^ 7 Π ^ Σ ^ ( ^ Σ ^ J
y

belongs to Λ^[[ZI,...,Z^]]. We define the τ-function for (.A^c) by

Λ 00 \ / / 00

τ(t,Xt) = exp - E ^ΠOTίπίw 0 c - exp X) ίwr,

where Fm = (θ'w)ι^y^^ Then as in (1.4)-(1.6), for any ce(AΓ x ) 6 ' with
6>(c)φO,τ(t,^c) defines a micro-differential operator with coefficients in
which we denote by L(t,Xc).

4.6. Theorem.

(b) L(t,JLc) satisfies the KP hierarchy (1.7). /« particular,

d2

u\(x,t2,t3) = -^ log Θ(c exp(jcn + ί2r2 + ί3^s)) + ^11

satisfies the KP equation (1.8).

Proof. This follows from the definition of /.(t,^) and Theorem 3.4 (b).

4.7. Remark. Since

τ(t,JΓc) = τ(t)
*± * =α±)t .̂  =^ =

for any c G (Kx)9, it is easy to see that τ(t,Jfc) and

satisfy the same relation as in (1.4)-(1.6) and that L(t,Xc) satisfies (1.7).

4.8. Remark. One can extend Theorem 4.6 for general local coordinates u without
difficulty.
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