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Abstract: Based on Schottky uniformization theory of Riemann surfaces, we con-
struct a universal power series for (Riemann) theta function solutions of the
KP hierarchy. Specializing this power series to the coordinates associated with
Schottky groups over p-adic fields, we show that the p-adic theta functions of
Mumford curves give solutions of the KP hierarchy.

Introduction

The KP (Kadomtsev—Petvyashvili) hierarchy is a system of infinitely many Lax
type partial differential equations,
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Our final goal in this paper is to show that the p-adic theta functions of p-adic
(Mumford) curves give solutions of the KP hierarchy. These solutions are included
in algebro-geometric solutions for p-adic curves constructed by Krichever [Kr].
However, one cannot express these Krichever solutions in terms of p-adic theta
functions as is done in [Kr] for the complex case because there is no theory on
curvilinear integrals in p-adic analysis.

Our construction of p-adic solutions of the KP hierarchy consists of 2 steps: the
first step is to obtain a “universal” solution expressed by a formal theta function,
and the second step is to specialize this universal solution to p-adic solutions. For
example, in the genus 1 case, the Weierstrass gp-function

@(Z)=Zi2+ > (——1——%> (L :=Z(n7) + Z71)
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for complex numbers t with positive imaginary part can be regarded as an element
of Qf[z,q11[1/z](q := exp(2ny/—17)) which gives a universal elliptic solution of the
KdV (Korteweg—de Vries) hierarchy

oL?
at2n—1

= [(L2n_1)+5L2]; L2 == 6)2; + zul(xatlat:;a"') B

and hence for p-adic numbers a with |a|, < 1, @(z)|,=, give p-adic solutions
of KdV. In the genus = 2 case, we need Schottky uniformization theory of
algebraic curves over local fields for the construction of a universal solution and
p-adic solutions. It is known in [H,Sc] that there exist universal expressions
of meromorphic 1-forms and period integrals of Schottky uniformized Riemann
surfaces with sufficiently small handles. Based on results in [I], we give power
series expansions of these 1-forms and periods with respect to the Koebe
coordinates (the fixed points and the eigenvalues of generators of the associ-
ated Schottky groups) which, combined with the description given in [Kr] of
quasi-periodic solutions of KP in terms of Riemann theta functions, induce a
universal power series for solutions of KP from Riemann surfaces with square
roots of canonical bundles. In this expression, the KP hierarchy is reduced to
identities between certain formal power series including the universal periods
given in [I]. Since pinching handles of Riemann surfaces induces de-
generations of the solutions, one can obtain the solitonic degeneration from
the universal solution which has been described in [Mum?2] for KdV and in [Go]
for KP.

As an application of the universal solution, we will construct formal solutions
of the KP hierarchy with coefficients in p-adic fields. We show that over p-adic
fields, the universal 1-forms and periods converge for the Koebe coordinates of any
Schottky group, which implies the convergence of the universal solution. Hence this
specialization of the universal solution gives solutions of KP which are seen to be
expressed explicitly by the p-adic theta functions of Schottky uniformized algebraic
curves over p-adic fields. It is shown in [Muml] that an algebraic curve over p-
adic fields can be Schottky uniformized if and only if this special fiber consists of
projective lines, in which case, such a curve is called a Mumford curve. Therefore,
we can see that the p-adic theta functions of Mumford curves give solutions of the
KP hierarchy.

Based on the above result, we propose two problems. The first is to char-
acterize these p-adic solutions of the KP hierarchy and the KP equation, which
is concerned with a p-adic version of the Novikov conjecture mainly studied in
[A-D,Mul and Sh]. The second is to construct a theory on Mumford curves “of
infinite genus” uniformized by infinitely generated Schottky groups over p-adic
fields, which will give solutions of the KP hierarchy conjectured to have infinite
dimensional orbits.

1. Riemann Surfaces and the KP Hierarchy

Let g be a positive integer. We fix a Riemann surface C of genus g, a canonical
basis {a,', b;}]é,’ég of H](C, Z) (i.e., (ai,bj) = 5ij, (a,,aj) = (bi, bj) = O), a point
P € C, and a local coordinate u at P such that u(P) = 0. We denote the whole
data by X = (C,{a;,b;i}1<i<g, P,u). Then there exists a unique basis {wi,...,w,}
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of H(C, QL) satisfying J, 0 =2nv=10; (i,j = 1,....9), and

1
Z= (Zij)ISing = (—-— fwj)
=T 27'[\/ -1 b;
! 1=i,j=g

is the period matrix of (C,{a;,b;}1<i<y). Take rj, € C (j =1,...,9, m € N) such
that

o0
wj =3 rmu" 'du atP.
m=1

For each n € N, there exists a unique meromorphic 1-form ™ on C satisfying

™ is holomorphic outside P , (1.1)

o0
o™ = (u"+1 g Qn_ ) du at P for some g, € C, (1.2)

[ =0 foranyi=1,...,g. (1.3)

ai

For ¢ = (¢;)1<i<g € (C*) and a vector Z=(z;)1<i<y Of ¢ indeterminates, we
denote the Riemann theta function of (C, {a;,b;}1<i<4) by

veZd | ij=1 i=1 n=0 "

Oc - exp() = ¥ {ﬁ exp(nv/~ 1, )”'“ch”'f (Z”'Z’) }

where U= (v;)i1<i<4. Let t,,(m € N) be indeterminates, and put t = (#1,%,%,...).
Then we define the t-function ©(t,X;) as an element of C[[t]] = C[[t1,,...]] by

oo
7(t, Xc) = exp < Z q,,mt,,tm> NG (c - exp < > tmf'm)) s
nym=1 m=1

where 7y = (Fjm)1<;<4. For ¢ € (C*)¢ with ©(c)+0, we put

o(t — [z, Xe) _ &, k
W =1 +k¥_]Wk(t, Xc)Z 5 (14)

where [z] = (z,2%/2,2%/3,...), and define two micro-differential operators

W(tXe) =1+ 3 wi(t, X)o7
k=1
and
L(t, X)) = W(t+xX) - 0y - W“"‘X,Xc)—l

with coefficients in C[[x,t]], where t+x = (t; + x,%,%,...). Then it is known (cf.
[Kr, S-S]) that L(t, X.) satisfies the KP hierarchy

oL
o [(L)+.L] (neN).
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In particular,

2

0 L o o
ui(x,t,3) = Fr) log @(c - exp(x7| + b + 6373)) + q11

satisfies the KP equation

3 62u1 0 <6u1 1@3141 %) —0
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2. Schottky Uniformization

2.1. Let K be C or a complete nonarchimedean valuation field with multiplicative
valuation | |. Let PGLy(K) act on P!(K) by the Mdbius transformation. A subgroup
I' of PGLy(K) is called a Schottky group of rank g over K if there exist its free
generators 7i,...,Y, and 2g open domains bounded by Jordan curves if K = C (resp.
2g open disks if X is a nonarchimedean valuation field) D4y,...,D14 C PI(K ) such
that

DinD; =0 (i+)),  wP'(K)~D_)=Dx (k=1,....9),

and then I' is called to be marked if selecting such a sequence yy,...,7,. Then for
each k = 1,...,g, we can take uniquely a4, € D1, and B; € K* such that

-1
Yk = (“1" OCIk) ((1) l?k) (alk OcIk> mod(K*), @1
ie., »
YelZ) — O zZ— oy : .
) oy P, EEPE)).

We call (044, Bi)i1<k<y the Koebe coordinates of (I'; y1,...,74). A Schottky group
I' is called classical if we can take Dy; (k= 1,...,9) as open disks (hence all
Schottky groups over nonarchimedean valuation fields are automatically classical
(cf. [G-v.d.P])). Then there exist p4i,...,u+y < 1 such that

Dy ={z € P(K); |z — aai| < psslz — o} (k=1,...,9).
In particular,

|Br| < min{|[ow,a—x; i 0]]s6, %+ £k} (k=1,...,9),

where
(a—c)b—d)
(a—d)b—c)

denotes the cross ratio of four points. Put

la,b;¢,d] =

g —
Fr=P'(K)— U (D«UD=),  Hr= U Fr).
k=1 yer
Then I' acts on Hy freely and properly discontinuously, and the quotient K-analytic
space Cr = Hp/I' is obtained from P'(K)— UJ_ Dyr by identifying 0D, and
0D_y via yx (k=1,...,9). It is known that the K-analytic space Cr has naturally
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the structure of a proper and smooth algebraic curve of genus g over K. More-
over, it is known that any Riemann surface can be Schottky uniformized, and
that an algebraic curve over a nonarchimedean valuation field can be Schottky
uniformized if and only if this curve is a Mumford curve, i.e., the special fiber
consists of projective lines (cf. [Ko, Muml]). Let Sk be the subset of (P!(K) x
P!(K) x K*) consisting of the Koebe coordinates of all marked Schottky groups
over K. For k = —1,...,—g, put B = f_; and y; = (y_x)~". Then y; satisfies (2.1)
also.

2.2. Proposition. Let (I';y1,...,74) be a marked Schottky group over K with
Koebe coordinates (o.ix, Px)i1<k<g. and let I be the Schottky group generated
by v1,...,79—1. Then under By, — 0, Cr becomes the degenerate algebraic curve
C’ obtained by identifying ay and a_, in Crr.
Proof. For any ¢ € K* with |¢] £ 1, let Di4(e) be the domains containing o,
given by

Dyy(e)={z € P(K); |z — g < Vel g lz — a4},

-1
(3 )b 8) (5 ) e

Then y,(e)(0D_4(g)) = OD,y(¢). Let I'(¢) be the subgroup of PGLy(K) generated
by y1,...,79—1 and y4(e). Then I'(¢) is a Schottky group of rank g and Cr(, is
isomorphic to the K-analytic space obtained by identifying 0Dy and 0D_; via
e (k=1,...,9g—1), 0Dy(¢) and 0D_4(g) via y,(¢). Therefore, if |¢] — 0, then
D 4(¢) tend to 04,4, and hence Cr(, becomes C’.

and put

2.3. Let K =C, and let the notation be as in 2.1. Taking the conjugation y; —
pyip~ (i =1,...,9) by a certain p € PGL,(C), we may assume that co € F which
implies that a1, 00 (k=1,...,9). Foreach i = 1,...,g, let a; be the closed path
0D; counterclockwise oriented, and let b; be an oriented path in Fr from a certain
point x; of dD_; to y;(x;) such that b; Nb; = O (i+/). Then {a;,b;}1<;<, becomes
a canonical basis of H;(Cr,Z). Let p be a point of Fr — {oco}, let P be the point
of Cr corresponding to p, and put u =z — p. Assume that f,..., B, are sufficiently
small. Then we express ™, wj, and Z; explicitly for (Cr,{a;,bi}1<i<g, P, ) ac-
cording to [H]. It is shown in [Sc] (see also [A]) that ¥,cr|y'(z)| is uniformly
convergent on Hr — U,cry(co) under the above assumption. Hence for each integer
n = 0, one can define a meromorphic 1-form

/
(n) __ V' (2)
o=y ——-——dz
y%;" () — py*!
on Hr. Since @™ is I-invariant, this induces a meromorphic 1-form on Cr
which we denote by the same symbol, and a term-by-term integration shows that
I o™=0(i=1,...,9). It is easy to see that »(® is holomorphic except for simple
poles of residue 1 (resp. —1) at P (resp. 00), and that w(n = 1) satisfy (1.1)
—(1.3). For each j=1,...,g, let w; be the holomorphic 1-form on Cr such that
fai w; = 2ny/—1d;; (i = 1,...,g). Then by the classical period relation,

V](x )

P %
Jo= o= [ o
¢S] bj Xj
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Hence

! )dz
y€ F VV})(xj Z - 'V(xj)

1
dz
yEl; (Z"y(“j Z_V(fx—j))

_ Y (%) — y(%-)) ) n—1g4
PIPIPY ((y(oc,)—p)k(vw_,)—p)m“ g) A

where I; (j=1,...,9) denotes a complete set of representatives of the cosets
I'/(y;). Since

1 i(xi)
w, (Gj=1,...,9),
2n\/-—f j = o \/—1 f ]( ¥ 9)

taking appropriate branches of the logarithm, we have

Zij =

1
Zij = ﬁ y§, log([7:(x),x; p(;), y(2—;)1)

=2 \/— VEZU log(¥3(7)) »

where Ij; (i,j = 1,...,g) denotes a complete set of representatives of the cosets
(v)\I'/{y;), and ys; is the map I}; — C* given by

Bi (ifi=jand y € (;))
() = [0 s
i3 Y(2), y(e—;)]  (otherwise) .
For each i,j = 1,...,g, put p;; = exp(2n\/—hlZ,~j). Then
= I1 %i(»)-
YET;

We note that in [M-D], the above w; and p;; are obtained as holomorphic
1-forms and multiplicative periods of Schottky uniformized Mumford curves
(cf. Corollary 4.4).

3. Universal Solution of KP

3.1. Let x4, yx (k=1,...,9), p, and z be variables, and put u =z — p. Let 4 be
the ring of formal power series over Z[xy,IL;<;1/(x; —x;)] (i, j,k € {£1,...,£g})
with variables y1,...,y,, i.€.,

A=Z|:xk,H _ [[J’l,--~>yg]],

v<j Xi T Xj

and put

g 1
[l;[ (o — p)(x— k—p)]
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Let / be the ideal of 4 generated by yi,...,y,. For each k = %1,...,%g, put
Y& = Yji|» and let f; be the element of GLy(£2) (L2 : the quotient field of 4) given

by
fi = Xy X_g 1 0 Xp  X_k -
L N T | 0 »m 11 :

3.2. Proposition. For any f = fia)fie) - fwy satisfying k(s)+ — k(s +1)
(s=1...,01—1), put y = Ye()Yk@) " V()- Then we have

(@) f(x)€d, and f(xj) €xxqy+1 for [ € (f)),

(b) f(xj)— fx—j) € yA for j+ £ k(]),

(©) [xix—is (), f(x—j)] € L+ yA  for i% £ k(1),j+ £k(I),

A) e € vl

Proof. (a) We prove this by induction on /. Assume that f¢(f;) and f(x;) =
Xi(1) + a for some a € I. Then for any i+ — k(1),

—1
() —x)" = {(xm) _x) <1 ; ;)} cd.

Xp(1) — X—;
Hence

(&) —xi)x—iyi} {1 () —xi)yi }_1
SOx) —x— Sx) —x_;

belongs to x; + /. Assume that f € (fj). Then f(x;)=x;, and hence for any
i+ £/, (fif)x)exi+1.

(b) We prove this by induction on /. Assume that j+ £ k(/) and f(x;)—
f(x—;) € yA. Then by (a), f(x;) = x)1)+ b for some b € I, and hence for any
i+ —k(1),

{£ ) = x—i = 7i(f () =x)} " = {Caar) —x-) + (b = »i(f () —x)} !
belongs to 4. Similarly, {f(x_;) —x_; — y:(f(x~;) — x;)} ' belongs to 4. Hence
(i )xp) = (fif Wx—))

_ (i —x_*(f(x;) — f(x—;))yi
{f) —x_i = yi(f () = x)H S Ge—j) —x—i — yi( f(x—j) — %)}

belongs to yy;A.
(c) By (a), (f(x;) —x_;)~" and (f(x_;) — x;)~! belong to 4. Therefore, by (b),

(xi — x—i)(f(xj) - f(x—j))
(f ) = x-)(f (x—j) — xi)

_(a by
f_<0f df)'

if ) = {xi

[ein i3 f e, f(xj)] = 1+

belongs to 1+ yA4.
(d) Put
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Then
f/(Z) _ (afdf — bfcf){cfp + df + Cfu}"_l
(f@) = py+t  {(arp + by — crp? — dsp) + (a5 — crp)u}t!
Since
_ 1 Xy —XpX—g X—p  —X_pXk
fk - Xk —X_g {( 1 —X_j - 1 —Xk Yk
and

)G ) =e-n(F ).

ar,by,cr and df.belong to 4, and these constant terms are xy(1)f, —Xk(1)X—k(1)%, ¢ and
—X_k()t respectively, where

T1ss Gekes) = X—ks—1)) c 4
Hs 1 k) — X—k(s))

=

Hence the constant terms of c¢p +d; and asp + by — ¢rp? — dyp are —(x_yqy —
p)t € Ay and —(xk1) — p)(X—k) — p)t € Ay respectively. This implies (d).

3.3. Put @ = frmod(Q*) € PGLy(Q) for k = *1,...,£g, and let (15 be the free
subgroup of PGL,(R2) with generators @1,...,@,. Then O = (pk and @(z) =
fi(z). Let @; and P;; be the subsets of & given by

D; = {orqy - Pray; k(s)F — k(s + 1), k(1) + £/},
D, = { k) - Qrys k(s)F — k(s + 1),k(1)+ L k(D) + £/} .

Then ®; (resp. ®;;) is a complete set of representatives of the cosets @/(¢;) (resp.
(@:)\®/(@;)). Hence by Proposition 3.2, one can define two 1-forms with coeffi-
cients in 4, and an element of 4 as follows:

Wy PO
s oco (9(z) — yd (2 0),
co m »
Q; = 2_: 2 > (@(x)) — @(x—;))u o

o5, (90) — PY(9e_y) — pyit
Pij = 1—[ lplj((/)) (l,] = 1,--.,9),
0ED;;

where
(ifi=j and ¢ € (¢;))

Wu(fp) { [xi,%—i; QD(-X]) q)(x_j )] (otherwise) .

We introduce g variables y,/ (i =1,...,9) which are square roots of y;, and define
square roots P,I,/2 € A[y{/z, ,y;/2]®ZQ of P; i=1,...,9) by

o [1)2 !
PP ="y ( ) { I o) — 1} :
n=0 n 0€®;—{1}
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Then for two sequences W = (w;)1<i<g and Z = (z;)1<i<4 of g indeterminates, the
universal theta function is defined by

O(w - exp(2)) = >, {HP" /2Hp vjﬁwgii%(zg:vizi) } .
i=1  n=0M \i=1

veZd | i=1 i<j

Let Oum and Rj,, be the elements of 4, such that

1 © O m
Qm — ( + 3 Qn’"u'" 1>du (n=0),
m=1

untl!

Q= 5 R ldu (j=1,..,9),

and put R, = (R im)1<j<g- Then we define the universal t-function by

r(t)zexp( ZlQnm”m> ~@( -exp(Ztm ,,,))

which is an element of

B =4,y PowE w1 & 2QIIt]] .

Since 7(t) — 1 belongs to the ideal of B generated by yl /2 . y;/z, as in (1.4)-

(1.6), (t) defines a micro-differential operator L(t) with coeﬁiments in B[[x]].
3.4. Theorem.

(a) Let (I';y1,...,74) be a marked Schottky group over C with Koebe co-
ordinates (0tk, P )1<k<g, and let X = (Cr,{ai,bi}1<i<g,P,u) be as in 2.3 with
period matrix (Zij)1<ij<qg Assume that Bi,..., B, are sufficiently small, and take

;/2,... Y2 such that
1p& (1/2 ’
B> [T () —1; =exp(nv—1Z;).
n=0 n v€r;—{1}
Then for any ¢ = (¢i)1<i<g € (C*)9 with ©(c)*0,
L(t) xk=ak,y1/2 ﬁl/Z = =L(t,X;) .

(b) L(t) satisfies the KP hierarchy (1.7). In particular,

0
ui(x, o, 13) = p) log O(W - exp(xR; + R, + 63R3)) + Q1

satisfies the KP equation (1.8).

Proof. Assertion (a) follows from the definition of L(t). Hence as seen in Sect. 1,
OL(t)/dt, and [(L(t)")s,L(t)] coincide for x; = oy, y;/> = }/{wk =, p€Frif
(0tthes B )1 <k<g € Sk, Pi,- .., By are sufficiently small and ¢ is generic (i.e., @(c)+0).

Therefore, OL(t)/0t, = [(L(t)"), L(t)].
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3.5. By Proposition 2.2, for a marked Schottky group (I';y1,...,7,) with Koebe
coordinates (otk, fr)i<k<g, if B1,..., By — 0, then Cr becomes a degenerate curve

obtained from P'(K) by identifying oy and o_(k = 1,...,g). By Proposition 3.2,

W) yy = mygmo = 1,

and hence L(t)|,=...—y,=0 = 0x which we call the trivial degeneration. On the other
hand, generalizing a modified theta function in [Go, Mum?2], we define

vezZd i<j

Os(w - exp(?) = ¥ {HPI" ‘”””HP”"”H 2 Z (évm) }

and

7(t) = exp ( Zl Q,,,,,t,,t,,,) - O (w- exp ( i} tmﬁm)> .

Then by Proposition 3.2,

Ta(t)l)’lz"‘:}ﬁqzo - Z [H [xl’x—hxj; —j]vlv] H W

ye{Ol}y i<j

o0 1 1 n
nzon' {?_:”’ 2 <(x_ - (xf—p)m>”"}]

which induces the soliton solution (cf. [Go, Mum2]).

4. P-adic Solutions of KP

4.1. Let K be a complete nonarchimedean valuation field, and let I be a Schottky
group of rank g over K. Then as seen in 2.1 (cf. [Ge]), there exist free generators
Y15...,7g of I' whose Koebe coordinates (o4, Bi)1<k<y satisfy o;+o;(i4 /) and

|Bkl < min{|[o, 00—g; 0,035/ F £k} (k=1,...,9).

Taking the conjugation y; — py;p~'(i=1,...,9) by a certain p € PGLy(K), we
may assume that o41,...,044F00. Then we can take D41,...,D44 as in 2.1 such
that Fr 3 oo. Hence for any k = +1,...,+g and x, y ¢ Dy UD_y,

o — x
a_kk — P o 0t YIBK < 1.
Put
r= max{ aoi__a;i B> Lo o—is5 0, 071 B s 4, j = ik} :
Then r < 1.

4.2. Lemma. Let k(1),...,k(I) € {£1,...,+g} such that k(s)* —k(s+1) (s =
., 1 —1), and put

!

ooy = 2ks—1))

= = )
[ L5z (tes) = 2—ks)
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Then
(a) For any x,y € Fr,

TTizi B
201y — X )(A—i(ry — ¥)
(b) For any j+ + k(l) and z € Fr,

() |
T2 (0t — o gy JO—j — 0tk k(1) — 2)
(c) For any i+ £ k(1) and j+ *k(I),
(o — o )0 — OL/)H;:lﬁk(s)

T2 (oukry — 0 )01y — =i (0t — ot—giy No—j — (1))

lIA
x\.

Proof. We prove only (a) because one can show (b) and (c) in the same way.
Since

Ok(1) — d—k(1) < max {1’ k(1) — X } ’
k(1) — X k(1) — X
Ol(s) — O Oie(s) — O
k) ~ Ukis) émax{l, k) = Ph(s+1) } G=l...1-1),
Ok(s+1) — X—k(s) X —k(s) — Gk(s+1)
Olp(s) — O— O k(s) — X e(s—
) ~ 0ok | max{l, k(s) = Fks—1) } =2...1).
Olk(s) — A—k(s—1) Ok(s) — K—k(s—1)
U = Ok | o o {1’ () — ¥ } ,
Y = Ok O—k(l) — Y
we have
/
Hs:]ﬁk(s) < II‘[ Uk( )
= S)
2oy = XNy — dk)) |~ =i
where
Oy —X Ok(1) — Gk(2
Uk(1y = | Prq1y|max {1, @D | =2 2)
Ok(1) — X O—k(1) — %k(2)

[[ot(1ys k(1) OCk(z),x]|} ,

Ok(s) — Ok(s+1)
O—k(s) — %k(s+1)

A—k(s) — X—k(s—1)
Ok(s) — K—k(s—1)

>

Uk(s) = |ﬂk(s)|max {1,

|[0tk(s)s X—r(s)s X(s+1)s “—k(s—l)]l} (s=2,....1-1),

O—k(l) — A—k(I—-1)
A1) — K—k(I—-1)

b

Oy — Y ‘

vk = | Bru max{l,
0 = B o —

|[06k(1),06—k(1);y,d—k(l—l)]|} ,

which implies (a).
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4.3. Theorem. Let (I';y1,...,7,) and (04, P )1<k<g be as in 4.1, let p be a point
of Fr — {oo}, and put u =z — p. Then
(a) For any n =z 0,

(n) _ Y'(2)
P N o B G

is uniformly convergent for z € Hr — U,ery({ p,o0}) (Hr — Uyery(p) if n 2 1) in
the wider sense, and any coefficient of @™ € K[[u]]du is convergent in K.

(b) For any j=1,...,9,

1 1
=2 ( o v(a_,-)) au

is uniformly convergent for z € Hr in the wider sense, and any coefficient of

o m (o) — p(o—;) ) m—1
a2p2p2 ((y(oc,)— DI, — pyik ) v

in K[[u]ldu is convergent in K.
(c) For any i,j =1,...,9, py = yer, Yi;(y) is convergent.

Proof. (a) Let f = fia)fr2) " fey such that k(s)+ —k(s+1)(s=1,...,/ = 1),

and put
a b
(C d) = Slesi=osine=pi -

Then in the same way as the proof of Proposition 3.2(d), one can show that

_ Ok(l)  —k(1)%—k(2)
Slesp=arp=p =7 {( 1 —0_ k(1) )

%k(2) — k(1) (1) —O—k(1)X—k(I
iy ( ﬁk1)< 1() —oi) ())
0k(2) — O—k(1) —k(1)

k(1) — X—k(I—1 Ol —0le(1) Ok (1
_ gk ( )Bk(l)< @) OO ())
Ok(ly — O—k(I—1) k(1)

O0k(2) — Ok(1) X—k(l) — K—k(I— O—k(1) —O0—k(1)0k(I
o @) 0) ( )Bka)ﬁk(z)( K k) ())}.
Ok(2) — O—k(1) Qk(l) — X—k(I-1 k(1)

Here
i
IT—p (o) — %—k(s—1)
T
[T— (osy — o—is))

T =

and 4, B and C are the sums of products H <o Us, where each u, is either 1 or
one of the following:

—[0k(s)s A—(s)s Aet(s+1)s Xet(s—1) ] Bi(s)s —[Otk(s)» O—k(s)s Xetk(st1)s Ariis—1) 1 Bis) -
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Hence |4],|B|,|C| < 1. Since

Xk(2) — Ok(l
cz+d= ‘L'(Z - OC_k(l)) {1 _AMBk(I)
Ok(2) — G—k(1)

O—k(1) — O—k(I—=1) Z — O(l) ﬁk(l)
Ok(ly — d—g(I—1) Z — O—k(])

- B

Ok(2) — Ok(1) %X—k(l) — F—k(I—-1) Z — Ok(I)
C By Bra
Ok(2) — A—k(1) Ok(l) — H—k(I—1) Z — O—k(I)

and
az+b—cpz—dp
= (1) = PIz — o—ky) {1 — Alowry, k(13 2 P1Br(1)
— Blotk(1), % k(1) 2, A—k(1—1) 1 Br()
+ C[ak(l), A—k(1)5 Otk(z),P][Ofk(l), O—k(1)> 2, a—k(l—l)]ﬁk(l)ﬁku)} 5

for any z € Fr,|cz+d| = |1(z — a_g))| and |az + b — cpz — dp| = |1(wq) — p)
(z — o—g(1))|- Therefore, by Lemma 4.2 (a),

‘ ( f'(@) ) _ (ad — bc)(cz +d)y+!
O =2 |y asrsos @z + b= cpz —dpy™
_ [t Bus)
12(z — ogy (k1) — p)**!
1-2

! —0 ifl—o00.

<
= |z = a—kay )y — p)"|

Since w™ is I'-invariant, it is uniformly convergent on Hy — U,ery({ p,00}) in the
wider sense. Put

o i S'(2)
5= Ty py

Xk =0 Yk =P

_ (ad —be)(cp +dy! . cr \"! 1+ (a—cpu -l
" (ap+ b — cp? — dp)t! cp+d ap+b—cp?—dp ’

Since [c| = [, ep +d| = [1(p — a—k))|s la — ep| = [*(aq1y — p)| and |ap +d ~
(ad — be)(cp +d)' !
(ap+b—cp? —dpy+!

cp? — dp| = |t(uqy — pXp — d—ky)ls
aX{
1
=1 Bres)

2(p — o) ok — p)"H!

<
lStI: Cp+d”

a—cp '
ap+b—cp?—dp

k]
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and hence by Lemma 4.2 (a),

rl=2

-0 if/l—-o00.

ISil = i+1 n
I(p — a—ky Y (o) — P

Therefore, any coefficient of w™ € K[[u]]du is convergent.
(b) Let f be as in (a), and put y = flr,,=up;,y=p,mod (K>). Then for
j#= £k(l) and i+ — k(1),
laot; + b — co_joy; —do_|
ICOC:;:j + dl

[p(ot)) — oy =

_ o) — o) — akn)
|w(ot; — k)|

= |ow(1y — o

and

y(ot;) — o l
—pi| <1,
Yoy — ot
because y(a+;) ¢ D_;. Therefore,

|(yiv)(ey) — (iv)(a—)|
(1) — o)) — 4Py

(1) — a)oa—y) — o) (1= 22 ) (1 )

(o) = (o)) — a—i)* s

(ok(1y — =i )?

b

and hence by induction on /, we have

I
a; — o) T=1 Bres)

(o — oy J(0—j — (1))

[7(2) — y(a—;)| =

Since | 5 2|
aot; +b—czotr; —az
oyi)—z| =
_ [Ty — 2)(0+; — G—k(r))]
[T(ot; — a—xry)|
= |akr) — 2|
for any z € Fr, by Lemma 4.2 (b),
1 1 (o) — p(o—;)

"= @) - 9(@))
(o — 0D, Bres)

(o — ok 0= — Ak N1y — 2)?

z—yp()  z—y(o—;)

rl—l

<— 50 if/l> .
lokcry — 2]
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Since w; is I'-invariant, it is uniformly convergent on Hr. Similarly, one can show

that
u (o) — y(a—) )
kZ;I yezr:j ((V(O‘j) = pl((a—;) — pyrti=k

is convergent for any m.
(c) Let y be as in (b), and assume that j+ + k(/) and i#+ + k(1). Then by
Lemma 4.2(c),

(o — o )(p() — (o))
(y(o) — o) (p(o—j) — ;)

(o — o )(oj — “—j)Hé:l Brs) I

2 (o) — 0 )(0(1y — 0 )0 — oty )(o—j — Ot—k(r))

Lo, o0—is (o), ()] — 1| =

<r-—0 ifl> o0,

and hence p;; is convergent.

4.4. Corollary. w;(j = 1,...,9) (resp. o™ (n = 1),0©) are differential forms on
Cr of the first (resp. second, third) kind.

Proof. This follows from Theorem 4.3 and that w;, ®™ are all I'-invariant.

4.5. We assume that K is of characteristic 0. Let (ctx, B )1<k<4 be as in 4.1, and
assume that

IBk' < min{|4[aksa—k;ais(xj]| 5 l’]* ik} (k = 1,,g) 5

which is automatically satisfied if the residual characteristic of K is not 2. Then by
the proof of Theorem 4.3 (¢),

%( I w,,m—l)
yel;—{1}

For each i =1,...,¢9, fix square roots Bi]/z of f;, and assume that B}/z e K*.

Then
o /=12 ny 1
ﬂ?”{z ( )( 11 wii(v)—1> }
n=0 n yer;—{1}
2n n ny ~1
_ ) 1 (ny
p {z@()( :) <yen§{1}"’””’ 1)}

is convergent and a square root of p; which we denote by p}/ % Let L5915--4579)
be the marked Schottky group over K with Koebe coordinates (o4, B )i1<k<y, let
P be the point of Cr corresponding to a point p of Fr — {oo}, and put u =z — p.
Then from X = (Cr, P,u), we construct a micro-differential operator as follows. By

<1 (i=1,...,49).
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Theorem 4.3 (b), there exist uniquely gum,?;m € K such that

1 X Gnm 1
o™ = + 3 =" du (n=0),
m=1 N

untl
(oo}
CO]: ermum_ldu (]:1”g)
m=1 ‘

2
. 2/ 0y . . .
Since log |IT¢ lpf,-’/ H,-<jpfjvj| is a negative definite form for ©'= (v;)1<i<, € Z7,

=
(cf. [M-D], Sect.4), for ¢ = (ci)1<i<g € (K*)? and a vector z'= (z;)1<i<4 of g
indeterminates,

- g viz/2 v,0, g v 1 g "
O(c - exp(?)) = > 1 pi 11 Pij lci ZO o Z} viz;
i = n=0 " \i=

vez9 i<j i=

belongs to K[[zi,...,z,]]. We define the t-function for (X,c) by

1 o0 oo N
1(t, X.) = exp 5 > Gumlntm | O <c - exp < Zl t,,,r,,,)> ,
—

n,m=1

where 7, = (¥jm)i1<j<g. Then as in (1.4)-(1.6), for any ce (K*)! with
O(c)#0,7(t,X.) defines a micro-differential operator with coefficients in K[[x,t]]
which we denote by L(t,X;).

4.6. Theorem.
(a) L(t, Xe) = L(t)] 112_gip2
k

XLk =0t fer V), We=cp

(b) L(t,X.) satisfies the KP hierarchy (1.7). In particular,

02 o o R
ui(x, b, t3) = 2 log O(c - exp(xry + triy + t373)) + qui

satisfies the KP equation (1.8).
Proof. This follows from the definition of L(t,X.) and Theorem 3.4 (b).

4.7. Remark. Since

7(t, Xe) = 7(t)

1/2_,1/2
Xk =0V =ﬁk/ WE=C

for any ¢ € (K*)Y, it is easy to see that 7(t,X.) and
L(t, X.) = L(t)

_ 1/2_pl/2
Xpp=04pYy =P W=k

satisfy the same relation as in (1.4)—(1.6) and that L(t,X;) satisfies (1.7).

4.8. Remark. One can extend Theorem 4.6 for general local coordinates u without
difficulty.
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