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Abstract: We show how to obtain positive energy representations of the group ¥
of smooth maps from a union of circles to U(N) from geometric data associated
with a Riemann surface having these circles as boundary. Using covering spaces
we can reduce to the case where N = 1. Then our main result shows that Mackey
induction may be applied and yields representations of the connected component
of the identity of ¥ which have the form of a Fock representation of an infinite
dimensional Heisenberg group tensored with a finite dimensional representation of
a subgroup isomorphic to the first cohomology group of the surface obtained by
capping the boundary circles with discs. We give geometric sufficient conditions
for the correlation functions to be positive definite and derive explicit formulae for
them and for the vacuum (or cyclic) vector. (This gives a geometric construction
of correlation functions which had been obtained earlier using tau functions.) By
choosing particular functions in ¥ with non-zero winding numbers on the boundary
we obtain analogues of vertex operators described by Segal in the genus zero case.
These special elements of ¢ (which have a simple interpretation in terms of function
theory on the Riemann surface) approximate fermion (or Clifford algebra) opera-
tors. They enable a rigorous derivation of a form of boson-fermion correspondence
in the sense that we construct generators of a Clifford algebra from the unitaries
representing these elements of ¥.

Introduction

The aim of this paper is to show how geometric data associated to a Riemann
surface lead naturally to unitary representations of infinite dimensional Lie groups
and representations of Clifford and Heisenberg algebras. Our study is related to an
extensive earlier literature. However, we have attempted to make our discussion
comparatively self contained.

Initially we were motivated by a desire to understand some of the literature on
conformal quantum field theory [A-GMV, A-GNMV, A-GBNMYV, E]. Significant
progress in this direction has come from the algebraic approach of [DJKM, KNTY].
The starting point of the latter is the so-called tau function and its relation to soliton
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hierarchies. The language of these papers is that of vector spaces of formal power
series, infinite order differential operators (vertex operators) and representations of
Kac-Moody and Virasoro algebras. A more fundamental viewpoint is that of Segal
[S2] in which he postulates an axiomatic framework for conformal field theories
where these vector spaces are endowed with an inner product and the vertex oper-
ators are re-interpreted in terms of representations of loop groups, diffeomorphism
groups, Clifford algebras and intertwining operators. These latter objects replace the
Lie algebraic viewpoint of the earlier work. Our aim in this paper is to provide
some explicit examples of this more geometric and global approach. In particular
we show how to obtain representations of the type considered in [KNTY] from the
following geometric data. We first recall that for any smooth oriented 1-manifold S
with a spin structure A (that is a real line bundle such that A ® A = T'*S) the real
space Ar = I'(S, A) has a quadratic form which pairs sections «; and o, to give

(a1, 00) = [y @0z .
5

The corresponding complex Clifford *-algebra C(Ag) has a unique irreducible
x-representation with positive energy for any parametrisation of S. When S is the
boundary of a Riemann surface X; on which there is a complex line bundle L,
whose restriction to S is A ® C, the space J# on which this representation acts is
given by C(ARr)/ ¥, where ¢ is the left ideal generated by | = I'(21,L,). Fi-
nally, suppose that we have a Riemann surface X and a decomposition 2~ = X; U X,
into two submanifolds which intersect in their common smooth boundary, 02 =
S =02,, and a line bundle L over X such that L| 5 =1L The decomposition of
2 into submanifolds naturally defines a decomposition of # = 4] @ A, into sub-
spaces isotropic with respect to the bilinear form and this data in turn defines a
Fock representation of the Clifford algebra on the exterior algebra over J¢7. This
space is isomorphic to the irreducible x-representation space #, but the identifica-
tion is only unitary when X is the Schottky double of X and the line bundle L is
compatible with the Schottky involution.

The first two sections follow this approach, but in the case of the Schottky dou-
ble it is more natural to replace the real Clifford algebras by Araki’s self-conjugate
CAR formalism, [Ar], and this is done from Sect. 3 onwards. Given a complex line
bundle L on ¥ compatible with the Schottky involution, L ® L is the complexifica-
tion of T*S so that there is a pairing between 4] and #), = 4 and each is an
isotropic subspace of S = A @ A ;. The group % of analytic U(1) valued maps
on 0X| acts on J; by multiplication and so defines a group of automorphisms of
the Clifford algebra C(2¢"). There are implementible so that a central extension of ¥
has a representation I on J#. At the Lie algebra level one obtains a representation
of a Heisenberg algebra thus generalising the paper [JKL].

The main interest in conformal field theory is in the properties of the represen-
tation of ¢ (or more generally in the groups of smooth compact Lie group valued
functions on 90X, see Sect. 6). One of the main results of our work is a proof
in Sect.3 and 4, that when 2 is a Schottky double (using standard tools of rep-
resentation theory due to Mackey together with earlier results of Segal [S1] and
Carey, Ruijsenaars and Palmer [CR, CP]), this representation is cyclic (in fact irre-
ducible), with cyclic vector 2 say, and that one may explicitly compute the “matrix
elements”

(Q,T(g)RQ), ge€%.
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The resulting formulae imply those involving the tau-functions of [KNTY] at least
in certain cases. In Sect. 2 we indicate how one should interpret [KTNY] when X' is
not a Schottky double although we do not derive explicit formulae. (Special cases
of the results of Sect.2 to 4 were announced in [CHM].)

In [CHM] we sketched how the boson-fermion correspondence should appear in
this framework as a relationship between the projective representation of ¢ and the
Clifford algebra. In the present paper we prove an explicit form of this correspon-
dence in the case where X is a Schottky double. Our proof differs from previous
work in a number of ways. First, it starts from a more fundamental representation
theoretic viewpoint (for example in [KNTY] the correspondence is more or less
built in by the assumption that the tau function is the generating function for both
the Heisenberg and Clifford algebras). In our approach the starting point is the ge-
ometric data described above. This leads to a geometrically defined inner product
on the exterior algebra and hence to unitary group representations on Hilbert spaces
such that the correlation functions satisfy Wightman positivity. The latter is essential
for a bona fide quantum field theory. When one does not have a Schottky double we
know how to interpret these correlation functions (Sect. 2), however they no longer
satisfy positivity and we do not investigate the meaning of the boson-fermion cor-
respondence in this generality. Another interpretation of these correlation functions
is given in [R1, R2]. The second point of particular interest in our approach is the
discovery of a generalisation of Segal’s vertex operators [S1] (for genus zero) to
surfaces of arbitrary genus.

In Sect. 6 we investigate higher rank bundles over Riemann surfaces on which
one has an action of the group of smooth maps from 0%, to a compact Lie group
G. We consider the case G = U(N) in detail by using a covering space argument
similar to that of [SW]. We thus reduce the higher rank case to that of line bundles
dealt with in the earlier sections. Again we indicate how to interpret Segal’s vertex
operators for higher rank bundles over curves of arbitrary genus. In Sect. 7 we
investigate how the KMS condition in genus one [CH1] generalises to higher genus
surfaces.

We should like to thank the referee for some helpful comments and in particular
for suggesting a better proof of Lemma 3.3 and the geometric interpretation of #~
which follows it.

1. Fermions on a Riemann Surface

We shall follow the algebraic description of fermions presented in [CEH] and
[CHM], which for convenience we recall here. Let L be a line bundle over a
Riemann surface X, and suppose that the surface has an open covering by two sets
Uy and U,. Writing I'(2, O(L)) for the global sections of the sheaf O(L) of germs
of holomorphic sections of L and H'(Z, O(L)) for the first cohomology group with
coefficients in the sheaf, the Mayer—Vietoris sequence can be written as

0—I'(2,0(L)) = I'(U,0(L)) ® I'(U>,0(L)) — I'(Uy N Uz, 0(L))
— HY(2Z,0(L)) — 0.

In the case of fermions we choose L to be an even spin structure for which
I'(Z,0(L)) vanishes (as happens generically, [F]). By Serre duality H'(Z, (L))
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also vanishes and the sequence reduces to
0—I'(U1,0(L)) @ I'(U, O(L)) — I'(Ui N Uz, (L)) — 0,
from which we deduce that there is a decomposition
(Ui, 0(L)) =I'(U,0L)) & I'(U2,0(L)) .

Let us now suppose that X, and 2, are closed submanifolds of X which intersect
in their common smooth boundary

21NX =0 =0%,.

For j =1 and 2 we choose a sequence of neighbourhoods U; which shrink down to
2, so that I'(U; N U, O(L)) increases to A = I'(Z1 N 2y, O(L)) =I'(0Z,,0(L)).
The spaces I'(U;, (L)) increase to give spaces J¢; such that

H=H1DH,.

Since L is a spin bundle the tensor product of sections a; € I'(U;, O(L)) gives a
section of the canonical bundle K. Choosing an orientation of 0X; we may integrate
o1 ® ap round the boundary to get a natural symmetric non-degenerate bilinear form
on A,

(a, )= [ 1@ . (1.1)

0X
If both sections «; and a, have holomorphic extensions to U; (or U,) then their
product also extends and by Cauchy’s theorem the integral defining (o, o) vanishes.
From this we deduce that I'(U;, O(L)) and its limit J¢; are isotropic, for j = 1 or 2.
It is easy to see that (1.1) is a non-degenerate bilinear form on " and therefore
defines a pairing of the subspaces #7 and 15.
Any decomposition of an inner product space into isotropic subspaces

A =H DA,

gives rise *o a natural representation ¥5; of the Clifford algebra of #° on the
exterior algebra AX}. Elements o of 47 act by exterior multiplication,

Por(a) tog Adg A== Ao —=aANdg Adg A--- Aoty

whilst elements of ¢ act by inner multiplication,

,

Yor(a) oy Adg Ao Aap— Y (—l)k—l(cx,cxk)/\oq N0 - N0 N Oyp - Nty
k=1

(The pairing of the isotropic subspaces 7 and > extends to their exterior algebras

and the inner multiplication action of J¢> is just the transpose of exterior multipli-

cation on AJ>.) These conditions determine ¥,; and ensure the usual relations

Yo (B)Pai(a) + Por(0) P2 (B) = (B, ),

for all § and « in A} & A>.

For j =1 or 2, there is a cyclic vector Q; =1@0®0--- € AKX}, called the
vacuum vector. With respect to the pairing of A7 and AX,, ¥y and ¥y, are
dual representations of the Clifford algebra.

We summarise the discussion above.
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Proposition 1.1. Associated to every decomposition of a Riemann surface X as
the union of submanifolds X\ and X, with common boundary and a generic even
spin structure L over X, we have the following data:

(i) A non-degenerate bilinear form (1.1) on the real analytic sections A of
L restricted to 21N 2.

(ii) A Fock representation of the Clifford algebra over A defined by (1.1)
on the exterior algebra over the space of sections of L restricted to either X or
2,. These representations are dual to each other.

We now introduce the (not necessarily orthogonal) projection Pj; onto .£; along
Ay. Since A and ", are isotropic we have

(B, Pna) = (P12f, Pr1a) = (P12f, ) ,

so that P,; and Pj, are transpose maps with respect to the bilinear form. It follows
from the definition of ¥,; that

(22, Y21(B)¥21(0)€21) = (B, Py120) .

Given another decomposition #~ = A3 @ #3, there is a natural map T 123 from
AA5 to AKXy which maps €3 to Q; and intertwines the Clifford algebra represen-
tations ¥,3 and ¥,;, which is defined by

THY2(0)Q23 = Par(0)Q .

This is well-defined since ¥»3(«)2; vanishes if and only if « is in the ideal gen-
erated by 5 and then ¥,;(«)2; vanishes too.

The normal arena for quantum field theory is a Hilbert space, which, by the
Riesz representation theorem, means that there is an antilinear identification of the
space and its dual. Such an antilinear map arises naturally from the geometry if one
takes 2 to be a Schottky double (cf. [JKL,CH1]) with its natural antiholomorphic
involution taking z € X to the corresponding point Z in X, (thus fixing each point
of the boundary). Thus, as a real manifold, X, is an oppositely oriented copy of
2. For more on Schottky doubles, see [F, H].

Proposition 1.2. Let X be a Schottky double.

(1) The Schottky involution induces maps of forms and % -forms, written for

brevity as o(z) — o(Z). The image is an antiholomorphic %-form, so that its com-
plex conjugate is holomorphic.

(ii) Defining d(z) = o(2), we obtain an antilinear map, ~ with

@,p) = [ «2)B(z) = (@, p),

o5,

(i.e. ~ is antiorthogonal).

(iii) The map in (ii) satisfies (&, o) = fazl |2, and hence (o, B) = (8, B) defines
an inner product on A .

(iv) There is a natural isomorphism of the Clifford algebra over A~ with the
Sfermion algebra (or algebra of the canonical anticommutation relations: CAR)
over A" regarded as a pre-Hilbert space in this inner product.

Proof. The statements (i), (ii) and (iii) are clear. For (iv) observe that in general
whenever there is an antiorthogonal involution ~ which maps 7 to %, (where



326 A.L. Carey, K.C. Hannabuss

A = A1 ® A3) and vice versa, and such that (&,«) > O for all non-zero « one
can define an inner product

(o B) = (& B)

on 4 and, in particular, on the subspace ;. The map ~ and this inner product
both extend to A7, which can then be completed to give a Hilbert space %. In
this situation we drop one suffix and write P, ¥; instead of P,; and V5.

To complete the proof let « € A7 and ¢ € AX7. Then we have

(P@)p,¥) = (e A b, ¥) =GN §,¥)
= (§, P(@W) = (¢, ¥(@W) .
We therefore deduce the important relation that for o € A7,
Y()* = P(d).

Applying ~ the same applies for « € A7, but we shall not need that. Thence the
Clifford algebra relations can be recast into CAR form as

P1(@)*Pi(B) + Pi(B)P1(0)" = (o B) ,

and
Y1()P1(B) + P1(f)P1(x) =0,

for all « and f in 7. This completes the proof but in fact more is true.
Setting ¢ = ©2; and ¥ = P(B)2; in the preceding proof, the formula for the
two point correlation function can be recast as

(@1, () P(B)21) = (& P1B) = (0, P1 ),

which is the usual formula for the Fock space correlations. From this, or by direct
calculation, one also can deduce that P; = Py, so that P; is an orthogonal projection.

Lemma 1.3. [CHM | The projection P, is given by an integral operator. Its kernel
is the Szegd kernel, A, which can be written explicitly in terms of the theta function
0Ole] associated to the same even half-period e which specifies the choice of spin
bundle L, and the Schottky-Klein prime form E, which is a —i-form in each of

its arguments:
Olel(y — x
A, y) = — el =x)
2mi0[e](0)E(y,x)
This formula makes it clear that A can be defined for any surface, ~ whether
or not it is a Schottky double, and we shall see later that there is a more general

formula for the correlation functions which also works outside the Hilbert space
setting.

2. Equivalence of Representations

There is a special case of the preceding situation for which more detailed informa-
tion is available. Henceforth we assume, following Segal [S2], that the boundary of
2 consists of parametrised circles (we make this assumption precise in our next
result).
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Lemma 2.1. Assume there are coordinate charts containing each boundary circle
such that in terms of a local coordinate z,|z| = 1 is the boundary circle. Then the
Hilbert space representations of the CAR defined by different Riemann surfaces
2\ and spin bundles L which have the same boundary 0X, and restriction L|0Z;
which we constructed in Proposition 1.1 are all equivalent.

This is proved in [PS, Sect. 8.11], but only in the case of a single boundary
component and a particular spin structure, so in this section we shall outline the
modifications needed to prove the lemma in the general case.

The spin bundle can be trivialised in such a way that its sections can be iden-
tified either with functions on the circle or with functions multiplied by z'/2. Thus
square-integrable sections are either identified with L*(S') or with z'/2L2(S"). Just
as there is a standard polarisation of L?(S!) into the two Hardy spaces H, and
H_, so z'/2L*(S") can be polarised into z'/2H, and z'/2H_. We shall show that the
representation defined on %, using the decomposition into holomorphic sections
on X and its reflection 24 = ¢(Z) is equivalent to that defined by using the ap-
propriate Hardy space decomposition of the sections of L|sz,, and so that all such
representations are equivalent.

Let us first concentrate on a single boundary circle. Since the two spin bundles
correspond under multiplication by z'/2, we need only consider the case of L2(S").
We cap the circle with a disc and suppose the local coordinate chosen in such a way
that |z| = 1 gives the disc and points of X; have |z| < 1. There is an injection, I
of the boundary values of holomorphic sections on X into L?(S'), and projections
p+ and p_ onto the two Hardy spaces. The first thing to be checked is that p_1I
is a Hilbert Schmidt operator. Now p_ commutes with the dilation operators R,
defined by

(R f)2) = f(p™'2),

so that p_1I :Rpp_R;ll. As in [PS], one sees that, for p € (0,1), p_R;ll is
bounded. Since, for such p,R, is trace-class on H_, we see that p_/ is trace-
class, and so Hilbert—Schmidt. Finally, the map 7 is an isomorphism onto its range
so that I = p I+ p_I = p,.I+ compact. Hence p.I: W — IW differs from an
invertible operator by a compact operator and hence is Fredholm, which shows that
the representation defined by X is equivalent to the usual one defined by the Hardy
spaces Hy.

Remark. Having established this equivalence with the standard representation, we
know (see [PS]) that the existence of the equivalence does not depend on the precise
choice of holomorphic local coordinate as the group Diff(S') acts in the Hilbert
space of this standard representation (enabling us to change parametrisation).

In the physics literature it is not usual to assume that the Riemann surface is
a Schottky double. Nevertheless fermion correlation functions are written down for
the representations defined by the Krichever map (see Segal and Pressley for a
discussion of the latter). To understand what these correlation functions mean we
need to extend the preceding discussion.

In understanding the Krichever map it is useful to compare the theory obtained
by capping X, by its Schottky dual X, with that obtained when one caps it with
another space ~_ to give a closed surface. To do this we need to suppose that ~_
is the Schottky dual of X,. We now have three different ways of decomposing "

H=H1BA =1 DA _=H, DA _.
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The first and third of these define Fock representations ¥, and ¥, which, by
Lemma 2.1, are intertwined by some unitary operator U. Denoting transpose by T
and using our earlier definitions we have

(22, Vi) UQL) = (T)_Q_, Po1()UQ, ) = (Q_,(Ty_) " Pia(a) T UQy)
=(Q_, 1 () (1)) UT2, @) .

Now, from the earlier equivalences, (T,_)" UT?, intertwines ¥_; = ¥|_ with itself
and so, by Schur’s Lemma, is a multiple, £, of the identity, giving

(Q2, Vr1(a)UQy) = k(Q_, ¥_1(a)21) .
Applying the same argument to products in the Clifford algebra now gives
(Q1, P1()P1(PUL,) = (2, V()P 1(BIUQL) = k(Q_, P _1() P _1(B)21)
=k(o, P_1) .

Thus correlation functions involving two different Fock cyclic vectors, 2; and Q.,
can also be computed purely in terms of the geometrical projection involving the
surface obtained by capping X, with the Schottky dual of 2.

This provides an interpretation of the correlation functions involved in the
Krichever construction where one uses for ~_ a union of discs. In some papers
these correlation functions are misleadingly written as inner products involving the
same cyclic vector (i.e. Q2 is identified with Q). Under the construction we have
given here this may only be done in the Schottky double case. This is what distin-
guishes the latter from other possibilities: it is only in the Schottky case that there
is a geometrically defined inner product on # in terms of which the correlation
functions are positive definite and hence one can obtain a bona fide (in the sense
of satisfying the usual axioms) quantum field theory.

Corollary 2.2. The representation defined by any Riemann surface X, is equiv-
alent to that obtained simply by capping the p + 1 circles which make up 90X,
by discs, that is, it is equivalent to a tensor product of p+ | standard fermion
representations for a single circle.

3. The Boson Representation

In the remaining sections we shall take X to be the Schottky double formed from
X, and with parametrised boundary circles, and we work with the complex self-
conjugate CAR formalism of Araki, [Ar]. The group ¥ = Map(02,,T) of smooth
functions from 02, to the complex numbers of modulus 1 acts orthogonally by
pointwise multiplication on " = L*(9X ). This action extends to an automorphism
of the Clifford algebra so that for £ € 4 and « € & we have

EW(a)— P(E-a). 3.1

We will refer to ¢ somewhat loosely as the “bosons” even though strictly speaking
it is the Lie algebra of this group which can be given the structure of a Heisenberg
algebra and hence may be regarded as representing bosons.

As ¥ is the product of groups of smooth maps on each connected component of
the boundary and the representation ¥ is equivalent to the standard representation
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obtained by capping the boundary by discs (Lemma 2.1), this automorphism is
implemented by an irreducible projective representation I with 2-cocycle g, that is

Y- o)=T(E)P@r©)™",
F(EDI(&) = a(&n, )IN(6) - (3:2)

Definition 3.1. Choose a base point c; on the j™ boundary circle for j=0,1,
2,...,p. Let ¢ €% and ¢ = é. Define A;f to be the change in the value of a
Sfunction f after one circuit of that boundary circle. The Lie algebra of 9 consists
of those f with A;f =0 for all j =0,1,2,..., p.

Following Segal [S1] we note that there is a choice of unitary I'(¢) for each
£ € G such that the cocycle has the form

R

a(e/1,ef2) = ¢TI 9T — oxp (—41—71 ( [ fadfi + i fz(cj)Ajf1>> - (33)
=

Remarks. 3.1.

(i) Although we have not chosen to do so here this cocycle may be derived
by a purely geometric argument as in [CHM]. On the Lie algebra of ¢ the bilinear
form s in (3.3) is symplectic, equipping this Lie algebra with the structure of an
infinite dimensional Heisenberg algebra.

(ii) In the case where 2~ has genus one [CH] we were able to analyse the
projective representation I' of G explicitly by exploiting its action as automorphisms
and using some special features of that example. In the higher genus case we seem
forced to take a more indirect path to an understanding of I

By using Mackey’s subgroup analysis [M1] it is possible to make some general
remarks about the representation I" without exploiting its provenance as automor-
phisms of the fermions. Let us start by defining the two subgroups J of globally
constant functions in ¢, and % of locally constant functions, that is functions which
are constant on each boundary component. On € and so also on J it is easy to
check that the restriction of ¢ is identically one.

Definition 3.2. For any subgroup 2 of ¥ we define

(9o)={¢(€%:0(,0)=0(0,8),0 € D} . (34)
Lemma 3.1.

(i) The group %o is the connected component of the identity in %, that is the
subgroup of functions of the form e/ with f in the Lie algebra.

(ii) The subgroup T o consists of those e/ with Zj 4;f =0.
(iil) The group % is the product of € with the vector subgroup M of functions in
%o having zero means on each boundary circle and a discrete group % =~ ZP"!

generated by elements having winding number 1 on one boundary circle and 0 on
the rest. Thus 4 =% X M X € and 6o = M X E.

Proof. This follows immediately from the definitions (it is useful in this regard to
consider % as the product of functions on the individual boundary components).

Proposition 3.2. The representation I' of % is induced in the sense of Mackey
from the subgroup ¥a.
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Proof. The first step is to apply the Mackey analysis [M1] to the normal subgroup
%. We begin by choosing a 1-dimensional o-representation u of %, which, since
o0 =1, is an ordinary character. (The subgroup ¥ is locally compact and satisfies
the conditions needed to apply Mackey’s techniques, so the fact that ¢ is not locally
compact is no obstacle.) The group ¥ acts by sending u to

a(é, -)
&-mw PRI

It follows immediately that the stabiliser of u is the subgroup %o. For a single
boundary component the repeated action of elements of winding number 1 or —1
will send any character of a constant function to any other, and so & acts transitively
on the characters of 4. Mackey’s Theorem tells us that we may as well take u =1,
and that the o-representation I can be induced from a representation of ¥¢ which
is lifted from a o-representation @ of (¥0)/% = .# completing the proof.

The next task is to determine the representation which is used to induce I'. We
begin by concentrating on (¥¢)/%. There is a natural map j from the subgroup ¥o
to the 1-forms on 02, given by

. 1 dé

i) = gdlogé =5 o (3:5)
The integral of j(£) round each boundary component, which is the winding number
of &, vanishes, but otherwise the only constraint is that j(£) must be real on the
boundary. The kernel of j consists of the locally constant functions so that there is
an induced isomorphism, which we shall also write as j from (%0)/% to 1-forms,
satisfying the two constraints given above.

As with %-forms, the complexified space of 1-forms on the boundary is the
inductive limit of spaces of 1-forms on small collars surrounding 0X., but for
ease of notation we shall suppress those limits and just regard the boundary as the
intersection of the Riemann surface X, and its Schottky reflection X_, whose union
is the whole surface 2. The Mayer—Vietoris sequence for forms gives in this case

0—TI'(2,0K))—TI'(2,0K)®I'(2-,0(K)) — I'(0Z,0(K))
— H'(Z,0(K)) — 0.

The space H'(Z, O(K)) is known to be one-dimensional, but forms on the boundary
with vanishing winding numbers map to 0, so that for these forms denoted by the
suffix 0 the Mayer—Vietoris sequence reduces to

0 — I'o(2,0(K)) — I'o(Z4,0(K)) ® I'o(2-,0(K)) — I'o(025,0(K)) — 0.
We therefore have an isomorphism
Io(024, 0(K)) = I'o(24, 0(K)) & I'o(2—, O(K))/T'o(2, O(K)) -

In order to link in with standard Riemann surface theory we shall choose a basis
of 4 and B cycles on our surface X of genus g. This may be done along the lines
indicated in [F]. For a start, we pick one of the boundary circles 4y as a base circle,
and take the remaining boundary circles 49,...,4% as 4 cycles, (henceforth called

A%-cycles). For corresponding B cycles we choose closed curves B? intersecting
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Ay and A? just once and invariant (up to orientation reversal) under the Schottky

involution. In X, we choose further 4 and B cycles (called A" and BT cycles),
Af,..., 4} and BY,...,B}, with n = (g — p)/2, and then complete the set with their

images A, = 4 and B, = 17?: under the Schottky involution. Here n is the genus
of the surface obtained by capping the boundary circles of 2, with discs. The space
I'(X,0(K)) is g-dimensional and a basis w‘f,...,w%,wf‘,...,w;{,wl",...,w; may be
chosen dual to A-cycles under the natural pairing given by integration round a cycle.
More precisely, we take

fwﬁ = 27‘Ei5S,5k1 .

4
where s and ¢ can be 0,4+ or — and k£ and / take appropriate integer values. The
Schottky symmetries of the cycles and the fact that ~ reverses orientation mean
that w; = —@;, where & denotes the complex conjugate of the image of the form
o under the Schottky involution. The integrals round B cycles then give the period
matrix:

st

fwl_fkl'
5
Bk

It follows from the behaviour of cycles and forms under the Schottky involution
that the matrices ¥+ and t~~ are conjugates, and so are t*~ and 7=+, Since the
symmetry of the period matrix already means that t*~ is the transpose of T~ we
deduce that both these matrices are self-adjoint.

By cutting the half space Z* along the 4™ and B* cycles it is possible to
obtain a neat form for the infinitesimal 2-cocycle for functions whose differentials
are holomorphic in Z*. In fact, writing X’, for the cut surface, and arguing as in
the derivation of the Riemann abelian relations (see [H]) we obtain

s(fi, )= [ fadfi + 3 faler)A(f1)

az,
= [ pdfi= | [af [dfi— [dn [ af |+ X Ale)mh).
ax’, k=1 A,j B,j A,j B;r

For holomorphic forms the first integral vanishes and for functions with winding
number 0 on the original boundary the final sum vanishes too, leaving

s(unf)=3 | [df [dh— [dh[dfi] .
S\a A
which, using the fact that j(exp(if)) = df/2m, can also be expressed as

s =42y | [iE) [ i@ = [ i) [je) . @6)

k=1 + + + +
4 B} 4 B}
There is a similar expression for forms holomorphic on X_.

Lemma 3.3. The space I'y(02 ., O(K)) decomposes into a direct sum of the globally
holomorphic forms I'y(X, O(K)) with the forms holomorphic and exact on X, and
2 _ respectively.
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Proof. Writing I'.(21,0(K)) for the exact holomorphic forms on X, we have
[(Z4,0K))Te(Z2, OK)) = H' (Z1),

so that the quotient has dimension n+ p, and its subspace I'o(Z+,0(K))/
I'.(24,0(K)) has dimension n. This means that

Fo(24, OK)/Te(2 4, OK)) & To(2-, O(K))/Te(2-, O(K))

has dimension 2n = dim(I'o(2, O(K))).
On the other hand I'(X, O(K)) intersects each of I'.(X4, O(K)) trivially, as can
be seen by the following argument. If o € I'(X, O(K)) is equal to d¢ on X4, then

G=d¢ on X; and
[dondp= [dpna= [ ¢a.
P P

0Z4

This vanishes by Cauchy’s theorem, so that d¢p = 0. We may therefore form the
direct sum
(24, 0(K)) & I'e(2-,0(K)) & I'o(2,0(K)) ,

which is a subspace of I'o(Z,,(K))® I'y(Z_,O(K)). Since, by the previous ob-
servation, its codimension is 0, we deduce that

Fo(24, 0(K)) ® T'o(2-, 0(K)) = TI'e(25, O(K)) @ I'e(X-, 0(K)) @ I'o(2, 0(K)) .
We may therefore rewrite
To(0Z+, 0(K)) = T'o(Z4, O(K)) @ T'o(Z—, O(K))/To(Z, O(K))

as
To(24,0(K)) @ T'o(2-, 0(K)) @ I'o(Z, 0(K)) , (3.7)

completing the proof.
Lemma 3.3 also enables us to factorise the vector group .#. We introduce the
two subgroups

W ={me M:jim)=E,,E€l(Z,0K))}, (3.8)

and
YV ={me M :jim)y=C,ox, + ¢ |os_,Ex € To(Z4,0(K))} . (3.9)

Then by Lemma 3.3, #/ =7 X W

Lemma 3.4. Let £, denote a closed surface obtained by capping X.. Then
W = H'(54,R)

and s|W x W corresponds to the canonical symplectic form on H'.

Proof. The forms which represent elements of #  are real on the boundary and
can therefore be represented by real harmonic forms rather than complex holomor-
phic forms. The real dimension of #  is the same as the complex dimension of
I'o(Z,0(K)), that is 2n. The cohomology of 3 is represented by harmonic forms
and these are determined by their restrictions to X (since they can be reconstructed
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on the caps from the boundary data). From the decomposition of the preceding
lemma it follows that these forms determine the same cohomology classes as the re-
strictions to 2, of “real” forms in I'g(X, O(K)). Since dim #~ = dim H 1(ZAJr,R), the
isomorphism now follows. Equation (3.6) and its predecessor show that s|# x #~
is the canonical symplectic form on H 1(Z4,R).

Corollary 3.5. The matrix t*~ is non-singular.

Proof. The 2-cocycle is equivalent to a symplectic form, and therefore non-
degenerate. On the other hand Eq. (3.6) shows that if wj = df7/2ni, then we have

n
s(fFL [ = an? kzl Quiduti — 2midmty ) = 873i(x), — ) =0,

by symmetry of 7, and
n
s(F7, ) =4 Y (0 — 2midjt;, ) = 87t} .
k=1
The non-degeneracy of s now gives the result.
It is now possible to give a more explicit form of the decomposition in Lemma
3.3, since for any holomorphic form & € I'g(X_, (K )) the form

n
bo=¢— Y of [¢
=1 -
k
has vanishing integrals round all the 4~ -cycles, and

n
Le=¢o— Yo (T [
ki=1 By

has vanishing integrals round all cycles in the half space X_. Its integral is a well
defined holomorphic function whose differential is &,. This shows how to decompose
¢ as the sum of an exact form and a linear combination of globally holomorphic
forms.

Since the group #  is finite-dimensional and the 2-cocycle is non-degenerate,
the Stone—von Neumann uniqueness theorem ensures that it has a unique irreducible
g-representation. The obvious way to construct the desired representation @ of

(CNEC= M=V xW

is therefore to take the tensor product of the unique irreducible representation 7°
of ¥~ with the Fock representation IT of ¥~ whose cyclic vector is annihilated by
[(Z_,0(K)).

To see that this is the correct representation we note that locally in a neighbour-
hood of any boundary circle apart from the finite-dimensional space I'g(Z, O(K))
the decomposition into I'.(2, O(K)) ® I'.(X_-,0(K)) agrees with the usual Hardy
space decomposition and so defines an equivalent Fock representation. This estab-
lishes the main result of this section.

Proposition 3.6. The o-representation I' of ¥ is equivalent to an induced repre-

sentation
F=o—ind), eIl
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where T’ and II' are the lifts to €6 of Fock representations of W and v
respectively.

An alternative form for this representation follows from the fact that
Y =9 xZ%xW x¥. Extending the Fock representation II trivially from ¥~ to
%, the permanence relation tells us that as a representation of ¥~ X (Z x # x %),

_ LT XW XE
'=N®c—indy g °T.

4. The Fermion Vacuum

Having found a convenient realisation of the representation of the bosonic group ¥,
the next task is to identify the fermion cyclic vector Q within this representation.

Lemma 4.1. The vector Q may be identified with the tensor product of the Fock
vacuum Qg for ¥~ with a vector Qy in the representation space for & x W x €.

Proof. Notice first that if multiplication by £ € ¥ maps #_ = I'(X_, O(K 2 )) into
itself, then for all « € J#_ we have

P(I(E) ' Q=T P(E - )2 =0. 4.1)

Since Q is uniquely defined, up to multiples, as the vector annihilated by Y(#_)
it follows that I'(¢)~'Q is a multiple of Q or, equivalently, that for suitable y

(R = x(HQ . (4.2)

We could equally well replace I'(¢) by x(&)~'I'(¢) as the implementor of the loop
group automorphisms of the fermion algebra, and then Q is fixed by I'(£).

The most obvious example of such ¢ is afforded by the globally constant func-
tions, 7, so we may assume that these fix Q. Since for any # € ¥ we have

a(n,$) a(n,$)
a(&m) a(&m)

we see that for any n € ¥ the vector I'(n)Q2 is also an eigenvector, but that the
eigenvalue is only 1 when # € (Z ). The consequent orthogonality condition shows
that the generating function (Q, I'(1)Q2) must vanish unless # € ( g). The fact that
Q is fixed by I'(Z ) means that there the generating function is lifted from a function
on the quotient group (J 0)/7 .

Similarly, if we let f be an element of the Lie algebra of ¥ which maps #_
into itself, then with dI" the Lie algebra representation obtained from I we have

P()dI((f)Q = dT(f)P ()2 — P(f - )@ =0

for all « € #_, and so dI'(f)Q2 is a multiple of . Again, by modifying the
implementors by a scalar we may as well assume that dI'(f)Q = 0.

The same arguments may be applied for f in the complex Lie algebra. By results
of [CP] the vector ©Q is in the domain of the elements & in the complexification
of ¢, and hence the same arguments apply to them as well. The obvious elements
in the Lie algebra which fix 2 are those in I'.(X_,0(K)), and we accordingly
deduce that the fermion cyclic vector is killed by these. This completes the proof.

I(mI'($HLR =

rrme = rme, (43)




Infinite Dimensional Groups and Riemann Surface Field Theories 335

The main problem now is to analyse the representation of the subgroup
% x W x €. This task is considerably simplified by noting that the elements
of ¥ X % can also be related to forms. For a start, it is clear that for a gen-
eral function ¢ in ¥ the winding numbers on the boundary are given by the
integrals

1 . d¢
ey R R

where the map j of Eq (3.5) has been extended in the obvious way. If ¢
is in the subgroup J o, so that the total winding number vanishes, then the
form

p
OEDY oy [ j($)
r= A(r)

has vanishing periods round all the boundary cycles, and so it is of the form j(¢o)
for ¢ € €o. In general, the periods of j(¢) round the boundary cycles must all
necessarily be integers.

We have so far ignored one rather subtle but important side effect of using these
forms. The values of the function associated with a form # differ at the points where
B) meets A and 47 by the exponential of

[ on.

BNz _

(We can simplify some of the expressions by choosing the cycle B0 so that it inter-
sects A0 in ¢;). The J -coset of a locally constant function is umquely determined

by the dlfferences between its values on 4y and the other 4° cycles, and one side
effect of using the forms w(l’, ...,0° to encode information about %, is that the cor-
responding functions have non-trivial components in %/ -cosets. (This problem did
not arise with the other forms because there was a natural decomposition splitting
them off from the locally constant functions.)

Since the boundary is invariant under the Schottky involution, the complex con-

jugate of the period of the form # round 49 is

27t1fn_ zAfo
J

If = —n then this period will automatically be real, and this is the case for each of
the forms w?, e ,w‘l’,. Now consider, for such a form # the real part of the difference
between the values of the associated function on boundary components, that is

1
5 J on+ J
BNz _ BInz_

Recalling the way the Schottky involution acts on forms and that it reverses orien-
tation, this may be rewritten as

%fn—fﬁ,

BNz _ BNz,
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which reduces to

Jon+ [ on)=5[n

BNz _ BNz,

N =

For the particular forms o) these B integrals are linked to those round the A°
cycles by the period matrix. Since the 4° periods have to be integral, there are also
integrality constraints on the B® periods. In this way I'(X, ®(K)) can be regarded as
the direct sum of I'g(Z, O(K)) with part of the complexified Lie algebra of & x 4.

Lemma 4.2. There is a complex lattice subgroup £ in I'(X,O(K)) which has the
vector Qy as an eigenvector.

Proof. First we note that the complexification of the finite-dimensional vector
group #  can be identified with I'o(X:,O(K)) using the map j in (3.5). Within
I'y(Z,0(K)) the forms whose integrals round all 4~ and B~ cycles are integers
can be integrated to give well-defined holomorphic functions on X_. The existence
of a lattice ¥y with this property can be shown by an argument similar to that
splitting a form into exact and globally holomorphic parts, and it is spanned by

n
——1
=) (c +)lk a)f
=1

and

n
B = (2mi)~! (a)k_ - > r,—k_(r’*');,lw;;)
I,m=1
for k = 1,...,n. These preserve 2 _ and since the group is only finite dimensional
it can be complexified and general theory asserts that Q lies in its domain, so that
Qr is an eigenvector for £, and can be assumed fixed by that lattice.
We can, however, expand ., to a larger lattice. The forms

n
e = Qmi)™! (w2 - Tﬁco(T"J")rZzlw;)

I,m=1

also have integer periods round all cycles in X¥_ including the 4° cycles on the
boundary. Each therefore has boundary values of the form j(&) for some element
¢ of the complexification of ¥ which preserves #_. The same applies for integral
linear combinations of such elements,so that this lattice should be joined to %, to
generate a larger lattice . which sits inside I'(2, O(K)). By the above arguments
Q7r is certainly an eigenvector of the complex lattice Z.

Remarks 4.1. We recall that a subgroup is said to be isotropic if the restriction of
the 2-cocycle o is trivial, or, equivalently, in a form which extends to the com-
plexification, if the restriction of s takes only integer multiples of 47%. An isotropic
lattice is said to be maximal if it is not a proper subgroup of a larger isotropic
subgroup. The sublattice %, is maximal isotropic in this sense, which can be seen
from the fact that the other variant of (3.6) gives

S(fl,f2)=‘47'f2ké [ i@ [ je™) = [ ) [ je" ]

Ak B Ay By
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and the forms have been chosen to have only negative periods round the 4~ and
B~ cycles.

To summarise our findings to date we have shown that the fermion cyclic vector
is the tensor product of the Fock cyclic vector Qp annihilated by I'.(Z_, O(K)),
and an eigenvector, 2y, of the complex lattice .£. Moreover, since we know the
generators of ¥ we can easily find an explicit formula for Qr. Now real isotropic
lattices do not have eigenvectors, but only generalised eigenvectors in some suitably
rigged version of the Hilbert space, though these are uniquely determined when the
lattice is maximal. However, in the complex case, there are genuine eigenvectors
which are still unique, as we shall now prove.

The vector Q7 is in the space of the representation induced from 7 on #” x €,
or equivalently the tensor product of the o-representations 7" on #~ and

E:o—indgx(gT,

of & x %. The representation space for = is /2(%), but we already know that Q7
is supported on %o, so we may as well work in the subspace /2(%c) = /*(Z7).
Let ¢ be a function in ¥o X ¢ whose winding number round 4} is m; and with
locally constant part exp(iy) on that circle and 1 on Ay. Then for any ¥ in the
representation space and ! € Z”, we have

(E(PW)(1) = 5™ e 1yl — m) .
In order to obtain 7" in a convenient form let us first note that
W'c = span {oy } ® span{of }

provides a polarisation of the complexification of #". We can therefore realise 1
on the Fock-Bargmann Segal space of holomorphic functions on span {oy}. For
¥ such a function, ¢ € #~ satisfying j(¢) = > xpoy + Xy, and z = Y zpo, We
have

(T()P)z) = & 277 Tt ez

(We may readily check that this gives the correct 2-cocycle, as determined by our
earlier calculation of s for functions associated to holomorphic forms.) The inner

product is given by
(P1, %) = [ Pi(z) exp (—27°2(c~ 1) '2)) Pa(z)dzdz .
As a vector in the tensor product space 27 is a holomorphic function of z and
a square-summable function of /. Since it is an eigenvector of each of the lattice
elements o, we take integral x; and vanishing %; to deduce that Qp(z —x,/) is a

multiple of Q. Taking the eigenvalue to be 1 in accordance with our previous
discussion, Q¢ is periodic in z and of the form

Qr(z) = Y &"2Qn,1).

n€eZpP

To consider the effect of the other lattice generators f;, we first note that
~ =1 -
o = —Z(T+ )lk @, ,
I

so that .
ﬁk = 2—7_” XI:(T?/—(_&I + Tl_k_a[) .
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Thus for integral my, Y., mifr has components X = —t"~ - m/2ni and x =
—1~~ - m/2ni. The action of this lattice element on Qy(z, /) produces

1

Lipeg—=- im e i
ezm T me2mm 10) 7 — 1 em.l
T o )

Loz im inez Lper—— -
zeim T meme ze2mn zezn T ”’Q(n,l)
n

— Ze%(m+n)°t__ °(m+n)e—%n'r__ 'neZni(m+n)-ZQ(n’ l) .
n

If this is a multiple A(m) of 21 then we must have
e%(m+n)'r__ '(m+n)e—%n°r__ 'nQ(n’ l) — l(m)Q(m +n, l) .

Rearranging this as

eI, 1) = Am)e” HE T DO 4, 1)

and setting » = 0, we see that
Q(m, 1) = Am)"'ez™ ™ "mQ0,1).

Substituting back into the functional equation we see that y;(m)= A(m)~! is a
character.
Finally we must consider the action of the elements y;. Since

my _
Dompyr = Zﬁ(w/? - 1%),

we see that when we take an element with winding numbers my, not only do we
obtain a vector of local constants y = —i %'coom, but also a vector x = —t~ - m/2mi
in #¢. The action of this element therefore sends Qr(z,1) to

1

iTopem 17:790. I
gammezlrtiomg. (z+ Tt 0. m,l—m)
T
iZmem 21079 em Lpet=0m minez
=Y €amMex ez e Q(n,l — m).
n

The condition that this be a multiple y(m) of Qr(z,1) is that

elimemedls e mgn T my i 1y — w(m)Q(n, 1)

or, equivalently, that
e om0 G-m g 1 )
— (X(m)e—%m"zoo'me—i%m'm)e—%l'roo'le—%n'r_o'lQ(n, l) .

Setting m = | we see that

e—%l‘l'oo'le—%n'r_o‘lg(n’ l) — (X(l)e—%l'l'oo'le——i%l'l)—lg(n’0) ,
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and on substituting back we see that yo(/) = exp(3/ - (?® +in) - Dy(/)7" is a
character.
Combining all these results we obtain the explicit formula

1
Qn, 1) = y1(n)x2(Dexp (%1 N R I I R ST n> Q(0,0),

confirming that Qy is indeed determined up to multiples. As noted earlier, we may,
without loss of generality, assume that y; and y, are trivial, so that

1 1
Q(n, 1) = exp (Zl et 40 I+5n-1" ~n) Q(0,0) .

We can now obtain an explicit formula for the generating function for the rep-
resentation. First we note that for elements of the real group the vector X is just the
complex conjugate of x, so taking a function ¢ associated with winding numbers
my, local constants p; and vectors x and X = x, we have

(I'(@)Lr)z1)

Ty 2z — T 2o —+y Tl
— g igmemy, 2n°%(t~ ) xe47t X(t™T) zetl “QT(z—x,l—m)
—iZmem 2725} 2%l e ine(z—
— Ze igmem, 2n°x(t™ ") xe4n xX(z™T) zezl ,u62mn (z x).Q(n,l—m)
n

_ Ee—-i%m‘m —2n2)_r(t_+)_1x —2nin+x 2mi(n—2mi(tT )"

oL
e e e 2ol b Q(n, 1 — m) .

n

Now the inner product of the exponential functions exp(27ik - z) and
exp(2min - z) in Fock space is exp(k - ¥~ - n), so we may write the generating
function as

_+)_1xe—i1m°x

D VS S
<QT,F(¢)QT> = § e"’%’" m okt (n—2mi(z* ) X) =T x(x
n k1

x e Qk, NQ(n, 1 — m)

vy oninex —2mike% il* ert—ep 17,00,
)xe 2nin*x 2mkxezl uekr ng 211: m

ilmem —222%
:Ze igmemg, 2n°x%(t e

nk,1
x edm @ mmn M O, 1) .

Now, bearing in mind the fact that conjugating blocks in 7 simply interchanges +
and — superscripts, the terms which do not involve the group elements are

[ YA BN L1eye00, o t0. e ert—e
ek T nQ(k,l)Q(n./):e4(l T I+4ke-1 I4+2k-1 k)ek T n
« e%(l'roo'l+4n'T_0'1+2n'T__‘n)|Q(0 0)|2
, .

The exponentials can be rewritten in terms of the vector g = (k,I,m), as
exp(%(q- 7-q)). (Since the period matrix t has negative definite real part this will
give a convergent series, confirming that Q1 is square-integrable, as general theory
predicts.) In fact, dropping the constant factor |2(0,0)|?, the generating function
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now collapses to

iZmem —2m2%(t— Y Yx —2minex —2mikx ileu —L7+700.
Zez4m Mg 2n°x(t™ ) Xo 2nin Yo 2nik xezl P et em
n,k, 1

X e%m'roo-me—%n-t_()'me%(q'r'q)

e ==l 100, .\, _ i
—e nx(tT ) Xogm (T +im) me‘[(x,'u_’_ 2_,COO.m’x) .
T

For a given function ¢ = exp(if’) € 4 the vector part can be calculated from

Xk = Zwuj(d)),
to be g

Xk = Ztlg+ f](¢) 5
] A;F
whilst the winding numbers round the boundary are

me = [ j(¢).
4

(The generating function is supported on g, so the winding number round A,
is just the sum of —my.) We shall write f, for the exact part of f, that is
¢. = exp(if,) is a function in j~!(¥") such that ¢/¢, is constant on ¥~ x @-cosets.
Finally we recall that the generating function is constant on J cosets, it depends
only on the differences u; — po between values on Ag and A4y, and these should
replace u in the earlier calculations.

Theorem 4.3. Let Q1 be the normalised fermion cyclic vector, for ¢ = exp(if ) €
4, let my be the winding number round Ag, let py and py be its values at the base
point ¢ on Ag and ¢y on Ay, respectively, let

X = lefk—fr Ji(®),
a7

and let f, be the exact part of f, and f," denote the part which is holomorphic
in X,. Then the generating function is given by

X. U — L 00,
*+)_1xe%m°(100+in)'m 91()&',[1 Bo + 2t m’x)

_ —nz)_c(‘r
(Qr,I'($)Qr) = d(m)e 0.(0,0,0)

X exp (—}1 f fedf:) ,

where d(m) is 1 when mg+my + --- + m, = 0 and vanishes otherwise.

Remarks 4.2. This result should be compared with numerous papers in the physics
literature [AMV, ANMV, ABNMV, E]. Mathematical gaps in these papers were filled
for example in [KNTY, N]. It is important to note what is new about our approach.
We have derived the generating functional and cyclic vector for both bosons and
fermions from the underlying geometry. By contrast in [KNTY,N] the generating
function for both bosons and fermions is postulated to be the same theta function
(not proved) on the basis of earlier work of [DJKM] on hierarchies of soliton
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equations and tau functions. In this earlier work an algebraic approach to represen-
tations of Kac—Moody algebras in the language of formal infinite order differential
operators (vertex operators) and power series is used (this framework is given math-
ematical precision in [KNTY,N]). This latter language cannot be readily related to
the conventional one of representations on Hilbert spaces and with quantum field
theories satisfying Wightman positivity. To see what is required in the genus zero
case see [PS,CR]. An approach which is similar in spirit if not in detail to ours is
contained in [R1].
We conclude by noting two consequences of our derivation.

Remarks 4.3. As a result of our convention that the cyclic vector should be fixed
by Z, rather than having a more general eigenvalue, means that the theta function
has characteristic [0,0]. In this connection it is interesting to notice that the CAR
algebra depended only on the periodicity of the fermions on the boundary circles,
and so did its representation. However, the Fock cyclic vector also depended on the
choice of a compatible spin structure on the whole of 2. It is interesting to note
what whilst the lattice & preserves J#_, the action of %30 is locally holomorphic
but changes some of the periods by half integers; it therefore maps elements of

re_,0K )%) to sections of another spin bundle. Accordingly it permutes the cyclic
vectors for different spin structures. At the bosonic level, conjugation by elements
of %Eo changes the characteristic of the theta function. In this way we see how
the characteristics of the theta function are connected to the choice of spin bundle
over the whole surface.

General theory tells us that the infinitesimal form of the boson generating func-
tion is given by

32
(P4 fP—gP+) = 5 F(exp(i(s + 19)))ls==0 -

We have already remarked that the projections P, and P_ are integral operators.
Indeed P, is defined by the Szegd kernel A(x, y), and P_ has the transpose kernel
A(y,X), [CHM]. We therefore see that

(P1 fP_gPro)(w) = [ A(x, ) f(3)A(z, 7)9(2) Az, W)a(w) .

Taking the trace and simplifying we are left with
tr(Py fP-gP+) = [ A(x, §)f (D) A 7)g(x) = [ Alx, ) f(»)g(x) .

Thus the kernel for the infinitesimal generating function should be A(x, 7)?. Ac-
cording to formula 91 in [H] (or Corollary 2.12 in [F]) this can be expressed as

’nd
~N2 ~ .S
A(x’y) —g(xay)—l_z(szkazlwkwla

where the first term in this expression is the Bergmann kernel. This corresponds
to the Gaussian term in the generating function F, whilst the remaining term is
the infinitesimal part of the theta function arising from the globally holomorphic
forms.

The simplicity of the eventual answer suggests that there should be an alternative
derivation and we shall now sketch a more direct approach. The form of the fermion
cyclic vector as a tensor product means that the generating function, F, is the
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product of its restrictions to ¥~ and #". On ¥", the generating function is simply the
Gaussian appropriate to the Fock representation but on & X #~ x %, the situation
is more complicated.

Our aim is to show that the generating function on the latter group is given by
a theta function. To do this we need to derive some equivariance conditions from
the existence of the lattice ¥ found in Lemma 4.2. We first note that

& " W(a) T(&)* = P(¢ - a)*
= (&),

whence it follows that we may as well take

re =ré".

Since Q7 is an analytic vector for the complexified action the generating function
extends holomorphically to the complexification of #". There is also a functional
equation for F, resulting from the lattice action on Q. In fact, since for 4, and 4,
in ¥ we have
(F(A)Qr, I (OI(2)Rr) = —f(é:_if—)(ﬂr, rd; e2)Qr),
O'(Al,/‘kl f/lz)

we deduce that

a(¢,4)
o 7y &)
Thus the generating function satisfies an equivariance condition on #.% cosets.

Now we investigate the implications of (4.3). The action of ¥ enables us to
change the periods round 4%, 4~ and B~ cycles by integers, so the action of &
enables us to make integral changes to the values round 4%, 4* and B* cycles.
Now it is more convenient to think of such a lattice additively, that is to work with
functions f = log(&). Such functions are defined only up to integer changes on the
boundary components, and we have seen that these correspond to changes in the
periods round B cycles. (At first sight it appears that since boundary differences
correspond to half the B period it should be possible to make only even integer
changes to these cycles. However, within % and so also in % the B® and 4° periods
are linked. By choosing elements of % and .# so that the 4° dependence cancels
one finds that the B changes can be integral.) Overall, then, the function F is
equivariant with respect to a lattice represented by integral changes to the periods
round 4 and B cycles. By definition this lattice is defined by the period matrix,
and by comparison with [M2] the functional equation is that for an even theta
function. The generating function is therefore the product of a Gaussian and a theta
function.

F(&) = F(y ' eh). (44)

5. The Boson Fermion Correspondence

We have already noted in Corollary (2.2) that the fermion representation is equiv-
alent to the tensor product of representations for the individual boundary circles
capped by discs. For each such boundary component it is known that the fermion
representation can be recovered from the boson operators. Let us choose an annular
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neighbourhood of a boundary circle and a local coordinate z such that the boundary
is |z| = 1. Then following [S, CH, CR] the fermions can be reconstructed using the
“blips” y, € 9, where |a| < 1 and

(3 (5.

In fact, it is known that for a concentrated on the annular neighbourhood of that
boundary circle

1 d
WWﬁﬂg.fﬂwm—Mﬁﬁme¢%¥

|a|=r

where the limit means strong convergence on a dense domain (see [CR] for details).
Note that since a is a half-form the factor /da/a turns this into a form which can
then be integrated. We shall now show that these local blips can also be interpreted
geometrically. 1

First let us consider the renormalisation factor (1 —|a|?>)”2. In terms of the
local coordinate the prime form can be expressed as

E(xr,y) = ——
V= Jandy

([F] Cor 2.5). The local expression for the involution is & = 1/a, so that we have

. .1 _ Vd(/a)da ~/—dada
R SR (RO

+0((x—»)), (5.1)

whose square root is almost what we want.
Now this is not quite well defined in general, and one should rather use the
expression
i0(e —d+a)
0(e)E(G,a)

for e a half period fixed by the Schottky involution and having vanishing BY N X -
components. This has the same limiting behaviour near the boundary and is, as Fay
shows ([F] Cor 6.15 et seq), a positive section of the bundle |K| ® (2Re(e)), where
Re(e) denotes the line bundle associated with the real part of e. Considering for
the moment the case when e = 0, we see that we may take a positive square root
as a section of |K |% Since the boundary is oriented the restrictions of |K| and K
there can be naturally identified. The general case of non-zero e can be handled
by multiplying through by an appropriate exp(— Y ex [ @?) to convert it to the
previous case. One then ends up with a square root which is a section of |[K [% ®e
restricted to an annular region containing the boundary circle. It converges to the
half form (id@)% = (dw/w)% on the circle. It follows that in the annular region

oc(a)E(d,a)_% is a one-form and we have:

U(e) = lim [ a(@E@a) T ().

la|=2
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To interpret the blip y, we recall that there is a family of distinguished meromor-
phic functions on X, whose values on dX, have modulus 1 and with the minimal
number of zeroes, [F] Theorem 6.6. Tailoring the result to our needs, for a € X',
and s a suitable even half period we take

0z —d —s) E(z, 1z 4
w0 - IS (180 fa) . o2

where 1 + p; agrees modulo 2 with the winding number of ¢, round the j™ boundary
component ;2. Since ¢ has modulus 1 on the boundary circles it represents an
element of 4.

Lemma 5.1. In sufficiently small annular neighbourhoods of the boundary circles
the function y;'e, is defined and converges pointwise as a — w on the unit circle
to the constant function 1.

Proof. That a choice of annular region exists is clear from the discussion at the
beginning of this section. As @ — w on the unit circle so does d, and since the
theta functions are non-singular in some neighbourhood of the circle the first ratio
in (5.2) tends to 1. The integral in the exponential in (5.2) tends to 0 giving another
unit factor. However, if z,a and 4 are all close to a single boundary circle then the
prime forms can have singularities. Locally one has

Eza) [ z—a )\ (d1/@)\? [(z—a (—_da%
E(Z,d)_<z—l/ﬁ>< da > _(zﬁ—l) da) '

2i

As a — w = € the derivative —da/da — e~%% = W/w, so that locally

o= (5) (&%) -

If z is on a different boundary component to w then the ratio of the prime forms
also converges to 1, so that on the other boundary circles ¢, — 1.

There is a more sophisticated way of arriving at the same result by fixing some
¢ € X, and using the function ¢. to uniformize ¥ by mapping it to the Riemann
sphere. Then using the addition formula, [F], Eq. 45, we calculate that

e(z) —ela) Oz+a—c—2C)0(a@—c)0(z—a)E(G,C) 1 A a '
() —6@) O0Gz+d—c—0)0a—0c)0G—a)E@e) P <"§ 2k fwf) ba-

All the factors on the right-hand side except ¢, are close to 1, so that ¢, is approx-
imately the same as the cross ratio on the left-hand side which is just the standard
blip expressed using &, as a coordinate.

One way to interpret this lemma is that as a — w on the unit circle the mero-
morphic function ¢, on the Riemann surface approaches a (singular) distribution.
Recalling Segal’s blip construction of vertex operators (see [PS]) this suggests how
to construct regularised “vertex operators” on the Riemann surface which give a
precise analytic meaning to the boson-fermion correspondence.

Theorem 5.2. For @ in a dense domain of the Fock space
V()@ = lim | a(a)(E(G,a)" 2 ()P .

T al=4
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Remarks 5.1. This theorem may be interpreted as saying that the Segal vertex
operator on a Riemann surface is given by I'(g,).

Proof. For a precise description of the dense domain of convergence we
refer to [CR]. This latter paper and our remarks above imply that it is suffi-
cient to show that the operator I'(¢,)I'(y,)~' converges in norm to the identity
on the Fermion Fock space as @ — w on the unit circle. Let Q4 denote the
standard Hardy space projections on L2(S'). Then, as the fermion representation
is equivalent to that defined by this Hardy space decomposition it is sufficient by
[CR] to prove that 1, = é&,y,' converges uniformly to the function which is
identically one on the unit circle and that Qin,0+ converges to zero in
Hilbert-Schmidt norm on operators on L2(S'). Now by [F, Cor.2.5] we have
e = f(z —a)/f(z — d), where f is analytic on a neighbourhood of the unit disc
{z]lz| £1}. It is then easy to show that the desired result follows by prov-
ing for f,(z) = f(z —a) that f, — f; converges uniformly on the unit circle to
zero and that Q4 (f, — f2)Ox converges in Hilbert-Schmidt norm to zero. Now
Hilbert-Schmidt convergence of such an operator is equivalent (see [CR]) to
convergence of f, — f3 to zero in H'/? norm as a — w in the unit circle. It
suffices therefore to prove that both f, — f; and its derivative converge to zero
uniformly on the unit circle. But the families of functions {f,},{f;}, and the
derivatives, {f,} and {f}}, are each equicontinuous for @ in an annulus about
the unit circle. Consider the first family of functions. Equicontinuity implies that
uniformly convergent subsequences of {f,} exist. As f, converges pointwise to f,,
as a — w, all uniformly convergent subsequences indexed by a sequence a, — w
as n — oo, must satisfy f,, — f,, uniformly. That is all uniformly convergent sub-
sequences have the same limit and hence a standard argument by contradiction
now shows that f, — f,, itself converges uniformly to zero as a — w. Similar
statements hold for the other families of functions proving the desired uniform
convergence.

6. Coverings

From a physical point of view conformal field theories represent a quantum analogue
of two-dimensional hydrodynamics. In that classical theory conformal mappings
between Riemann surfaces play an important role, as interesting problems of-
ten simplify when transformed. For example, the Joukowski transformation z =
w + ¢?/w maps the flow round an aerofoil into that round a disc. In quantum
theory the exponential map z = exp(w/f) takes a zero temperature system into
one at inverse temperature f5, or alternatively takes an infinite to a finite sys-
tem. An account of various physical applications is given in the survey article
by Cardy, [C]. There are mathematical reasons too for being interested in cov-
erings. It is known that generically every vector bundle over a Riemann sur-
face is the image of a line bundle over some covering surface [AB]. The use
of coverings therefore permits one to extend the results of the previous sec-
tions to vector-valued spinors and loop groups of mappings into unitary and other
groups.

The recent article [AB] discusses the geometric theory in the context of integ-
rable models. We shall quickly review some of the features of finite coverings in
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our setting. (The Joukowski transformation can be rewritten in the form

z—2c w—c\’
<z+20> B <w+c)

and so provides an interesting example of such a covering.)

Consider a map f from a Riemann surface X to X. If L is a line bundle over
X then the sections, I (X, O(L)) form a module for germs of holomorphic functions
03 on X. If f* denotes the map from holomorphic germs Ox on X to (3 obtained
by composing with £, then we may also regard I'(X, (L)) as an Ox-module. In
fact it can be identified with sections of a vector bundle over X.

For simplicity let us assume that both surfaces admit coordinates, w and z, say,
that f is a polynomial of degree N and write z = f(w). The fibre of L at w € X
can then be identified with

I(X,0(L))wI'(X,0(L)),
and the push-down vector bundle over X has fibre at z = f(w) € X
Vp =T(X, 0(L))/f(W)[ (X, 0(L)) .

Generically there are N distinct points v such that f(v) = z and the N-dimensional
space Vy can be identified with the direct sum of the N lines L,.

The relation between sections of L and of V' can easily be described explicitly
by using the Lagrange interpolation polynomial

ORI
PO = o

which takes the value 1 when v=w and vanishes for other v satisfying
f(v) = f(w). Writing p,, explicitly as a polynomial

N .
puw=;mwwu
j:
we can expand any function ¥ on X as

N
Y(w) =3 pi(w(f(w)),
where /=1

Yy = X vY@).
vef~1E)

In this picture multiplication by a scalar function ¢ on X can be represented by
multiplication by matrix-valued function on X. In fact

. ) N
(P-¥V))= > vy = > v'é¢@) 3 pe(wn(f(v))
vef~z) vef—lz) k=1

N
= g_:l(i)jk(z)lﬂk(z) ,
where

dix)= Y v )pi(v).
vef~1z)
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In particular when ¢ = f we have

fi@) = X v f)prv) =220 p(v) = 281 .
vef~l@)
This in turn means that if # is the matrix representing multiplication by w then

fOW) =zl.

Rather than direct use of the formulae, however, it is more efficient to write f
as a product of factors fj(z) = (z — aj)Nf and exploit the primary decomposition
theorem to obtain

VeV, 0,00, .
This enables us to concentrate on the special case when f(z)=_z",
where p;(w) =w™//N, so that

bOw) = 2 S
J

When L is the line bundle of half-forms, the inner product can also easily be
computed. In the simplest case, when the boundary is given by a level curve of
|w|, we have

(o B) = [ 2P0 = 315 [ S Iw g 00w

oxX 0x Jk

1 . 1 .
=N f 2w ko‘j(WN)ﬁk(WN) =N > f G (W)W .
oxX Ik k gx
Now the boundary of X covers N times that of X , SO that
(@, B) =3 [ axwW")B(w"),
k ox

which is what one would expect for a multicomponent fermion theory. Summarising
we have the theorem.

Theorem 6.1. The fermion theories for sections of L over X and for sections of
V over X are equivalent under the above correspondence.

Returning to the case of general L but with z = w", the bosonic action is then
given by the matrix
1

b=~ L ).

vef~2)
In particular, taking ¢(w) = w we get the matrix

1 i
Wik = NEUJ k1

which is 1 for k =j+ 1, z for k =N — 1, j =0, and otherwise vanishes. That is

00 .. 0 z
10 ... 00
w—|0 1 00|,

[«]
(=]
—
(=]
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which is essentially the formula of [AB], Sect.4. The general case is given by
a direct sum of such matrices, one corresponding to each primary factor of the
covering map, f. .

One can already detect some features of the covering on X if knows the action of
the deck transformation group. For f(w) = w", one may cyclicly permute the roots,
or equivalently multiply them by powers of 4 = exp(2mi/N). Setting (Sy)(w) =
Y(Aw) we have

(SY);(w) = L x (SY)(x) = X x/y(dx) = 27/ (SY);(2)

so that S has the matrix

10 ... 0
0 4 ... 0
s=1| :
00 V=1

The two matrices ¢ and W satisfy the relation
SW = AWS ,

and so generate a projective representation of the finite group Zy x Zy. For z%0
this representation is irreducible and so generates the whole general linear group,
but at the ramification point z = 0 we have WV = 0, so that W is nilpotent and the
representation is no longer irreducible though still indecomposible.

The significance of this can be seen by considering the covering of the annulus
¢*> < |w| £ 1 defined by 1/z — g, in other words the covering given by z = w? + g.
The covering space has three boundary circles, two of which cover one boundary
of the annulus and one doubly covers the other end. Line bundles over the covering
give rank 2 vector bundles over the annulus, and the nilpotent matrix W allows one
to patch the rather different behaviour at the two ends of the annulus.

The other feature of above discussion which is typical is the fact that the gauge
transformations and deck group give all linear transformations of the vector space
at z.

Theorem 6.2. If the deck group D acts transitively on the sheets of the covering
then the algebra gemerated by D and Map(0X,T) is the algebra generated by
Map(0X, U(N)).

Proof. The algebra generated by D and Map(dX,T) is
(D,Map((0X,T))" = (D' N Map(dX,T)' .

Now, acting on the fermion space, the commutator of Map(@)f’ ,T) is Map(@)? ,0),
and its inter-section with D’ consists of the D-invariant elements. Thus we have

(D' N Map(dX,T)) = Map(dX,C)? = Map(dX /D, C)
= Map(dX,C) .

The commutant of this is the whole of Map(dX, GL(N)) which in turn is also the
algebra generated by Map(dX, U(N)), as claimed.
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As with the fermion inner product, since the boson multiplier is given in a
coordinate-free form and all the constructions are natural it can easily be computed
for the multi-component boson theory. The boson theory is nonetheless more subtle
than that of the fermions as the following outline example shows.

It is common in the theory of loop groups to consider maps into the semi-
simple group, SU(N), rather than into the reductive group, U(N), [PS]. In terms of
an N-fold covering, the Cartan subgroup is generated by subgroups Jj; consisting
of functions which multiply by ¢ on the j® sheet and by ¢~' on the k™ sheet. (In
practice one would have to regard these as limits of smoothed versions to avoid
discontinuities at the cuts.) For each such subgroup of functions one can consider
the blips ¢ = ¢,(z). Since ¢, is essentially the exponential of a reproducing kernel,
it is the product of the corresponding functions &,(w) as b runs over the N roots
of a. On the j™ sheet, the function &, corresponding to the root b; in that sheet is
of special interest, but all the other factors, corresponding to b in other sheets are
nearly constant, and the corresponding element on the k™ sheet is &y, To a good

approximation the blip in the subgroup Jj is the product &, sb_kl. Now the limit of
the appropriately renormalised operator coming from the boson representation of g,
is the unsmeared fermion operator ¥y, and similarly the renormalised limit of the
operator representing sb—kl is lI’;k, so that, by taking the square of the normal con-
vergence factor (one copy for each of the two &,) we get a collection of operators
which “coverges” to a renormalised product ¥, ¥} of unsmeared fermion operators
concentrated at b; and b;. But this product is precisely the current corresponding
to an element in the Lie algebra of Map(dX,SU(N)) taking values in the (j, k)"
root vector. In other words the analogue of the procedure which reconstructed the
fermion operators from the bosons, this time reconstructs the off-diagonal elements
of Map(dX,su(N)) from its diagonal Cartan subgroup. Although the above argu-
ment is totally non-rigorous, the conclusion is known to be correct for unramified
coverings, [S1] and the covering space ideas provide a new perspective on it.

7. KMS Type Conditions

Let us now restrict to the subgroup %, of functions which are identically 1 on the
base circle Ag. (One could argue similarly for functions which take the value 1 on
several boundary circles.) For ¢ and # in ¢; we consider (Q, I'(&)I'(n)€2). Suppose
that there is a function &, holomorphic on 2, whose boundary values agree with
& except possibly on the base circle. Then & + is holomorphic on X_ and it follows
from the bosonic characterisation of the fermion cyclic vector that

(Q.T(OTMQ) = (NE)R,T(ENMQ) = (@ I'(E, HN(ET(1)Q)
— o & o rE Hrame) .
Now E;lé and n have disjoint supports and so commute. We therefore deduce that
QLML) = o(E,. & O~ @I (E &)Q) .

Next suppose that there is a function £_ holomorphic on X_ which agrees with
E1E . on the base circle. Then E= E;lff_ is in %; and is the analytic continuation
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of & round X, and also

(@ IOMMQ) = o(E,, & & 1@ T(IE, O (EHQ)
o6

1

> (QI(mré)Q) .
(SN

Summarising this we have the following theorem.

Theorem 7.1. Let &, & and n be elements of the group %, of functions which are
identically 1 on Ay, and suppose that there is a holomorphic function on X cut
along the A° cycles other than Ay whose boundary values agree at one end with

& and at the other with & Then

(@Q,Irmrée),

1
()
(Q,I(Orme) = E%T

0'(54-’ é+

where £y are the interpolating functions in X .

This identity for the two point correlation function generalises the standard KMS
condition on the torus [CH1]. When X, is an annulus, %; consists of functions
on the single non-base boundary circle. The real line acts as automorphisms by
rotation of that circle. On a dense subset of the functions this automorphism extends
holomorphically around the torus which is the Schottky double of the annulus to
give a rotation translated by it, where 7 is the complex number which gives the
period matrix in this case. Thus & is the image of ¢ under the complexified rotation
through it and the identity reduces to the standard KMS identity.

The same identity can also be interpreted in several other ways. For example,
if 2 has genus larger than 1 then the uniformisation theorem tells us that X can be
identified with the quotient of a standard disc by the action of a discrete group A4.
Functions of 2 lift to equivariant functions on the disc. If we look at a particular
sheet then the analytic continuation of £ round X results in its image under the
appropriate element of A4, in fact the element given by hyperbolic reflection in the
arc which covers the base circle in this particular sheet.

One can also give the identity a more algebraic flavour by noting that T? acts
as automorphisms of ¢, by rotating the p non-base boundary circles. However we
will not pursue this here.
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