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Abstract: We consider a compact invariant set A of an expanding map of a man-
ifold M and give upper and lower bounds for the Hausdorff Dimension dim//(yi),
and box dimensions dimB(Λ] and dim^yl). These bounds are given in terms of
the topological entropy, topological pressure, and uniform Lyapunov exponents of
the map.

A measure-theoretic version of these results is also included.

0. Introduction

It is well known that many self-similar sets, or fractals, can be realized as invariant
sets of smooth expanding maps. The purpose of this paper is to give estimates on
the box dimensions and Hausdorff dimensions of these sets.

Most of the known results on dimensions in dynamical systems are of the fol-
lowing types. Some are about the dimensions of invariant measures (see e.g. [L]
and [LY]). Some are about the dimensions of sets constructed via a sequence of
affϊne contractions (e.g. [Fl] and [GL]). Others deal with subsets of the line. See
also [G,MM,BU], etc.

At present, there are few known effective ways to calculate the box and
Hausdorff dimensions of sets (sets, not measures) invariant under nonlinear maps in
dimensions larger than 1. In this paper we consider invariant sets of uniformly ex-
panding maps. We give upper and lower bounds for box and Hausdorff dimensions
in terms of topological entropy, topological pressure, and uniform Lyapunov expo-
nents. Examples of self-affine sets show that these bounds are sharp (see Sect. 1,
Example 2). We will also give parallel results for dimensions of invariant measures.

We state our results.
Let M be an w-dimensional C°° Riemannian manifold with Riemannian measure

v, and / be a C2 map from M to itself. Let A c M be an /-invariant compact
subset, where /-invariance means fΛ = A. We also assume that / is expanding

* Part of this work was done when I was in the Department of Mathematics, University of
Arizona.
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on A, i.e., there exist C > 0, K > 1, such that Vx e A, n ^ 1,

Without loss generality we can take C = 1 .
We denote by |D/(jc)| the Jacobian of Df(x) : TXM -> Γ/JCAf, by ||£>/0)|| the

norm of Df(x) and by QA/OOD the minimum norm of Df(x)9 i.e.,

Put

σ+ = lim -log||Z)/"U|| and σ_ = lim -log
«— »oo /2 «— >oo W

where \\Df» Λ\\ = sup^Λ \\Dfn(x)\\ and O A Γ U D = inf*€Λ \Dfn(x)l. We call σ+

and σ_ the largest and smallest uniform Lyapunov exponents respectively. Since
/ is expanding on A, σ_ > 0.

We also denote hiop = /z(/U)> the topological entropy, and P = P(f\A, — log
|D/(jc)|), the topological pressure of f\A for the function — log |D/(jc)|. The
Hausdorff dimension, lower and upper box dimensions of A are denoted by
dim^(yl),dim5(yl) and dirng(yl) respectively. Their precise definitions are given
in Sect. 2.

Theorem A. Let f be a C1 self-map of an m-dimensional Riemannian manifold
M, and let A be a compact f-invariant set. Assume that f is expanding on A.
Then

< /?tOD J

= —£, and

where D(A) is dim//(yl), dim5(yi), or dimB(A).

To prove the lower bound for D(A), we use part of the following theorem,
which is a measure-theoretic version of Theorem A.

For an ergodic measure μ on A, we let h = hμ(f) denote the measure-theoretic
entropy, λ\ and λs be the largest and smallest Lyapunov exponents, and λ be the
sum of all Lyapunov exponents including multiplicities - all of them depend on μ.
The definitions related to dimensions of measures are stated in Sect. 2.

Theorem B. Let f be a C2 self-map of an m-dimensional Riemannian manifold
M, and let A be a compact f-invariant set. Assume that f is expanding on A and
μ is an ergodic probability measure on A. Then

i) y- ^ D(μ) ^ y-9 and
A\ Ay

ii) m - ^jJi ^ D(μ) ^ m - ̂ ,

where D(μ) is dim#(μ), dim5(μ),dim5(μ),dimz(μ), or dim/,(μ).

Remark. Theorem B is a generalization of a known result that if / is conformal
then the entropy hμ(f) is equal to the product of the Lyapunov exponent and
the Hausdorίf dimension (see [R]). Also, it has been conjectured that the formula
of Ledrappier and Young for dim#(μ) is true for invariant measures of smooth
expanding maps. The results in Theorem B are consistent with this conjecture.

The major work in this paper is to prove part ii) of Theorem B. Proposition 2
in Sect. 4 plays a key role for the proof.
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1. Examples

We begin by looking at some examples.

Example 1. Let RQ be a unit square in R2. Take real numbers 1 < a < b. Put n
rectangles R\,...,Rn of width a~l and height b~l in an arbitrary way, as long as
they are separated from each other. Define a C2 map / on R2 such that / maps
each of RΪ affinely onto RQ. The n inverses of f\R. : R; — » R0, i = !,...,«, determine
an /-invariant set, or fractal, A C (J"=ι Φ in a usual way (see [H or F2]). In fact,
A = Π^Lo f~*(Rι u * ' u Rn\ which is an invariant set of /.

Clearly, / is expanding on Λ with expanding rates a and b in horizontal and
vertical directions, and the smaller and larger uniform Lyapunov exponents of
/ are σ_ — log a and σ+ = log b respectively. It is also easy to see that
*(/U) = log/ι. Since - log \Df(x)\ = -log a - logb is a constant on Λ,
P ( f \ Λ , - log \Df(x)\) = V(/U) - logfl - log* = log i - logα - log 6
(see [W] Sect. 9.2). By Theorem A we get that

htop =

max
\ogn-\ogb\
- : - >

logα J
ίlogn

< — -̂,
\logα

\ogn-\oga\
-f — ̂  — r^- > .

log 6 J
(1.1)

In this case all the terms in the bounds are explicit.

Fig 1. Fig 2.

In Fig. 1, a = 4.1, b = 4.9 and n = 4. Theorem A gives 0.982 ^ £>(/!) ^
0.984 , which is less than 1. In Fig. 2, we use the same a and b, but n = 5. By
Theorem A, we get 1.014 ^ D(A) ^ 1.140 , which is larger than 1. (In these

figures the black rectangles form the set nJLo/~*(U!=ι^') )

Example 2 (Generalized Sieφinski caφets). Let ̂ 0 be a unit square in R2. Take in-
tegers 0 < p < q. Partition 7?o into p columns and q rows, producing pq rectangles
of size p~l x q~l. Select a subcollection of these rectangles J? = {Rι,...,Rn}9 and
generate an invariant set A in the same way as in the last example. (If we identify
^o with a torus, then / is a C2 map even though some of rectangles are adjacent.)
The dimensions of the set A were studied by McMullen ([Me]) and Bedford ([B]).
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The box and Hausdorίf dimensions of A are

/ \
Jβ ,Λ^ logp 1 , / 1 P \
dιmB(A) = h log — ̂  HJ ] ,

log/? log # \Pj=ι J

I ί P log/A
dimH(A) = log £ (Λ, )iogf , (1.2)

log;? \J=l /

where HJ denotes the number of rectangles selected from the /h column and p is
the number of columns containing at least one rectangle in 0i. (See also [F2].)
These results are consistent with our estimates.

Note that in these examples the dimensions of A depend not only on the number
n of selected rectangles but also on the configuration of the rectangles in $. This
shows that in general one cannot get an exact formula in terms of σ_,σ+,/z top and
P for either box dimensions or Hausdorίf dimensions.

In fact, by choosing suitable configurations of the rectangles, the bounds in
Theorem A can be reached. Let us look at the following cases.

i) Take m = 0 or 1 for all 1 ^ / ^ p. Thus n = p. By (1.2) we get that
— drniff(A) = fo^ , which is one of the upper bounds in (1.1).

ii) For all 1 ^ / ^ p, put HI — k. In this case, n — kp. We obtain that
= dimff(A) = 1 + |̂ -. This coincides the other upper bounds in (1.1).

iii) Choose p = 1, i.e. all selected rectangles are in one column. Hence only
one ΛI is greater than 0 and n is equal to this w z. Equation (1.2) implies that

= dimff(A) = j^ , one of the lower bounds in (1.1).

iv) Let HΪ be equal to either 0 or q. So n = p q, and dim5(/l) = dim//(/l) =
same as the other lower bound.

Example 3 (Similitudes). Let A be constructed as in Example 2 but put p = q > 0.
In this case / is called a similitude (see [H]). Since σ+ = σ_ = log p, the estimates
in Theorem A become equality. Thus, we obtain that

dimH(A) = dimB(A) = .
log;?

In general, for any invariant set A of a similitude /,

dirndl) = dimβ(Λ) =

2. Definitions and Notations

First we give the definitions of the various notions of dimensions. (See e.g. [F2].)
For a metric space X, its Hausdorff dimension is defined by

dimπ(X) = inf | α: lim inf J] (diamΛ)α = 0 1 ,
ε—»0 diam^<ε J
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where ^ is a cover of X and diam^ = inf{diam^( : A £ ^}. If v is a probability
measure on X, then the Hausdorff dimension of the measure v is given by

O) = inf{dim#(y): Y C X, vY = 1} .

The upper and lower box dimensions of X are defined by

= lim sup - and άimD(X) — lim infβ
—

_+o -logε β B-+O -logs

respectively, where N(ε) denotes the minimum number of balls of radius ε which
cover X. άimβ(X) and άimB(X} are also called upper and lower capacities. If

= dimB(X\ then we simply call this number the box dimension, and de-
note it by άimB(X). Similarly, we have

dimB(v) = lim inf {dinig(7) : Y C X, vY > I — δ} ,
(5^0

and
dim5(ι;) = lim inf {dim5(7): 7 C X, vY > 1 - δ} .

F. Ledrappier has introduced the following notions [L]:

dimL(v) = lim lim sup —-— and dimr(v) — lim lim inf —-— ,
(5^0 ε_0 -lθgε (5-+0 ε-^O - log ε

where ^(ε, δ) is the minimum number of balls of diameter ε covering a subset in
X of measure greater than 1 — δ.

The following inequalities are immediate:

dim/y(t>) ^ dim/K^O, (2.1)

dϊm/,(tj) ^ 5m5(t;) ^ dim^(J^) , (2.2)

and _
dim//^) ^ dim5(X) ^ dim5(^) . (2.3)

Moreover, L.-S. Young has proved ([Y]) that

dim//(t;) g dimz(ι;) . (2.4)

The local entropy of / at x with respect to μ is defined as (see [BK])

hμ(x> /) — 1™ nm SUP — log μBn(*> ε)
ε-^O n^oo H

= lim lim inf — log μBn(x, ε) . (2.5)
ε— ̂ -0 n— >CXD ft

It satisfies hμ(fx,f) = hμ(x,f) and ^hμ(x,f)dμ(x) — hμ(f\ where /zμ(/) is the
measure-theoretic entropy of /. Since μ is ergodic, we can write h = hμ(x,f)
μ-a.e. *.

Let

) ^ α}
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and
Bn(x,*) = {y£M: d(fiyjίx) ^ α, / = 0,...,/ι} .

#(jc,α) and Bn(x,a) are called the α-ball and (Xα)-ball about x respectively. If
Γ C M, we denote

B(Γ, α) = U #(*> <*λ ^»(A «) = U &n(x,«)

3. Preliminaries

We denote by /: (M,μ) — > (M,μ) the inverse limit of / : (M, μ) — >• (M, μ). (For
a precise definition, see e.g. [P] under the terminology "natural extension." Let

πz : M — » M be the projection defined by π/({.x7 }°^0) — Xi^{xj}j^Q G M. For any

ϊ = {#/}, /{*/} — {fχi}' The inverse of / is given by f~l{xj} — {yt}, where

Let
Jί = {jc - {xi} eM :xteA Vί ^ 0} .

Clearly, f A = A, and μ is an ergodic measure on A. It is also easy to see that

with respect to cocycle {£)/"}, for μ-a.e. jc = {xj} 6 A, the Lyapunov exponents
are identical to those in the system / : (M,μ) — > (M, μ), i.e. AI > > A?.

Take 0 < 7o ^ 2δb^
Let {(•, •}} be the inner product on TM given by the Riemannian structure

which induces the norm \\-\\. Let { , } and \ \ denote the usual inner product
and norm on Rm respectively. For α > 0, let B(u) be the ball in lRm centered at
the origin of radius α.

We now introduce the properties of Lyapunov charts {Φ^ : x G A} for /. The
proof is similar with that in [LY].

Fact 1. Vy ^ 0, there exists a measurable function I : A — > [l,oo] with l(f±lx) ^

l(x)ey and l(x) < oo for μ-a.e. x G A, and a set of embedding 's Φ~ : B(l(x)~l) — >

M at each point c G A such that the following holds.

i) Φ*(0) = jc0, and the preίmages Rt(x) = DΦχ(0)~l(Ei(x}) of Ef(x) are mu-
tually orthogonal in Rm, where i— 1,...,^.

ii) Let F^ = Φ^λ o / o φ^ be the connecting map between the chart at x and
j χ

the chart at fx. Then VI g i ^ s, u <G Rt(x), \u\eλ^ ^ ^^(0)^ ^ u\e**+y.
iii) If L(g) denotes the Lipschίtz constant of the function g, then

DFΪ(Q)) ^ y, andL(DF^} g /(jc).

iv) For all v,υ' e B(l(x)-l)9K-ld(Φ^}9Φ^υf) ^ \υ-v'\ ^ l(x}d(Φ

for some universal constant K ^ 1.

We define / : A — > [l,cχo] by l(x) = inf{/(ΐ) : x G π^"1^)}. There is no am-
biguity between l(x) and /(ί), because the domains are different. Clearly, l ( f x )

.
For any / ^ 1 let

= {x e Λ : /(jc) < /} .
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Proposition 1. If x £ ΛI for some I ^ 1, then \/n > 0,

B(x,εe~n(λl+2y}) C Bn(x9εKl) and Bn(x,ε) C B(x,

provided 0 < ε ̂  |/-2e~2^.

f . Take z £ B(x, εt
Since l(x) < /, we can choose x £ π^^Jt) such that / ^ l(x). Denote v =

then by Fact 1. iv),

v ^ lCx}d(x z) ^ /(^)

Write F^1 = F^n^~o oF^oT^. By Fact 1. ii) and iii) we have
v f X i Λ X J ' '

So F%\ e B(l(fnxΓl). Again, by Fact 1. iv),

d(fnxjnz) ^ K\Fυ ^ K - ε/ = εKl .

It means z £ Bn(x,εKl).
The second inclusion can be proved similarly. D

Recall that A is a compact subset in an w-dimensional Riemannian manifold M
and v is the Riemannian measure.

Lemma 1. 3K\ ^ 1, εi > 0, such that VO < ε < ε\9 x G A,

K~lεm ^ v£(jc,ε) ^ Kλ&
m .

Proof. This is clear. D

Lemma 2. 3K2 ^ 1, ε2 > 0, ^c/z //zαί VO < ε < ε2, x G /t, w ^ 0,

K~lεm ^ vBn(x,ε)\Dfn(x)\ ^ K2ε
m .

Proof. Use distortion estimates J~l ^ \Dfn( )\ = J^y ^ Bn(x,ε) and Lemma 1. D

Lemma 3. Vα > 0,

lim sup -- log μB(x, e~na ) and lim inf -- log μB(x, e~na ) ,
w_^oo «β «^oo na

as functions of x, are constant for μ-almost every x in A.

Proof. There exists k > 0 such that Vx G A, fB(x,e~an) C B(fx,e-a(n-V) for all
large n. So μB(x,e~an) ^ μB(fx,e~a^n~k^\ This implies both limits are /-invariant
and therefore are constant almost everywhere. D

Lemma 4. 3ε^ > 0, such that VO < ε < εs μ-a.e. x e A,

h= lim — logμBn(x,ε). (3.1)
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Proof. Note that / is expanding on A. If ε3 is sufficiently small, then 3k > 0
such that for any 0 < ε' ^ ε ^ ε3, Bk(x,ε) C 5(jc,ε') C £(jc,ε) V* e A Therefore,
for any n > 0, Bn+k(x,ε) C Bn(x,ε') C Bn(x,ε) \/x e A Hence, we have

lim sup — logμBn(x,ε) = lim sup — logμBn(x,ε') Yx E Λ .
n—> oo n «—> oo ft

This means that the above limit is independent of ε provided 0 < ε < 63. So, by
(2.5) h = limsup^oo - £ log μBn(x,ε) μ-a.e. x <G A

Similarly, we also have that h = Km inf w_+oo — £ log μBn(x, ε) μ-a.e. * G A The
result then follows. D

4. Proof of Theorem B

Proposition 2 is essential for the proof of the second part of Theorem B. It says
that, up to factors e~ny, the measure of an εe~nλs-ball is greater than e-n(mλs-λ+h)^
and the measure of an εe~nλ^-ba\l is less than e-»Mi-^+A)< The idea of the proof
comes from the following observation.

The volumes (i.e. the v-measure) of each εe~nλs-ball and each («,ε)-ball are
roughly e~nmλs and e~nλ respectively. Therefore an εe~nλs-ba\\ can be covered by

εe-n(mλs-λ) (w?ε)_balls. Since each "nice" (n, ε)-ball gives a contribution of mea-
sure at most e~nh, a "nice" εe~"^-ball should not contain measure more than
g— n(mλs— λ+h}

Similarly, by comparing the volumes of an εe~nλl-ba\\ and an (n, ε)-ball, we get
that an («,ε)-ball can be covered by e

n(mλl~λ^ balls of radius εe~nλι. Therefore, a
general εe~nλl-ball should contribute measure at least e-n(mλι-λ+h^

The proof for the proposition carries out the above idea. However, since con-
vergences in (2.5) and (3.1) are not uniform, we have to choose some "nice" sets
on which the above argument can be applied. Also, we consider all εe~nλs -balls and
(«,ε)-balls which cover the "nice" sets simultaneously.

Proposition 2. Let 0 < y < ^min{yo,/*} and 0 < ε < ^min{ει,ε2,ε3, 1}. Then
μ-a.e. x G Λ,

_ __, ogμB( ,,
~ Bμλs -2y ~ B-κχ, n(λs-2y)

.
λl +2y

Proof of Proposition 2 (The First Inequality). Write A_ = λs - 2y.
Suppose this inequality is not true. Then by Lemma 3, for some small γ and ε,

μ-a.e. x €. Λ,

liminf _ _L logμflfc*-*-) <m_λ-h + (2m + 3)y
n^oo nλ- λ-

Fix / > 1 such that KΓ1 ^ 1 and μΛt > 0.
Put

A'n = {xeΛ: μBk(x,εΓ2e~2lcγ) < Qxp[-k(h - 7)] V* ̂  n} .
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By Lemma 4 lim^oo μA'n = 1, because μBk(x,εl~2e~2ky) ^ μBk(x,ε) \/k ^ 0 .
Put

A't = {xeA: \Dfk

x\ < Qxpk(λ + γ) Vk ^ n} .

By the fact that λ = lim,,-^ £ log \Dfn(x)\ μ-a.e. jc G Λ, lim^oo μA% = 1.
Put

"' = {* e Λ : μB(x,εe~nλ- ) ^ exp[-«(mA_ - A + A - (2/w

Put Λ = ̂  ΓΊ.4" Γ\A'" ΓΊ Λ/. Since both {A'n} and {̂ } are increasing, we get
μ(\J^NAn) = μAi > 0 VN > 0. So we can find an n > 0 with μAn > 8m Ί2m K&e^.

On the other hand, from the following three claims we get

^ <• en(mλ_-λ+h-(2m+3)γ) φ g/n^2/w^ i^ n(-m

This contradiction means that (4.1) is not true. D

Claim 1. The set An can be covered by en(mλ_-λ+h-(2m+^y} balls B

with x G An.

Claim 2. VxeAn, B(x,2εe~nλ-)Γ]An can be covered by %m I2m K\K2e
n(~m'

(n,εΓ2e-2ny)-balls Bn(y,εΓ2e~2ny) with y£An.

Claim 3. V y G An, Bn(y,εl~2e~2ny) has measure less than or equal to e~n(h~~y\ i.e.

Proof of Claim 1. Since An CA"', each εe~nλ--ball about x G An has measure
greater than or equal to exp[—n(mλ- — λ + h — (2m + 3)y)]. So there are at most

- — λ-\- h — (2m + 3)y)

disjoint balls of radius εe~nλ- about points in An. The same number of balls of
radius 2εe~nλ- about points in An can cover An. D

Proof of Claim 2. Since An c /I/, by Proposition 1 and the fact

-Γ2e~2ny Kle~n(λs-^ = -KΓle-n(λs~y} < εe~n(λs-^ < εe~nλ- ,
2 2

we know that Bn(y, f Γ2e~2n^ C B(y,εe~nλ-) Vy G An. So, if y e An Π

^(jc^εe-^-) for some c G M, then £„(>, f /-2e~2^) C 5(jc,4ε^-^-).
Since ̂  C ̂ 7/, Lemma 2 implies that for any y G An,

vBn y^-Γ2e~2

By Lemma 1,

vB(x,4εe~nλ-) ^
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Hence, there are at most

^--m^m^lmj^ n(λ+(2m+\}y} β ^mv^n^-nmλ- __ gm βmg Ίζ n(-mλ-+λ+(2m+\)y}

disjoint (w, |/~2e~2n);)-balls about points in An contained in B(x, 4εe~nλ- ). So the

same number of («,ε/~2e~2wy)-balls can cover B(x, 2εe~nλ- ). D

Proof of Claim 3. This is because An C A'n. D

Proof of Proposition 2 (The Second Inequality). The proof is analogous to that
for the first inequality. We only give an outline here.

Write λ+ = λ\ + 2y. Suppose for some small y and ε,

lim sup -- r~ log μB(x, εe~nλ+ ) > m -- - - μ-a.e. c e A .
n— >oo W/4- /t-f

Fix / ̂  1 such that Kl~λ ^ 1 and μΛi > 0. Put

A'n = {x e A : μBk(x, ε) > exp[-A:(A + 7)] VA: ^ n} ,

4,7 = {* e Λ : |D/* I > expA:(/ί - 7) V£ ^ Λ} ,

4" = {x G A : μB(x,εΓ2e-n(λ++2y">) ^ exp[-/ι(/πλ+ - Λ, + A + (2m + 3)7)]} ,

and put An = A'n Π A'J n ̂ ^ Π Λ/. We can find an n > 0 with μAn > 8m I2m

However, the following three claims give that

. e-n(mλ+-λ+h+(2m+3)γ)

a contradiction. D

Claim 4. TTze set An can be covered by en(~h+y^ (n,2ε)-balls Bn(x,2&) centered at
points x G An.

Claim 5. Vx EΛ, Bn(x,2ε) can be covered by sml2mKlK2e
n(mλ+-λ^2m+l^ balls

B(y,εΓ2e-n(λ++2y)) with center points y e An.

Claim 6. My e ^4«, ίAe ftα// 5(;;,ε/~2e~w(i++27)) Afl s measure less than or equal to
e-n(mλ+ — λ

Proof of Claim 4. Since ^w C^4^, there exist at most en^h+y^ disjoint (Xε)-balls
Bn(x,ε) with x G An. Hence the same number of («,2ε)-balls about points in An can
cover An. D

Proof of Claim 5. Since AncΛι, by Proposition 1 we have

C Bn(y,εe~2ny) C Bn(y9ε) \/y G An. So if y e Λ Π5n(;c,2ε) for some x e S, then
J5(j, |/-2e-»α++2y)) c 5Λ(Λ;,4ε).

Since ^ίw C <, by Lemma 2 we get v£w(;t,4ε) ^ X24
mεlfle-π^-y> Vx G Λ. By

Lemma 1 vB(y, f /-2^-«α++2y)) ^ ^-ιεm2-m/-2m^-«mα++2y) So there are at most

τs n( mλ+—λ+(2m+l)γ)
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disjoint balls of radius |/-2e-«(^++2y) contained in Bn(x,4ε). Therefore, Bn(x,

2ε) can be covered by the same number of εl~2e~n(λ++2^-balls. D

Proof of Claim 6. This is because An C A'" . D

To prove Theorem B, we also need the following fact, a version of which is
in [Y].

Fact 2. Suppose v is a Borel probability measure on a manifold M. If there is a

sequence of positive real numbers {rn} with lim^oo rn = 0 and lim^oo lo^r"+1 = 1

such that
z ^ r r.logvB(x,rn) logυB(x,rn) -
δ g lim inf — - - ^ lim sup — : - ^ δ

for v-a. e. x E M, then

δ ^ D(v) ^ δ ,

where D(v) is dim//(f),dim^(ι;), or dinig(ι ).

It should be pointed out that by (2.2) and (2.4), D(v) also can be dimz(ι;) or
άimL(v).

Proof of Theorem B.

i) Take / > 0 such that μAi > 0. By Proposition 1, for μ-a.e. x E /!/, if 0 <
' r2}, then

^ lim inf — log μBn(x, εKle~2ny)

h
^ lim inf — log /^π(^, ε) =

Since y is arbitrary, by Fact 2 we have D(μ) ^ j-. The upper bound D(μ) ^ j-

can be obtained similarly.
ii) This follows from Proposition 2 and Fact 2. D

5. Proof of Theorem A

Take r > 0 such that for some 1 < κf ^ K, \\Df(y)u\\ ^ κf\\u\\ Vy e B(Λ,r)
Vw e ΓyM. This is possible because / is uniformly expanding on A.

Proposition 3. For any ε < minjr, ^ε2},

P(f,-log\Df(x)\)= lim -loBvBn(Λ,ε) £ 0.
n^oo n

Proof. Denote φ(x) = - log \Df(x)\ and SB^) = ̂ "=0 <Kf'x) = ~ lo§ \Df"(x)\.
Take 0 < η < ε. Since / is expanding, there exists & > 0 such that if

x£Λ,y£ B(Λ,r) satisfy d(fix,f'y) ^ ε VO ̂  z ^ k, then ί/(jc,j;) ^ »/. So Bn+k
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Take an («, η) spanning set S for A. We have

Bn+k(Λ9ε) C Bn(Λ,η) C \J Bn(x,2η) .
x£S

By Lemma 2, vBn(x,2η) ^ K22
mηm\Dfn(x}\-1 = K22

mηmes"^x\ Thus,

So, with the same notation as in [W] Sect. 9.1, we get

lim sup - log v£w(Λ, ε) g l im sup - log Qn(f, φ, η) .
7ί— »OO ^ «— > OO ^

Since the left-hand side is independent of η, we have

lim sup - log vBn(Λ, ε) g P(/, φ) .
«— >oo ^

The opposite inequality can be proved in an analogous way. D

Before proving Theorem A, we give the following estimates.

Proposition 4. With the notations as in Theorem A,

Note that for any invariant measure μ on A, log ||A/U|| = ^i an(i log D^/U D

g /15. Therefore the lower bound D(A) ^ ιog | |D/ | || ^n ^art ^ follows from (2.1),

(2.2), Theorem B and the fact that hiop = sup{hμ(f) : μ G δ(Λ,f)}9 where δ(Λ,f)
is the set of all ergodic measures of / on A.

By using the facts that P = sup{hμ(f) - / log \Df(x)\dμ(x) : μ G δ(Λ9f)} and
λ = /log |Z)/(Λ:)|ί/μ(^), we can obtain the lower bound D(A) ^ m H- log

Now we prove the upper bounds in both parts. By (2.3) we only need prove
that

For any 0 < β < |Z)/U|- 1, there exists ε0 > 0 such that V y £B(Λ,ε0),
OZ)/(j)| ^ flZJ/Ull- /? and |p/(j)|| ^ | |/>/U||+/f. Denote

χ-=log(D^/UD-j8) and χ+ =log(||D/U|| +/?) . (5.2)

We assume 0 < ε < min{r, ε\9 |ε2, ^εo} so that Lemma 1 and Proposition 3 can be
applied to this ε as well.

We have that Vx e B(λ,ε),Bn(x,ε) C B(x,ε( ^Df\Λ \ - β)~n) = B(x,εe~n*- ). So,
if 5 is an («,ε) spanning set for A, then {B(x, εe~nχ- ) : x e S} is a cover of A.
This implies that

N(εe~nχ~) ^ N(n,ε),
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where N(n,ε) is the smallest cardinality of any (n,ε) spanning set for A, and
N(εe~nχ~ ) is the minimum number of balls of radius εe~nχ~ which cover A. By
the definitions of άimB(A) and topological entropy,

r logN(εe-»*-) logΛΓ(/ι,ε) Atop ,̂ ,
= limsup — ̂ - - < hmsup — - — - - = — - . (5.3)

-"*- ~ n^o "I- X-

By Proposition 3, there exists N > 0 such that if n > N, then vBn(Λ, ε) <
/>+/?) εe~w*+-ball about a point in /L must be contained in Bn(A,ε). Every

such εe~wχ+-ball has volume larger than K^~lεme~nmχ+. So Bn(A,ε) contains at most

Kιε-mefl(mχ++p+β) Disjoint εe~n*+ -balls centered in Λ. This implies that

N(2εe~nχ+) ^ Kιε~m^(mχ++p+β} .

Thus
_ \ovN(2εe~nχ+} P 4- /?

< limsup -Ξ— - - - < m + -— ̂ - . (5.4)
~ P -" V ;

Since β is arbitrary, (5.1) follows from (5.2)-(5.4). This finishes the proof. D

Proof of Theorem A. Since h(fn\Λ) = nhiop and P(fn\A,- log \Dfn(x)\) = nP,
we can use fn instead of / and then take limit to obtain Theorem A from Propo-
sition 4. D
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