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Abstract: We consider the φ\ quantum field theory on a torus and study the short
distance behavior. We reproduce the standard result that the singularities can be re-
moved by a simple mass renormalization. For the resulting model we give an Lp

bound on the short distance regularity of the correlation functions. To obtain these
results we develop a systematic treatment of the generating functional for correlations
using a renormalization group method incorporating background fields.

1. Introduction

The renormalization group is not a group, but a technique for isolating the singularities
of a quantum field theory. Originally invented by Wilson it has become one of the
standard tools used in rigorous work on the subject. Still, its application is far from
routine.

In a series of papers starting with a paper by Brydges and Yau [BY90], the authors
have developed a systematic version of the technique which we believe has substan-
tial advantages [Bry92, DH91, DH92b, DH92a, DH93]. Until now the Brydges-Yau
method has not been applied to φ4 type models, but we have developed a modification
(incorporating background fields) which covers this case as well. In this paper we use
it to study the short distance problem for the φ\ model. We believe it can be used for
many other problems. The paper [BDH93] also reviews the general framework of the
background field method.

Here is a brief history of rigorous work on the φ\ model. The original stabil-
ity estimate was given by Glimm and Jaffe [GJ73] in a very difficult proof using a
phase-cell cluster expansion. The complete construction of the model was finished
by Feldman and Osterwalder [FO76] and Magnen and Seneor [MS77]. Since then it
has been worked over by many other authors, usually looking for a simpler proof.
Some of the work continued to use a phase-cell cluster expansion, for example Battle
and Federbush [BF83] and Williamson [Wil87]. Others used renormalization group
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techniques, for example Benfatto et al [BCG+80] and Baraban [Ba83]. Each of these
techniques was subsequently substantially strengthened to attack more difficult mod-
els. For the phase-cell cluster expansion there is the recent work of the Paris school
[FMRS86, Riv91, MRS93] and for the renormalization group there is the work of
Gawφdzki and Kupiainen [GK85, GK86]. The method of Gaw^dzki and Kupiainen
was applied to the φ\ model in [Wat89]. We should also mention a third method using
a random path representation due to Brydges, Frδhlich, and Sokal [BFS83].

The present paper is intended not only as a discussion of the φ\ model, but also
as a development of new and general methods. We work in a fixed volume and
use the renormalization group with a mass renormalization to obtain stability bounds
independent of the ultraviolet cutoff. In §2 we set up the φ\ model, and define the
renormalization group. The perturbative renormalization problem is solved to second
order in §3, as a warmup to non-perturbative problem. Section §4 sets up a general
renormalization group for polymer expansions with background fields. Section §5
provides the details of the norms we will work with. The technical heart of the paper
is in §6 where we give in a model independent form the basic lemmas which control
a single renormalization group step. We return to φ\ in §7 where we set up and prove
the main theorem giving uniform bounds on the polymer expansions at each step
of the renormalization group. This implies the ultraviolet stability of the generating
functional for correlations. The final section §8 derives in a straightforward fashion
new bounds on all correlation functions. These say, for example, that the test functions
can be taken to be in Lp for any p > 3. All these results carry over to the theory with
no ultraviolet cutoff. The ultraviolet limit could be taken using our techniques, but
this requires further technical results we do not include. (See however [DH93] where
this step is carried out for the sine-Gordon model).

Acknowledgement. We thank Lon Rosen for helpful conversations and comments.

2. The Model and the Renormalization Group

We define the φ\ model on the unit torus A = R d / Z d . (We could as well take any
finite torus.) The fields are real valued functions φ on A and the model is defined by
a measure on these functions.

As a reference point we take the massless free theory is defined by the Gaussian
measure with covariance v = (—Δ)" 1, denoted dμϋ(φ). (We could as well take a
massive theory with covariance (—Δ + ra2)"1.) We also use a regularized version of
the free measure, where v is replaced by a covariance VN with kernel:

vN(x,y) = \Λ\'1 Σ e<*E-«V2e-i~2JV. (1)

Here Λ* = (2πZ)d. This function approximates ϋ at distances larger than
and converges to ϋ as N —> oo. The kernel is now smooth and the corresponding
measure dμyN(φ) can be realized on a suitable Sobolev space S@(A) of smooth
functions whose integral is zero.

The regularized full theory is defined by a measure

ZN(φ)dμϋN(φ) (2)
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on 3fg{A) with

(3)

The potential is of the form

VN(φ) = XV4(φ, Λ; vN) + μV2(φ, A\ vN) (4)

where we use the notation

Vn(φ,Λ;υ)= ί :φ(x)n:v dx. (5)
JΛ

Here λ is the coupling constant and μ is a possible adjustment in the mass.
The correlation functions of this measure have the generating functional

SN(p) = (e^v) = ί ei^)ZN(φ)dμϋN(φ) (6)))
N

where (p, φ) = JΛ p(x)φ(x)dx.
The goal is to show that a normalized generating functional has a limit as TV —• oo.

For d = 2 this is well-known. For our case d = 3 there is a limit provided we
renormalize the mass (i.e. let μ depend on TV). For d > 4 it may be that all limits are
trivial no matter how one renormalizes.

If we make a contour shift in the functional integral replacing φ by φ + WNP we
obtain the formula

SN(p) = e-
llW»<» j ZN(φ + ivNp)dμϋN(φ) (7)

= e~ι^ϋ^\μϋN * ZN)(ivNp)

where μυ* denotes convolution by the Gaussian measure dμv. Since VN has a limit
as TV —> oo, this shows that it suffices to find a limit for μϋN * ZN.

We break the integral with respect to μϋN into pieces as follows. For any 0 < i <
TV, we define the fluctuation covariance w^ = VN — ϋl9 where ϋ{ is given by (1) with
TV —> i when i > 0 and ϋo = 0. For i > 0, this has Fourier transform

w?(p)=p-2[e-L-2Nr2-e-L-2*v2l (8)

and wff = VN. For each i, there is a decomposition of Gaussian measures

AW = μ«» * μ>w? (9)

If we define
Z? = μ^N * ZN (10)

for any 1 < i < TV then we have

μϋN*ZN = μϋt*Z?. (11)

This further isolates the TV dependence. The family {Z^} interpolates between ZN

and Z^ = μϋN * ZN. Each density Z^ is supposed to capture the behaviour of the
original measure on length scales greater than &(L~%).

To control the Zf it is also advantageous to give an iterative definition:
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2lLι=μCi*2lr (12)

with a single-slice fluctuation covariance Cι = ϋi—ϋi-ι (note the special case C\ - ϋ\).
As it stands each fluctuation integral comes on a different momentum scale. To

really understand the iteration we need to scale the problem so each fluctuation step
comes on the same scale, say a unit scale. This will make it easier to identify the
most important terms in the functionals Zf (the relevant variables) and follow the
true renormalization group flow.

The basic rescaling is a transformation from 3%!(A) to <9@(ΛN) where ΛN =
Rd/(LNZ)d. We define ZN on 3&(ΛN) by

ZN(φ) = ZN(φLN) (13)

where in general

φL(x) = L(d-2)/2φ(Lx). (14)

After this change of variables we find

(μϋN * ZN)(φ) = (μVN * ZN)(φL-N) (15)

where the new covariance VN has unit cutoff and is given by

ip{x-y)V~2e-p\ (16)

where Λ*N = (2πL~NJ£?)d. The interaction density is now

ZN(φ) = e-vNM (17)

with
(18)

\N = L-(4-d)Nλ μN = L~2Nμ.

We also define effective densities Zf on S@(Λi) by

Z?(φ) = Z?{φLi) (19)

and find that (12) becomes

Z?_1(φ) = [μCi*Zy](φL-l) (20)

where now (taking vo = 0),

d(x-y) = vi(x-y)-L2-dvi-l((x-y)/L) (21)

PΦ

The dependence on i is weak (except for i - 1) and hereafter we write C for C*.
Note that (11) can now be written (μϋN * ZN)(φ) = (μVi * Z^){φL-i) and this

gives an expression for SN(p) on the volume Λι for any i. Specializing to i = 0 we
have

SN(p) = e-VXp^zFiiϋNp). (22)

Thus to gain control over the generating functional SN(p) it suffices to have control
over Zg.
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3. Perturbative Renormalization

Now we specialize to d=3 and discuss renormalization. If one calculates the physical
mass in perturbation theory one finds that the shift represented by the diagram

diverges like &(N) as N —> oo. This turns out to be the only serious divergence and
one renormalizes by subtracting it off, choosing μ^ = μ^ in (18) to be defined by

> I vN(x - yf dy. (23)
JAN

It corresponds to choosing μ = L2N μ1^ = &{N) in (4). Note that μjy is very small
(^(λ^~e)). It is characteristic of superrenormalizable models that the rescaled cou-
pling constants like \N and μ^ are exponentially small.

We now show how this does the job in perturbation theory. We consider the
effective potentials V^ defined by

and show that they stay bounded to second order in λ as TV —> oo. This will be a
guide to the complete flow which we study later on. Our discussion parallels that of
[GK86].

We focus our attention on the relevant terms: those which grow under the iteration
of the renormalization group map (20). In addition to terms J : φ2 : and J : φ4 :
which grow respectively like L2 and L, we also consider nonlocal polynomials of the
form

= J :, w;φ) = J : φ{x)n :υ w(x - y) : φ(y)n :υ dxdy. (24)
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These have the diagrammatic representation:

Qo = Qi =

Ignoring constants and (dφ)2 terms we now assert that the effective potential on
i) has the form

(25)

(26)
where

Here X{ =

, w?) + 36Q\vh (w?)2)).

N

k=i+

- y)) - Vi{x - y)

= \Ai - 1 (27)

(except for i = 0 where the e v term is omitted). Also

N =

μ

= 4&λj f(
Vi(x - y)Ϋ - (w?(x - y)fdx.

(28)

This establishes the boundedness as N —> oo since in the expression for μf the two
&(N) divergences cancel and give a finite result.
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To see that the assertion is true we proceed by induction and compute V$_i from
V . We have

F # = -log(μC i*exp(-Vί))

where now φL-\(x) = L~ι/2φ(x/L). Perturbation theory can be generated by expand-
ing in powers of V and has the form

V\φ) = (μCτ * Vi) + l/2(-μC t * Vι + (μct * Vif) + ... .

To evaluate the convolutions it is helpful to know that on polynomials F, μc * F =
eΔcF where Δc is defined in (34). Also one has : F :c= e~ΔcF.

For the first order term we find the contributions

-λ? (8Q6(v#, wi) + 12Q\v\ WiC) + 144Q V ,

-λ? (36Q\v\ w\) + 144Q V , wjC)) + ^(λ?)

where v# = vι — C and we abbreviate wι = w^. For the second order term we find
(cf. [GK86], Eq. 2.33)

-λ? (SQ6(v\ C) + 36Q V , C2) + 48Q V , C3)) +

Adding these all together and defining w* = Wi + C we find

-λ? (8Q6(^#, ̂ # ) + 36Q4(τ;#, (w*)2) + 4SQ2(v\ (w*)3 - w]))

Now in the term -4SλjQ2(v#, (w*)3-wj) replace φ(x)φ(y) by \/2(φ{x)2+φ{y)2).
The difference depends only on dφ . What is left (modulo constants and (dφ)2 terms)
is δμ^V2(v#) where

δμ? = -4Sλ2J(w*(x - y)3 - w?(x - y)3)dx (29)

and we combine this with the other quadratic term.

Now do the scaling and compute Vι-\. We use that Vi-\(x — y) = Lv**(L(x — y)),

that wτ-\(x — y) = Lw#(L(x — y)) , that A _̂i = Lλi, and that

^=L\μ^+δμf). (30)

We obtain (25) for i — 1 and so our assertion is correct.
When we come to this step for the full non-perturbative theory there will be a

number of modifications. There will be explicit bounds on the errors. The interaction
terms will be broken up into local pieces. In each step we will only pick out local
contributions to the mass and so there will be some residual non-local Q2. Nevertheless
the core idea is the same.
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4. Polymer Expansions

The starting point in an analysis such as this is the representation of each Z - Zf by
a polymer expansion in the d-dimensional torus A = Λi. In the original Brydges-Yau
treatment [BY90] polymers are closed so that adjacent blocks overlap and thus are
excluded from occurring in a single term in the expansion. This has some definite
advantages, particularly for infrared problems. Nevertheless, in the present paper we
find it convenient to return to a more standard formulation in which the basic blocks
are open (or localized by their centers), so that adjacent blocks do not overlap. It
seems that the open approach we adopt will work for most ultraviolet problems.

A polymer X is defined to be a union of blocks, where a block is an open unit
cube centered on a point of the lattice Zd. Every set is a polymer unless otherwise
specified. For example, A is now regarded as a union of open blocks. We consider
polymer activities which are real valued functions A(X) defined on polymers and
possibly other variables. There is a commutative product

(AoB)(X)= Σ A(V)B(X\Y)
YCX

and an exponential
^xp(A) = & + A+ 1/2A o A + ...

where «ί7(0) = 1 and otherwise S?(X) - 0. Note that one can also write

where the sum is over partitions of X into collections of polymers {Xj}-
In our formalism each interaction density Z on some torus A is expressed as a

polymer expansion
Z(φ) = const (&xp(A))(A, φ) (31)

with polymer activities A(X, φ) depending on φ(x) for x e X (in a sense made
precise in chapter 5). It will further be convenient to write polymer activities A in the
form of a background term and a deviation. The simplest choice for the background
is D where Π(X) defined to be 1 if \X\ = 1 (i.e. X is a single block) and to be
0 otherwise. More generally we take the form Πe~v and assume that V(X, φ) is
additive in X:

V(X,φ)= Σ V(Δ'Φ) ( 3 2 )
ΔCX

where the sum is over single blocks Δ contained in X. The deviation is represented
by polymer activities K(X, φ) so that

A = Πe~v + K. (33)

For any polymer Z one finds that

where now the sum is over sets {Xj} of disjoint polymers in Z (possibly empty) and
X = UjXj.

We now discuss how the representation (31) - (33) changes under the action of
the renormalization group.
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4.1. The Fluctuation Step. Suppose that μc is a Gaussian measure on 3@(Λ) with
covariance C and suppose that we have polymer activities A. We want to find new
activities &*(A) so that

μc *

We reformulate this as asking for activities A(t) such that

μtc * i&xpA) = &xp{A{t))

and then taking &(A) = A(l). Now &xp has an inverse cSίog defined on activities
which have the value 1 on the empty set. Thus if Z(t) = μtc * (&xpA) then A(t) =

The function Z(t) is the solution of the infinite dimensional diffusion equation

dZ/dt - ACZ = 0

where

A c = 1/2 / dxdyC(x,y) λ _ j L / . (34)

(Functional derivatives are discussed in chapter 5.) It follows that A(t) - <S§Όg(Z(t))
satisfies the equation

dA dZ ,

Ίt = ~dt°Z

= AcZoZ~ι

(||i) (35,

with the initial condition A(0) = A. Here

. dA dA

'y'dφ{x) dφ(y)'

This is equivalent to the integral equation

A(t) = μtc*A+ 1/2 f μ(t.s)C * C ( ^ ?^) ds. (36)
Jo \ oφ oφ )

Note that a finite iteration of this equation yields a closed form expression for A(t, X).
In the background version (33) we can write the result as

μc * ̂ xp(Ue~v +K) = &xp(Πe~Vι + &(K)) (37)

for any additive V\ provided we define

^ v + K)- Πe~Vι.
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4.2. The Extraction Step. This is a rearrangement that is helpful in keeping track
of the leading terms. In this step one removes a piece F(X, φ) from the activities
A(X, φ). Typically F is a local version of the low order terms in A. We suppose that

where for a = 0,1 we have

Fa(X,φ) = aa(X)Pa(X,φ)

and assume that Pa is additive in X. The extraction operation factors the FQ terms
out of the &xp, but incorporates the F\ terms into a change in the potential V. (For
φ\, Fo will be constant and F\ will be quadratic in φ).

Given the activities A = De~v+K we seek new activities 2?(A) = Ue~v'
so that:

v + K)(Λ) = exp( ^ F0(y))&xp(Πe-v' + &(K))(Λ\ (38)
YCΛ

where the potential is changed by

V'{Λ) = F(Z\) - [ £ αi(y)][P!(^)] (39)

and the linearization in K and F is

^i(K,F) = i ^ - F e - y . (40)

See Eq. (52) in the appendix to this section for the formula for £?.

4.3. The Scaling Step. Here a polymer expansion &'xp{Λ) on Ai is scaled to a polymer
expansion on Λi-\. To keep the basic blocks the same size one must also incorporate
a reblocking operation.

The new activities <9^(A) are chosen so that

We find that

^ Σ Y[ΦL-0 (41)

The sum in (41) is over sets of disjoint polymers {Xj} with the property that {Xf} is
overlap connected and the union of the {Xf} is LZ, where XL denotes the smallest
L-polymer containing X. A set {Xi} of polymers is called overlap connected if the
graph on {Xi} consisting of bonds (ij) such that Xi Π Xj ^ 0 is connected.

In the background version we define $^(K\ so as to satisfy

by
γf y + K)
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where V'(X, φ) = V(LX, ΦL-\). Then, after some rearrangement, we find

, φ)= Σ εxv(-V(LZ \ X, 0L_,)) JJ K{Xό,φL-x) (42)
{Xj}->LZ j

where X = UXj. Now the sum is over sets of disjoint polymers {Xj} with the
property that {Xf} is overlap connected and the union of the {Xf} is LZ.

4.4. Appendix: The Equation for &(K). Given a polymer activity J define

where the sum is over overlap connected sets of distinct polymers whose union is X.

Lemma 1.

Σ Π J(χ^ = ̂ x^u+J+xχ)> ( 4 4 >
where the sum is over sets of distinct polymers contained in X.

Proof. Group the {Xi} into disjoint overlap connected sets.
D

Lemma 2. Let F be any polymer activity and let

Ω(X) = Σ F(γ)' ( 4 5 )
YCX

Then

eΩ = &xp(Π + (eF - 1)+). (46)

Proof Write eΩ(X) = ΠYcX(eF(Y) — 1 + 1), expand the product and use Lemma 1

with J = eF - 1.

D

Lemma 3. Let K, F be any polymer activities and let

K(X) = K(X) - (eF - l)+(X)e-V(X). (47)

Then

e~v o ^xp(K) = e~v+Ω o %xp(K) (48)

with Ω as in Lemma 2.
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Proof. e~v o ̂ xp(K) = &xpi^e~v + K) by the additivity of V (see Eq. 32).
&xp(Πe-y + K) = &xp(Πe-γ + (eF - l)+e~v) o ̂ xp(K) by the definition of K.
By Lemma 2, ^xp{Ue~v + ( e F - l)+e~v) = e~v &xp(n + (eF - 1)+) = e'v+Ω.

D

Since Ω is not additive, we cannot immediately rewrite e~v+Ω o &xp(K) in the
form &?xp(Πe~v' +K) for some V. We are now going to absorb this non-additivity
by reorganizing e~v+Ω o ̂ xp(K) into new polymers.

Let Ωa(X) = E y c x F « ( F ) a n d l e t X° = Λ \ X- W e h a v e

ZCX
C

ZCX
C
 ΔCZ

= Σ IΣ - Σ
ΔcX

c
 {ZDΔ

Add V(XC) = E z i c x c ^ ( ^ ) t 0 b o t h s i d e s R e c a l l i n g t h e definition of V, Eq. (39)
we find

{V-ΩX){XC) = V'{XC)+
ΔCXC

= V\XC)+ Σ aι(Z)Pι(Z\X).

Therefore

— V+Ω, / VC\ —V'ί VC\ TT

e κ ^ ^ i ( χ c ) - e (A ) I I

( 4 9 )

with Z G {Zj} required to intersect X and X c . We also have

eΩ°(Xc) = eΩ»{Λ) Yl ( e " F o ( y ) - 1 + 1)

Y .Ynxjb

= eΩ°(Λ) Σ i[(e-m - 1) (50)

where the sum is over sets {Yj} of distinct polymers intersecting X. Substitute Eqs.
(49,50) and the definition of ̂ xp(K) into

e~v+Ω o &xp(K)(Λ) = Σ eΩo(Xc)e-v+Ωι(XcWxp(K)(X). (51)
XCΛ

Then group the polymers in the sum over {X*}, {Yj}, {Zk} into disjoint overlap
connected sets. One finds that e~v+Ωo&χp{K){A) = eΩ*(Λ)&xp(Ue-y>'+ &(K))(Λ)
with &(K) = &{K, F) given by
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e x p ( - F W \ X)) (52)
{X,},{Y3},{Zk}->W

Here X = U^X ,̂ and the sum is over collections of disjoint subsets {Xi} and pairs
of collections {Yj},{Zk} of distinct subsets so that

1. the union is W\
2. each Yj intersects X;
3. each Zk intersects both X and Xc = A \ X;
4. the polymers {Xi}, {Yj}, {%k} are overlap connected.

5. Norms

In this section we define the weighted norms on the polymer activities which will
enable us to control the activities Ki in the renormalization group flow. For more
details see [BY90].

As a preliminary step we make a modification in the definition of the activities.
Typical functionals such as J(dφ)2 have functional derivatives with respect to φ which
are derivatives of measures. We prefer to avoid this by treating dφ as a new field.
This is formalized as follows. Let A! = A x ( 0 , 1 , . . . , d). Every differentiable function
φ on A determines a function ψφ on A' by

dkφ(x) if ξ = (x,k).

We consider continuous complex valued functions ψ on A! and at each stage of our
analysis will construct functionals K{X,ψ) with the property that they reduce to
the K(X, φ) when φ = ψφ. This is possible because all the elementary operations of
Chapter 4 (including J ^ ) have natural generalizations to functionals on ψ. We require
that the K(X, ψ) are W°° functions on the Banach space C(Af). The derivatives at
ψ = ψφ are measures written as

We also require that the support of this measure is ϊ ' x ... x ϊ ' .
Since we do want to keep track of the field and its derivatives separately, we

define Λ'o = A x 0 and Λ[ = A x ( 1 , . . . , d). Then we have the decomposition into
components A! = A'o U A\. For n = (n o ,ni) and \n\ = no + n\ let Kn(X,φ) be
the restriction of K\n\{X,φ) to (vlo)

no x 04ί) n i . These partial derivatives determine
the full derivative. For each X,φ,n, let ||ifn(.X,φ)\\ be the total variation norm of
Kn(X,φ).

Next, dependence on the variable φ is dominated by a large field regulator

I
l<\oc\<s

Here we usually chose s > d/2 + 1 so that φ G Cι(X) when G is finite. More
generally, we say that G(X, φ) is a regulator iff for all polymers X, Y,
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- (Gl)G(X,φ = 0)> 1
- (G2) G(X UY,φ)> G(X, φ)G(Y, φ) whenever X Π Y = 0.

We introduce a partition of unity into products of blocks Δ = Δ\ x . . . x Δn and
define

SUP \\Kn(X,φ)lΔ\\G(X,φΓι. (54)

This choice for G lacks terms from the boundary of X which were necessary
in previous papers to keep G from growing too rapidly under repeated convolution
with the Gaussian measures (cf. the property (78). For ultraviolet problems one can
allow e to start off very small and hence allow the more rapid growth. In any case
our open set formalism does not allow boundary terms, since condition (G2) would
be violated.

Dependence on the set X is controlled by a large set regulator which we will
choose to be either of the form η(X) = 2' χl or of the form

Γ{X) = A^Θ(X) (55)

Θ{X) = infjj0(|&|) (56)
her

for some large constant A > Ld+ι. Here the infimum is over trees τ composed of
bonds b connecting the centres of the blocks in X. Lengths such as \b\ are measured
in an l°° metric on Rd. The function θ is defined so that θ(s) = 1 for s = 0,1 and

Θ({s/L}) = i r^Cs) , s > 2 (57)

where {x} denotes the smallest integer greater than or equal to x.
This regulator has been constructed to satisfy certain bounds which relate a poly-

mer X to XL, the smallest union of L-blocks containing X. The polymer X is called
a small set if its closure is connected and if it has volume \X\ < 2d. Otherwise it is
a large set. For any set X, there is a constant c such that

(ΊΓ)(L-χXL) < c(Ί-
3Γ)(X). (58)

For any large set X, there is a stronger bound

{ΊΓ){L-χXL) < cL-d-\Ί~
3Γ)(X). (59)

These bounds are needed to control the scaling step (41), and are proved in [BY90].
Next for each n define the norm

\\Kn\\Gir = sup ] Γ Γ(X)\\Kn(X)\\G. (60)
Δ XDΔ

If the function is translation invariant one can drop the supremum.
Finally, for h = (ho, fti), hn = h^h™1 and n\ = no\nι! we define

Kn\\GiΓ (61)

A functional for which this norm is finite is analytic in ψ. In the translation invariant
case this can also be written
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\\K\\G,r,h = Σ Γ(X)\\K(X)\\Gth. (62)
XDΔ

We will find it necessary to have extra control over the low order φ and dφ
derivatives at φ = 0. This control is provided by an additional norm defined in the
translation invariant case by

\K(X)\h = J2^\\Kn(X,φ = 0)\\ (63)
n

\K\Γ,h = Σ Γ(X)\K(X)\h.
XDΔ

The kernel norm |lf|r,/i c a n be thought of as a limiting case of the norms ||if ||G,Γ,/I
in which G is concentrated at φ = 0.

The following multiplicative properties can be derived:

\\K1(X)K2(X)\\GlG2,h < WKdXnch \\K2(X)\\G2,h, (64)

\Kι(X)K2(X)\h < \Kι(X)\h \K2(X)\h. (65)

We now estimate the norms of certain classes of functionals which will arise later.
First, we consider polynomials of degree r of the form

ί
l /

J χ
(66)

t ί χk

where pk(X,x\, ...,xk)dx\...dxk is a symmetric measure supported on Xk, and φ(x)
means ψ(x, 0).

Lemma 4. For some constant c and e > 0

(67)

(68)

Remark. The norm | P | Γ ^ is generally easy to estimate. This lemma also has straight-
forward generalizations to polynomials depending on gradients.

Proof. Computing the derivatives and taking the norm of the measure yields

\\pn(x,Φ)iΔ\\ <
k=n

But by a Sobolev inequality

which leads to

E «)'• (cr/e)( fe-" ) /2 ||p fc | |r.
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Multiplying by hn/n\ and summing over n gives the first bound and the second
follows directly.

D

For the next example, we estimate e~v where V(X, φ) = \V^{X^ φ; υ)+μV2(X, φ\ v)
with λ > 0 and μ possibly complex.

Theorem 1. Let λh4, e2/λ, and \μ\2/λ be sufficiently small and let h~2υ(0) < 1. Then
for any polymer X:

< 2™, (69)
< 21*1. ( 7 0 )

Remark. If X is a subset of a unit block Δ, then the same proof gives:

| | e - y w | | G ( - e , o u < 2 . (71)

This fact will be needed when we verify the hypotheses of Theorem 6.

Proof. We first prove the result when X is a single block Δ. We compute the deriva-
tives of e~v by

Here π = {πj} is any partition of 1,..., n and Πj = \πj\, and xπj denotes the set of
points Xi with ί G TΓJ. NOW take the total variation norm. Furthermore classify the
partitions by the number of elements r and order the elements in the partition which
overcounts by a factor of r\. Finally use the fact that there are n\/n\\...nr\ ordered
partitions with given Πj. This yields

77.! J τ\ J 77. !
r ' n j=l,...,r L 3'

Dropping the constraint ]Γ^ Πj = n gives

n>\

Next we note that

^\\Vn(φ)\\ < -λh4 ί p(h-l\ψ\) + &(\μ\h2) ί q{h-λ\φ\). (72)

Here p(t) is a polynomial whose coefficients are integers times non-negative powers of
h~2v(0) and p(t) = ί4+terms of lower degree in t. Also q is a polynomial of the same
type with q(t) = f + ... Since eh2 = {e\-γ'2){\ι/2h2) and \μ\h2 = {\μ\\-ι/2){\ι/2h2)
it follows that

T + eh2 f h~2φ2 < &(λh4) + &((e2 + \μ\2)/λ) (73)
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for all φ. From this we conclude

^\\(e-V(φ))n\\G(-e,θ) < exp (&(\h4) + &((e2 + |μ|2)/λ)) . (74)

This argument was valid for arbitrary h > ΛΛ>(0). Therefore we can replace h by Ah
and conclude that

exp (<9(λh4) + (9{(e2 + \μ\2)/\)) . (75)

If we now take the parameters sufficiently small the sum over n is bounded by 2 as
required.

In the general case we write

e-v(x) = -Q e-v(Δ)j

G(Δ).Δex

By the multiplicative property (64),

Λ <

Δex

The kernel bound follows similarly.
D

Corollary 1. Under the hypotheses of the theorem there is a constant 0 < a < 1 such
that if e1 > αλ1/2, and P is a polynomial of degree r then

\\Pe-v\\G(0,e'),r,h < (l + y/cr/aMWriPlyΓfi, (76)

\Pe-v\r,h < \P\Ίr,h- (77)

Proof. Choose a so that the theorem holds for e < αλ1/2. We prove the bound for
e' = e Ξ αλ1/2. Combining the theorem and Lemma 4 we have

The result (76) follows for e' > e. The kernel bound (77) is similar.
D

6. Estimates on J ^ , gΓ, S?.

In this chapter we obtain general estimates on the three functionals J ^ , <S and S^
which make up the renormalization group transformation for any space dimension d.

For greater generality, we treat & rather than J^\ For the same reason, we will
treat <£ and S? with hypotheses for a general background V.
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6.1. Estimates on tW. The basic result bounds 3^(A) for A not too large, provided
we allow a deterioration of the regulators G and h. Let G(t) be a family of large field
regulators which satisfies the "homotopy" property

μ(t-s)C * G(s) < G(t) for 0 < s < t < 1 (78)

and let h = (h, h), h! - (h', h'), with h! < h. We denote "before" and "after" norms
by || 11 o = II ||GO,Γ,/I and || ||i = || | | G I , J > ' The size of the fluctuation covariance
C is measured by a norm

where C(Δ\, A^) - sup^i€z^i ^2G^2 |C(Ci5^2)| We suppose that A is not too large in
relation to the above choices:

Theorem 2. [BY90] Under these assumptions,

and the map A —> ̂ (A) is Frechet analytic.

Remark. Analyticity is reviewed in [DH93].

We can obtain sharper control over the fluctuation step if we can find approximate
solutions of the flow equation (35) for ̂ (A) = A(t). Suppose B(t) satisfies

where the error term E(t) is to be thought of as small. Let (^)χ{A\B) denote the

derivative of the fluctuation operator evaluated at A, namely

; B) = fβ^άA + βB)\β=Q. (80)

The following formula can be used to show that if A(0) is close to B(0), then A(t)
remains close to B(t).

Theorem 3. Suppose ,4(0) = £(0) + #(0). Then Jf(A(0)) = A(t) = B(t) + R(t) where

R(t)= ί {3%)λ(Bφ) + sR(0);R{0))ds- ί (&-8) (B(s);E(s))ds. (81)
Jo Jo

Proof.

R(t) = A(t)-B(t)

R(0)) - &(β(0))] + [ 3f(B(0)) - Bit)}
t 1

d s

= / (^f)i(B(0) + sJΪ(0);B(0))ώ- /
Jo Jo
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Now

^^-s+r(B(sr))\r=0dr

~[ft-s (&(B(s))) + ̂ s(B(s - r))] \r=o

where E(s) = -£ ^
D

This formula will be used in conjunction with the following bounds on the lin-
earized fluctuation operator:

Theorem 4. Assume the hypotheses of Theorem 2 hold with the family G(t) satisfying
G(t, X, φ = 0) < η(X)for all t e [0,1].

7. If\\A\\0<\Dthen

^ (82)

2. Let ||A||<3(0),7Γ,/ι < 4. For any η = (77,77) with η G [0,1) and any M there exists
C = C(η, M, \\C\\Θ) such that for all sufficiently large h,

)\rtri < C{\B\ΓΛ+h-M\\B\\GmπΓ,h). (83)

Remark. The idea is that \\B\\ enters the kernel estimates with a large negative power
of ft to reduce its contribution.

Proof

1. The first bound is a consequence of the Cauchy integral formula:

jf(A; B) = (2πiyι Φ ~^^{A + βB).

We integrate over the contour \β\ = ^D\\B\\Q1 and use the bound \\&(A +

βB)\\ι < \\A + βB\\0 < f + f which follows by Theorem 2.
2. The difficulty here is that there is no straightforward version of Theorem 2 for

the kernel norm. We consider the Taylor expansion of ^{aA\ B) about a = 0:

N " . i

a
\ (84)

and take the | \p,η norm of both sides. For the error term, we take the contour
\a\ = R= ^D\\A\\Q}Q) Γ h (we may assume that R>2 since h is large) and by
(82) ' '

For the terms in the sum over j , we use the bound |^4|r,i < | | ^ ||G(0),7Γ,/I ^ 4
and apply the following lemma with h! = ft/2. We obtain
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Since R = &(h2), (83) follows from this bound by choosing N large enough.

D
The technical lemma we need gives bounds on the derivatives of & at A - 0:

Lemma 5. Assume the hypotheses of Theorem 2 hold with the family G(t) satisfying
G(t, X,φ = 0)< η{X)for all t e [0,1]. Then

1. For any n>\

^ ( ^ ) B Π A J | | o . ( 8 5 )

2. For any η < 1 and any integer M there is a constant @(Y) such that for h > 4,
= μc * A is bounded by

η (86)

For n > 1
ι l [ ' M (87)

where \ \r,h,>\ = \ \r,h - \ - \r,h=o

Proof

1. This follows immediately frojn Theorem 2 via Cauchy bounds.
2. We prove these results for ^ for all 0 < t < 1.

For (86), we let A(t) = μtc * A(0) and make a Taylor expansion of Am(t)
μ(t-s)C * Am(s) around t = s. We find

3=0

Now evaluate at φ = 0, and take the variation norm, || ||. Then use

p>m:\p—m\=2j

(88)
Recall that \A\Γ>n = Σm ^\\Am(Φ = 0)\\r By multiplying by Γ(X) and sum-
ming over X, we obtain

J) \\C\\l
p>m:\p—m\=2j

< C2(m,j) \\C\\l η-W~2j \A(t)\ΓtΨ



Short Distance Behavior of (ψ4)3 163

By the hypotheses on G

\\[μ(τ-s)C * (Δι

cA(s))m](φ = 0)| |r

< \\μ(τ-s)C * (Δι

cA(s))m\\G(τ)nΓ

< | |Z^ATO(

< c3(i,m)

< C4(l,m) \\C\\l h-W-21 \\A(s)\\GM,ΊΓth. (89)

p>m:\p—m\=2l

Therefore

\\Am(t,φ = 0)\\Γ < C5(l,m,η){\A(s)\Γ,η+

h-\m\-2i | | i ( s ) | | G ( s ) i 7 r f t } , (90)

~ 777/' ~

\\Am(t,φ = 0)\\Γ < — \\A{s)\\G(s),Ίr,h- (91)

The second inequality is obtained from Am(£) = μ^t^S)c * A^s) and the hy-
potheses on G using (89) with / = 0. Estimate the terms in the sum |v4(ί)|r5r7 =
Σ m ^\\\Am(t,Φ = 0)\\r with \m\ < M by using (90) with / the least integer
such that \m\ + 21 > M. For \m\ > M use (91). We obtain the bound

\A(t)\Γ,η < &(l)(\Ms)\r,i + h-M\\Ά(s)\\G(shΊΓ,h) (92)

from which the special case (86) follows.
We prove (87) for n, assuming it is true for i with 1 < i < n (there is no
assumption on n = 2). Taking derivatives in (36) with respect to A at A = 0 we
find

( j f ) n (Ai , . . . ,A n )=- Σ μ(t-s)C*Cuds (93)
I iJ

where

(94)

The sum is over partitions of (1, ....n) into two proper subsets /, J and we define
Ai = {Ai}iej and i = \I\. Neither set can be empty since (^)o = 0. Estimate the
norm of μ(t-S)C * C/J using (92) to obtain

< (95)

(96)

Now

\Ci,j\r,h < 2\\C\\Θ Q^
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and by the inductive hypothesis if 1 < i,j < n and (86) if i = 1 or j = 1, we
have

By similar estimates followed by (85) for J% we have

\\Clj\\G(s),ΊΓ,h'/2 <

< ( D l l i i Γ
3

These suffice to prove the bound (87) for n > 1.

D

6.2. Estimates on &*. An important aspect of the definition of & is finiteness of the
geometric constant τ defined as the largest number of distinct small sets that can
intersect, i.e.,

τ = sup \{X : x e X and X is small}|. (97)
X

Recall that large and small sets were defined in Chapter 5.

Theorem 5. Let G be any regulator. Let F, au P^ V, V and &(K) be defined as
in Sect. 4.2 and suppose F, V are translation invariant. Assume that for some r > 0

\\e-τ-^(Δ)\\ , < 2 (98)

for all complex a with \a\ < r. Δ is a unit block. Assume in addition that

- Po = 1;
- F0(Y), Fχ(Y) = 0ifY is not a small set;
- | |αo||r? ^"^l^illr, cmd ||AΓ||G,7Γ,/I are sufficiently small.

Then & is jointly analytic in K, F o , F\ and there is &(l) such that

1. liyWllσ.ΓΛ^^ακll^llσ^Γ + ll^llΓ + r^llαillΓ);
2. \&(K)\r < &(l)(\K\Ίr + ||αo||r + r - 1 | | α 1 | | Γ ) .

Proof. We prove the first bound. The second bound is a variation in which the large
field regulator G~ι is concentrated at φ = 0. Also we only give the proof for the case
where K is translation invariant.

We write e

v'(W\χ) = YlΛcW\xg
τ(A) where g(X) = e " y / ( X ) / r . Then we can

redistribute factors g(Δ) to rewrite Eq. (52) as

Π ^n{

}^W ΔCW\X
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where n(Δ) = r - \{Zk : Zfc D Δ}\ and J(Z, Z \ X ) = (e-*i(Z)Pi(z\x) _ \)g(Z\X).
Since Z^ are small sets, n(Δ) > 0. We take the norm using the multiplicative property
(64) and obtain the result

\\&(K)(W)\\Gth < Σ Π W^)) n (^ (99)
{Xι},{Yj},{Zk}^W ΔCW\X

\\K(Xi)\\G,h Π I exp(-^o(^-)) - 1| Π II J(Z>Z

We have used \\g(Δ)\\GiΔ)i/Tih < j(Δ) which follows from (98).

With the contour |ί | = r' = 2r(3|ai(Z)|)~ 1:

- l ) 1

π MGT(Z\X),/I

ΔCZ\X

We have used (98) and assumed ΣYDΔ \aι(γ)\ < ll^illr < |
Next we write

Y =Y— Y
{Xt} N ' (X,,.

where the sum is over ordered sets, but otherwise the restrictions apply. Similarly
{Yj} and {Zk} are replaced by sums over (Yί,..., YM) a n d (Z\,..., Z/,).

The factors ηn{Λ\Δ) and 7(Zfc \ X) in (99) combine to give <yτ(W \ X). Since
W\X is a union of sets 1} \X, Zk\X and these are small sets, we have |W\X\ <
2d(M + L). Therefore, we can overestimate ητ{W \ X) by 22dr(M+L) = &(1)M+L.
Next we multiply by Γ(W) and use Γ(W) < Π Γ(Xi)Uj Γ(Xj)Uk Γ^Zk) w h i c h

follows from the overlap connectedness. Then sum over W with a pin, and use a
spanning tree argument1 and the small norm hypotheses to obtain

W(K)\\G,h,r
r AT i Λ/Γ i r \ ι

xp(-Fo)-l|7r)M

N,M,L
N+M+L>\

L
f@{\)\\ax\\ΊΓ\

)

Since F lives on small sets we have dropped the 7 in the norms of F o , αi at the cost
of increasing the

1 described in the proof of Lemma 5.1 of [BY90]



166 D. Brydges, J. Dimock, T.R. Hurd

In the case of translation invariance || | | G , / > = II * ||G,Λ,Γ» SO the proof is complete

once we show that \\K\\GihnΓ < &(l){\\K\\GihπΓ + I K | | r + r - 1 | | α i | | Γ } for K =
K + (e~F - l)+e-y. The norm of

j- [ ] - F - i)(Xΰ (100)

is estimated by the same argument we just used. By introducing a Cauchy integral
over a circular contour |ί| = r' chosen so that

log2/K(X) | > r' > 1 + 1

and using the hypothesis on r, one finds

\\(e-F -

2 π / ' ί ( ί - l ) 1

(for ^(1) here we need that X is small). Now we use

| |((e-F - lTe-v)(X)\\G,h

Δ) Π iKe"F

This is obtained by writing e~V(X) = HΔcX gτ(Δ) where g(Δ) = e-
y(Δ)/τ and

distributing the factors of g(Δ). Now one inserts the first bound into the second and
continues as before to obtain the desired bound on K.

D

Corollary 2. Assume the hypotheses of Theorem 5. Let

&>2(K, F) = &(K, F) - &i(Ky F),

where &{K, F) = &(K). Then

\&>2(K,F)\Γ < &(l)\K\ΊΓ\\a\\Γ

where \\a\\Γ = | |αo| |r + J:||αi||r-



Short Distance Behavior of (φ4)3 167

Proof. Since, by construction, &>2(uK, vF) vanishes if either u = 0 or v = 0 and
??(K, F) is analytic, we have the Cauchy representation

&>2(K, F)= [ f [ f %{uK, vF). (101)
J 2πzu(u — 1) y 2πιv(v — 1)

The Corollary follows by choosing |v| proportional to Hαllpi1 and \u\ proportional to
the inverse norm of K and taking norms.

D

6.3. Estimates on S?. Given a functional F(X, φ) we define the rescaled functional
FL-x(X,φ) = F{LX,φL-ι) where φL-i(x) = Lι-d/2φ(f). Also for h = (ho,hi)
define hL = (Lι~d/2h0,L~d/2hι).

Theorem 6. Let G := G(eo, ei). L^ί V Z?̂  additive and translation invariant and sup-
pose, for some h, it satisfies: VL"1scale polymers X C some unit block A

^ (102)

lf\\K\\GLtΊ-iΓ^hh is sufficiently small, then

\\S{K)\\G,r,h < @{\)Ld\\K\\GL^ΓthL (103)

d (104)

Proof. The bound on the kernels is the special case where the large field regulator G
is concentrated at φ = 0. We only prove the first bound. We give the proof only for
the case of translation invariant K. We rewrite (42) as

[ l L - ^ (105)
N (XU...,XN) i

where the Xi are disjoint but the L-closures X^ overlap and fill LZ. Using

G(Z,φΓι =G(Z\L-ιX,φΓιl[GL(Xi,φL-,Γι (106)

we obtain by (64)

\\^(K)(Z)\\Gth <

N (XU...,XN)

By (64) and the small V hypothesis,

ΔCZ

(107)
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Now multiply by Γ(Z). By the connectedness we have {ηΓ)(Z) <
^^). Furthermore we have the bound (58) for some constant

(ΊΓ)(L-ιXL) <

Summing over Z with a pin and using a spanning tree argument2 we obtain

N=l

This gives the result.
D

We can replace the HL by h in the right hand side of the above theorem, because
the norm on the right hand side becomes larger when hi, is increased to h. If we
also know that low dimensional derivatives vanish at zero, we can gain some critical
factors of L~ι when we make this replacement, at least for small sets. Our next goal
is to see how this is accomplished.

A key role is played by an estimate dominating functionals K with derivatives
satisfying Kn(X,φ = 0) = 0 for dimn < p by a norm involving only derivatives
with dimn > p for all φ (not just φ = 0). This originally appeared as Lemma 4.3 in
[BY90] for functionals depending only on dφ. The proof involved using a Sobolev
inequality to dominate fields dφ by G(0, e) and does not work for plain fields φ. We
have a modification using the factors e~v to dominate the φ's. The details follow.

Lemma 6. There is a constant D such that the sup norm on a small set X satisfies

\\Φ\\ootx <

where \[φ^2,xL\x ™ t n e ^i norm on XL \ X.

Proof. Let Y = XL \ X. Note that Y is not empty for a small set X. For x e X we
have

φ(x) = -IFI" 1 J Q J dφ^j dy + IIT 1 J φ(y)dy.

The first term is bounded using \x — y\ < &(L). The second term is bounded by

|*Ί~ 1 / 2 | |0 | |2,γ b y t n e Schwarz inequality and since \Y\ = &(Ld) the result follows.
D

We define, for p a nonnegative integer,

G(e0, eί, X) = GL(e0 = 0, ei, XL) C L (e 0 , eλ = 0, XL \ X), (108)

d-2 d
- , (109)

n:dim(n)>p

1 described in the proof of Lemma 5.1 of [BY90]
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Lemma 7. Suppose K is supported on small sets and Kn(X, φ = 0) = Ofor n with
dimn < p. Let a = min{eo/io> l̂̂ o? £\h\} > 0. Then there exists c(p, a) such that for
allΓ,

Proof. Let F e W(X' x . . . x X') be a test function for the derivative Kn(X, ψ) and
A - (Δ\,..., Δ N ) . By the fundamental theorem of calculus, if dim(n) < p,

/

We evaluate this atψ = ψφ. We also have, by a Sobolev inequality, that

Kn(X,ψ;FlA)= J2 / dtΣκm(χ>tΨ>FίΔ®ψlΔ). (HI)
m>n,]m\=\n\+l^° Δ

1 —

and by Lemma 6, C L C ^ O ) = G(L~2eo,O) and a Sobolev inequality

L at JBy these two bounds and fQ at J — < oo we obtain

'τl-d/2 τ\-d/2\

\\κn\\β- < ^ ^ ' - + - i\\GtΓ <
m>n,H=|n|+

We iterate this equation starting with n with dim n < p and obtain

m>n:άimm=p

\\Km\\ΰ,r-

(113)

^ fLχ-d/2 Li-d/zx™0"710

\\Kn\\ΰ,r < C(p) Y] - ^ ^ + ̂ ^ , (114)
v. V V e l V e 0 /

Recall that hL = {Lx~άl1h^L-dl1h{). We multiply both sides by ^ and sum over
n with dim n < p to obtain
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m>n:άimm=p

1 \ πi\ — n\

) ll-̂ ΊÎ ,Γ,/n#,dim=p

We complete the proof of the lemma by using the hypotheses on e and h to bound
the sum by c(p, α) and then add \\K\\G Γhh d i m > p to both sides.

D

Now consider the linearization S% of S? which is given by

X:XL=LZ

Theorem 7. Let V be translation invariant and let G = G(0, e\),g = G(eo, 0). Suppose
g and h are such that

v . , f c < 2

for all L~ι-polymers X contained in a unit block A.

7. If K(X) is supported on large sets then

2. Let K(X) be supported on small sets with Kn(X, φ = 0) = 0 for dimn < p. Let
a = min{eo/iθ5 ei^o> € i^ i ) > 0 (as ^n tne ^ast lemma) then there exists C(a,p)
such that

Remarks. The same estimates hold for the kernels. Notice that in the small set estimate
a factor of L~p is gained if the norm on the right hand side with HL is bounded in
terms of the norm with h.

Proof. (1) We give the proof assuming translation invariance of K. Proceeding as in
the proof of Theorem 6 we obtain

\\^{K){Z)\\G,h < 7(Z) Σ \\K(X)\\GLΛL

X:XL=LZ

which leads to

XDΔo

But for X large we have the bound (ΊΓ)(L~ιXL) < <9(\)L~d-\Ί-
3Γ)(X) which

gives the result.
(2) Let G = G(e0, ei). This time we use

G(Z,φ) = GL(LZ,φL-0
L L \ X, φL-i)g-ι(Z \ L~ιX, φ)
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and obtain

IWO(Z)||c,fc< Σ \\K(X)\\ΰ,hL\\(β-v)L-'(Z\L-ιX)\\g-,ιh

X:XL=LZ

< Ί(Z)

so that

Now use the previous lemma and the bound {ηΓ){L~ιXL) < (9(l)(j~3Γ)(X) to
complete the proof.

D

Remark. In [BDH93] we have given stronger versions of these theorems that allow a
larger class of polymers, preparing the way for problems such as infrared φ\.

7. Main Theorem

Now we return to the φ\ model and study the renormalization group flow using the
machinery we have been developing. The starting point is the density

ZN = e-V»

VN(X) =

Here λjv = L~Nλ and we make a basic mass renormalization by choosing

vN(x-y)3dy, (117)
JAN

following the suggestion of second order perturbation theory as in Sect. 3. We do not
renormalize the energy.

After N — i renormalization group transformations we have a density Zf on Λi.
We will find constants ΩF ,μf and polymer activities K^ such that

Z? = e°?M&xp(A?XAi) (118)

Vf(X) = XiV4(X,vi) + μfrV2(X,υi).

(Hereafter the superscript N is suppressed.)
To write Zi in this form we assume it has been done for i and derive the form

for i — 1. For the fluctuation step we have

(119)

V\X) = ^ y
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Here A# = 3F(Ai) and we have defined

K# = &(Ki) = A* - Πe-γ#. (120)

The Wick ordering υ# = vι — C now matches the free measure.
Next we extract F = FQ + F\ where

F0(Y) = ao(Y), (121)
FX<X) = aι(Y)V2(Y,v*). (122)

The parameters ao(Y), ot\(Y) are still to be specified, but they will be invariant under
lattice symmetries. Then we find

μc*Zi = e(Ωi+δΩί)lΛi^xp(Πe-v* + K*) (123)

V*{X) = y ^

where

K* = &(K*,F), (124)

(125)
YDΔ

YDΔ

Finally we scale to obtain Z^\ which has the claimed form if we define

ΛΓi-i = &(K*) (127)

Xi-ι = LXi

Note that ϋQ_i = (S^^\Ki) and that our notation can be summarized by

We shall write Kι = QiCxp(-Vi) + Rι where Qi includes the terms which are
second order in λ̂  and Ri is the remainder. We track the flow of the Qi as in
perturbation theory (Chapter 3), now including the dφ terms and constants and give
general bounds on the remainder.

We introduce quantities Q2n(υ, w\ X, φ) for 0 < n < 3 by setting

Q2n(v, w\ A U Δ!, φ) = ί : φ(x)n :υ w(x - y) : φ(y)n :v dxdy (128)
JΔxΔ'UΔ'xΔ

if |X| = 1,2 and defining Qln(v, w\ X,φ) = 0 if \X\ > 3. Then the following formula
defines Qf.

Qi(X,φ) = X2

i[ZQ6(vi,wi;X,φ) + 36Q4(vi,(wi)
2;X,φ)+ (129)

4SQ2((Wiγχi; X, φ) + 12Q°((wi)4χc

L; X)] + <%(X, φ).
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Here χ(x, y) = 1 if Δx U Δy is a small set (Δx = the unit block containing x), and
is 0 otherwise. Also χc = 1 — χ and XL(^, 2/) = χ(Lx, Ly). The last term Q[{X^ φ) is
supported on small sets X with |X| < 2 and has the form

Q[(X, φ) = λ] ( φ(x)qft(X; x, y)(dμφ)(y)dxdy (130)
JxxX

where the kernel qι is a function (not just a measure) to be specified further.
All the functionals Ki,ViiQι,Rτ are to be regarded as functions of ψ e C(τl^).

For V, Q one replaces φ(x) by ^(0, x) and (dμφ)(x) by -0(/x, x). As functions of φ
these functionals have norms of the form discussed in Sect. 5.

We now make specific choices for the norms

IIΊI. Ξ IHk,rA>
l l Ξ | |r,i. (132)

We take
Gi = G@,Ki) (133)

where G is given by (53) and κ,i = λ/ . The large set regulator Γ is as defined in
Sect. 5. Finally

ht = (ft*, ^ i ) = ((5λ71/4, (5λ71/4) (134)

for some constant 6. This is the largest choice of h consistent with Theorem 1.
As a reference point for the mass we take a local version of second order pertur-

bation theory:

/ (Wi(x - y)ΫχL(x, y)dxdy. (135)

As noted previously this is bounded uniformly in N. For the change in the second
order mass we use

δβi = -48λ? / (w#(x - y)3χ(x, y) - w{(x - yΫχL(x, y))dxdy (136)
. JΔxΛt

where we recall that u># = Wi + C. We still have μ2_i = L2(βi + δβi).
All the results to follow are obtained under the following hypotheses. Fix 0 < e <

1/2. We assume that δ is sufficiently small, that L is sufficiently large (depending on
<5), and that λ is sufficiently small (depending on δ, L). Constants that may depend on
δ are denoted by ^(1) and constants that may depend on L are denoted by the letter
C whose value may vary from line to line. A constant of this type whose value does
not vary from line to line is denoted by C\,C2, etc.

Now we are ready to state the main theorem which gives bounds on the poly-
mer activities Kι and the effective masses μι uniform in N. (Since we have not
renormalized the energy we do not get good bounds on Ωi.)

Theorem 8. Under the above hypotheses there is a choice of α 0 QO,αi0O and a
constant C\ so that for all i,N with 0 < i < N the polymer activities have the form

where |Q 7 J 7 r , i < Cx\
2

% and
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\\Ri\U < λj- e

The bounds on Rι are smaller than the following bounds on Qiβ~Vi so the Rι
really are remainder terms.

L e m m a 8. There is a constant C2 such that for all i,N with 0 < i < N

Proof. Since ftiX^ = 1 > α, Corollary 1 implies

To estimate \Qi\Ίr,hi we note that

/ \υ$(x,y)\dxdy < C exp[-ad(Δ, Δ% for p= 1,2
JΔxΔ'

< C eiψ[-ad(Δ, Δ% forp = 3,4
ΔxΔ'

for some C and 0 < a < 1, both depending on L. Note that in the second bound the
characteristic function enforces that \x — y\ > l/L: this is needed since Wi(x,y) has
the singularity &(\x — y\~ι) as \x — y\ —> 0. Using also

\ / ) e - α ^ ' ^ ) < C

we find that the first four terms in Qi have norms bounded by Cλf/if. For the last
term we use \Q'i\ΊrM = ̂ ?|Qίl7r,i < Ciλjhj. Thus we have

Similarly,

Π
The proof of Theorem 8 is by induction on i working down from i = N. Clearly

the result is true for ί = N, since K^ = 0. The proof of the inductive step i —»i — 1
is broken up into three lemmas, each analyzing a piece of the transformation ϋQ_i =

To control the fluctuation step we introduce a norm || ||# with regulators:

G*(X,φ) = G(0,Ki-x\L-xX^L), (137)

Γ\X) =

and also the norm | |# = | |r#,i/2
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Lemma 9. K* has the form

# # = Q#exp(-y#) + # #

where

Q* = X2 [&Q6(v#, w#) + 36Q V , {w*f) + 48Q W ) 3 - (wiγχL)

+12Q°((w*)4 - (4(WiγC + (wi)4)

and where

\\R% <

\R% <

The extraction step is controlled using the norm || ||* defined with the regulators
G* = G\ Γ*(X) = 7 (X)- 3 Γ(X), and h* = h#. We also define | |* = | |Γ*,i/2

Lemma 10. K* has the form

with

Here Q'( has the form (130) and satisfies \Q"\Ίr,\ < ^( l )Ciλ?. Also R*n{X, φ = 0) =
Ofor X small and dim n = no/2 + 3ni/2 < 2 and

\\R*\\* <

\R*\* <

\S*

Finally the proof of the theorem is completed by the scaling step:

Lemma 11. Kι-\ = S^(K*), Qi^γ and μι-\ = L2(μτ + 8μi) satisfy the conditions of
Theorem 8.

Now we prove each of these lemmas.

Proof of lemma 9. The proof relies on Theorems 2,3 and 4. These will apply once we
have checked that the homotopy hypothesis 78 can be satisfied since ||Ci||0 < C for
all i (even for i = 1) which follows from standard bounds on such covariances. In the
Appendix to this section we show that the homotopy hypothesis is satisfied.

Let B(t) = (D + Q{t))e~V{t) where
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V(t,X) =

Q(t) = λ2 [SQ6(VU wt) + 36Q\vti w2

t) + 48Q2(^, w] - w]χL)

+UQ\wA

t - {Atw]C + wt)χL) + Q' + tΔcQ']

with vt = Vi — tC and wt = Wi + tC. Then B(t) inteφolates between B(0) = (D +
Qi)e~v% and B{\) = (Π+Q#)e~v#. It is also an approximate solution of the fluctuation
equation (35). Indeed we will show that the discrepency

satisfies

\E(t)\ < CXl (139)

Recalling that A(t) = &t(Ai) is the exact flow of the fluctuation equation, and
that A# = A(l), it follows from Theorem 3 that

R# = A(l) - J3(l)

= / 3%(Bi + tRi\ Ri)dt - ί (^_ t ) i (B( t ) ; E{t))dt.
Jo Jo

Now the proof of Lemma 9 follows from Theorem 4 since

< ^(DHΛίlU + ̂ ίDsupl l^*) ! ! * < ^(DA?-*5. (140)
t

Similarly using Theorem 4 we get \R#\# < &(l)\\~e.
We prove (138) and (139) by first defining

ir Γ ( τ lndV(t)dV(t) . f χ _ \f Γ(τ ln f χ Λ
J(X)=) 2JΔιxA2UΔ2xAι

C(χy)dφ(x)dφ(y) l t Λ ~ Δ* U ^ 2 (141)

I 0 otherwise,

and then writing

E(t) = (^-Δc + An e~V(t) call this /,

+Q(t) (jt - Λc\ e~V(t) call this //,

+ I ( ^ - Δc)Q(t) -JπX e~V(t) call this IV,

- ( J - JD)e~ v / ( ί ) call this V,

V dφ ? dφ
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(The first four terms come from ( ^ - ΔC)B and the last two from - ^ C ( | | °§ f )•)

We now proceed to estimate each term

1. / vanishes because (§ι — Δc)V(t) = 0 by the definition of Wick ordering.

2. // has the form QPe~v^ for some polynomial P. The polynomial has terms
labeled by two vertex tree diagrams. (Again we use (J^ — Δc)V(t) = 0 to suppress
the single vertex term.) Each vertex either comes from a mass counterterm and is
(Ψ{μi) = (9(\2) or from the interaction and is Θ(\i)-
By Corollary 1 and a variation of Lemma 8 we estimate this term by

\\QPe-V{t\ < \QP\Ίr,hz (142)

< \Q\ΊΓM\P\ΊΓM

< Cλi.

Here the bound on P can be patterned on the bound on Q. Similarly

V(»\ < c\\. (143)

3. /// has the form Pe~v^ where P is a polynomial with ^(λ^) coefficients (or
smaller). It has terms labeled by three vertex tree diagrams localized in at most
two squares. More precisely it is a tree provided we regard the terms from Q as
having single propagators Wi,w\,wlχc

L or ς .̂ Since there are at most 8 fields in
any term, it is straightforward to bound the norm by C\\h\ < C\{ and the kernel
norm by CX3. In making this estimate for the terms involving qι one can use the
fact that it is supported on small sets X and that for Δ, Δ! c X

ί
JΔΔxΔ'

\q?(X;x,y)\dxdy <

4. IV + V = Pe~v^ where P is a two vertex tree diagram of the form
^(μf), i.e. at least one vertex is from the mass counterterm. To see this we
compute

(144)

+(36)(2)Q\vuwtC) - (3β)(4)Q2(vuw
2

tC)

+(4S)(3)Q2(vuw
2

tC) - 4$Q°(w3

tC - w\CχL)

+12Q°(4w3

tC - 4w]CχL)^

= SX2Q6(vuC)

and

J = SX2Q6(vu C) + &(\%μi) + @{μ\). (145)

These remainder terms have norms bounded by Cλlhj < Cλj and kernel norms
bounded by Cλ3

τ.
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5. VI can also be written in the form P e ~ y ( t ) and treated similarly, although the
details are a bit more involved. For example, one contribution to P evaluated on
X = Δ\ U Δ2 U Δ3 U Δ4 is

This is a product of three tree diagrams. Each diagram has &(\2) coefficients

and at most 6 fields for an C\\'2 bound. Overall the term is bounded by Cλ3/2.
Note that the localizations overlap in such a way that in the sum over X there is
always adequate decay to cancel the growth of ηΓ(X): do the sums in the order
Z\4, Δ3, Δ2.

D

Proof of lemma 10. We write

K* = &(K*, F) = &ί(K*, F) + &>2(K#, F)

where &[ is the linearization of the extraction step and 8>2 is the remainder. The
first term is

*

which, if we write F = FQ + FR, can be expressed as

8ί(K*, F) = (Q# - FQ)e~v# + (R* - F β e " y # ) .

Now K* can be written in the form Q*e~v* + R* + S* if we define

g* = Q # - F Q , (146)

R* = (R*-FRe-v*), (147)

(148)

We choose FQ and FR to cancel the local low order terms in φ in Q# and Rf* for
small sets. Let X = Z\ U Δ! be a small set. We define ^ ( X ) by taking the constant
terms in Q#, and also inserting the identity

= τ^ ί dz (φ(z))2+ ί ^-
1̂ 1 Jx [ Jo ds

(149)

into the Q2 term in Q* and retaining the first term. Here ηxz{s) is some standard
choice of path in X from z to x. This can be done in a way that is invariant under
lattice symmetries (see [BK93] for a detailed discussion). The complete definition of
FQ is then

FQ(X) = l2λ2

iQ
0(XΛw#)4-(4w3

iC-wt)χL) + ΔcQ/

i (150)

? Γ-L / dz(φ(z))2] [ [(w#f - w]χL(x, y)] dxdy
L I A I Jx J JΛXΛ'ΌΔ'XΛ

for X = Δ U Z\' and small and F Q ( X ) = 0 otherwise.
Notice that this has the form



Short Distance Behavior of (φ% 179

FQ(X) = aOQ(X)\X\ + alQ(X)V2(X, v*)

where

aιQ(X)=^- / [(w*Ϋχ-
\Λ\ JΔxΔ'UΔ'xΔ

and αo satisfies |αo(-X")| < Cλf. The ζ) extractions lead to the perturbative change in
the mass (cf. Eq. (136))

- Σ <*"?<*) = ~4Sχ2i [ K™#)3* - wiXL] = δfii. (151)
χDΔ

 J Δ * Λ *

The definition of Q* = Q# — FQ agrees with the definition in the lemma provided
we define

Q" = Q[+δQ (152)

where for X = A U Δ! and small

δQ(X) = 48λ2 ί dxdy[(w*)3-w3

iXL](x,y)
J ΔxΔ'uΔ'xΔ

\ l ί J ίl d ΛS
[\x\ Jx Jo ds

We redefine it as a functional of ψ by carrying out the s derivatives and replacing
(dμφ)(x) = dμψ(x, 0) by ψ(x, μ). Then δQ has the required form.

Taking into account that the leading singularities in (w#)3 and w^ cancel so that
(w#)3 — w] is locally integrable uniformly in i and N, we can bound δQ using the
techniques in the proof of Lemma 8 and obtain |5Q|7r,i < C\X2 provided C\ is
sufficiently large; this fixes C\. Then \Q"\Ίr,\ < &{l)C\\2

For the choice of FR we proceed similarly. Let i ^ ' - 2 be the expansion of R?
to second order in φ on small sets and zero on large sets. In the quadratic piece we
localize the φ dependence using (149). This means we replace Ft-2 by # # ' - 2 — δR
where

/

If fι d
R%0(X,0;x,y)[—- / dz / —φ(Ίxz(s))φ(ηyz{s))ds]dxdy.

IAI Jx Jo a s

Then we choose FR so that {FRe~v*)^2 = R#^2 - δR. We find we should take (for
small sets only):

FR(X) = aOR(X)\X\ + alR(X)V2(X, v*)

where a o ^ ^ i ^ are the solutions of the equations

(aOR(X) - alR(X)v\0))e-b = R*(X,0) (153)

(aιR(X) - aOR(X)a)e-b = (2\X\yι f B%tO(X,O;x,y)dxdy.

Here α, b are the coefficients of the quadratic and constant terms in V^\

a = -6XiV#(0) + μi

b = 3λi(v#(0))2 - μiv\0).
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The contribution to the change in mass is by definition δμi — δβi and is given by

XDΔ

Now taking into account that i?#(0) is bounded we have that α, b are @{\i), and so
one can show

XDΔ

which gives the bound on
We write

R* = (R* - FRe-γ*) = [R# - R#^2] + δR+ [(FRe-y)^2 - FRe~vl (154)

Note that in the term δR we can again replace dμφ by ψ(x, μ) and then R^(X, φ =
0) = 0 for X small and dim(n) < 2 as claimed. To bound R* note that the terms
||&R||# and \\R# - R#^% are bounded by ^(l) | | i? # | |# < @{\)\\~e. Since aR =

<9(\\-e) we also have \\FRe-y - (FRe-y)^2\\# < CX5/2~e < ^ ( l ) λ ί " c . Thus
| | β * | | * < ||Λ*||# < ^(l)Aj~ e . Similarly the kernel norm satisfies \R% < <9(\)\\-e.

Finally consider 5*. For the bound on &>2(K#,F) we shall apply Corollary 2.
The hypothesis (98) is verified by using Theorem 1 with a value r = ̂ ( l ) λ 1 / 2 . With
| |α | | = ||αo|| + r - 1 | | α 1 | | we find that

Since | | i r # | | # < <9{\)\\/2~\ \K% < (9{\)\2~\ and | |α | | Γ # < Cλ / 2 we obtain the

bounds <9(l)\]/2~e and @(\)\]/2~e. Finally Q*(e~v# - e~v*) supports a similar

bound (details are left to the reader) and we have the required | | 5* | | * < ^ ( l ) λ / 2 ~ e

and 15*1* < &(\)\'i
/2~e. This completes the proof of Lemma 10.

D

Proof of lemma 11. We have

where S% is the linearization of S? and ^ 2 is the remainder and further

Let &γ ° be the linearized scaling operator with V = 0, that is

, φ)=
X:XL=LZ

Then the first term is computed as

provided we define
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The remainder is then given by

(155)

To estimate the remainder we use Theorem 6 and Theorem 7 to bound each term
separately. Thus we need that

| | ( ) L WIU-, l l W I U , . , < 2

holds for any L" 1 scale polymer X c Δ, both for g = 1 (and hence for Gι-\) and for

p = G(-eo,O) with e0 = αλ~_\/2 and α = <^(1) (but small). This follows by Theorem

1.

The first two terms of (155) are higher order in \ than we need, and we use this

extra smallness to cancel any growth factor. By Theorem 6 and Lemma 10 we have

that s —> <5^(sK*) is analytic in say \s\ < λ̂ ~ ' and is bounded there by

Γ)||z-i < &(l)L3\\sK*

Since

2πι

around the circle \s\ = λ~ e we get the bound

Similarly we have

For the last term we need the more delicate estimate given by Theorem 7. Sepa-
rating large and small set contributions gives

where

The theorem is applicable since

min{eo/ί|_i, Ki-\h%-\} = min{α, 1} = a = @(X) > 0.

Now we can extract some powers of L~ι in the second term in passing from (/I^-OL

to h* = ( ^ λ ^ , ^<Sλ̂  ). The worst term with dim > 2 is a φ dφ term which

gives L~5/2. Then we may continue with

Combining the above bounds gives the required result ||.Rΐ_i | |i-i < &(\)Lι/2\\~e <

λ]Γί, where we use λ̂  = L~ιλi-\.
Now for the bound on the kernels of Rι-\. Again for the first two terms of (155)

we have a higher power of Λ̂  than we need:
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And for the last term we again use Theorem 7 to obtain:

Combining the above we get the required | i ^ _ i | r < ^(l)I/λ^~ e < λ^Ij\

The previous bound is also a model for the bound on Q'^γ - S^(Q"). Since
(Q'%(X, 0) = 0 for dim(n) < 2 we have as above

|Q _il7r,i < @{l)L\Q"\ΊΓΛ <

Finally we note that the mass term has the correct behavior:

l/Xi-i - fii-i\ < L2\μi - μi\ + L2\δμi - 6βi

< λ

This completes the proof of Lemma 11 and the main theorem.
D

7.1. Appendix: The Homotopy Hypothesis. We have defined G{ = G(0, κι) and
G#(X,φ) = GiO.Hti-i L^X^φL). Recall that ^ = y/Xi. To apply Theorems 2,3
and 4 let Gi(t) be the geometric inteφolation

(156)

where t e [0,1] and 7 = η(X) = 2 X L

Lemma 12. Give/z L > 2, ί/zere αtΰft λ0 > 0 5 MC/Z //zα/ Vλ e [0, λ0], Vi > 0 and
Vs < t G [0,1]

yHf / V \ ^ f~^ (4- Ύ~\ (Λ ^jn\

Proof. Let U(s, φ).:= logG(s, φ). It is enough to prove that

ΔCU C(—, — ) > 0 (158)

because of the implications

ds

γsμ(t-s)C * G(s, X) > 0 for s e (0, ί)
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From the definitions

U = tlog(2)\X\ + y/λ~i Σ ί \daφ\2 ((L2M-3/2 - l)ί + l) (159)

i<|α|<s

from which we verify (158): for example, if we choose λ0 small so that

(160)

is small for 1 < |α | , \β\ < s then the φ independent term in dU/dt dominates
for all i. To dominate C ( § ^ , §^), we use

Σ
l<\a\<s J X

which is smaller than the φ dependent terms in dU/dt when \/λo||C|| is sufficiently
small. Here | |C| | is an L2 norm in x—y on the (matrix-valued) kernels \d^d^C(x—y)\,
l<\a\,\β\<8.

Π

8. The Generating Functional and Correlations

Now we consider the generating functional SN(p). From (22) and (118) this can be
written

SN(p) = exp(-l/2(p,vNp) + Ωi?)SN(p),

SN(p) = (&xpAg)(Δ,φ = iϋNp) = A!?(Δ,iϋNp). (162)

The truncated correlation functions are the functional derivatives of log S(p) with
respect to p. For the two point function one has

(φ(Pι)φ(p2))T = (-i) ^ 7
S\OS2

d2

= (pi, vNρ2) + log SN(sχpι + s2ρ2)ds\ds2

s=0

s=0

and for the truncated n-point function

. . . , φ(pn))T = ( - i ) n

d s

d n

d s log S(sιPι + + snPn))
s

s=0

Now we can give a bound on the correlation functions that is uniform in N.

Theorem 9. Suppose the hypotheses of Theorem 8 hold.

1. For any p > 3 there is a constant R so that S(p) is analytic in the ball | |p| |

R-\χ-\/A i n £P(Δ) and satisfies there

\S(p)-l\<l/2.
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2. For Pi e LP(Δ)

\(Ψ(pύΦ(p2))-(PuvNP2)\ < 2 2

J R
2 λ 1 / 2 | |p 1 | | p | |p 2 | | p

\{φ(Pl),...,φ(Pn))T\ < nnBr\n'*f[\\Pi\\p.
2 = 1

Proof. (1.) We start with the analyticity properties of

By the main theorem K^(Δ,ψ) is analytic in ||V>o||oo < fto»||^i||oo < ̂ o and if we
make a Taylor expansion around ψ = 0we find that

Λ-1/t JhMloθχ-1 || τsN \
) (1 T ) \\K0 \Go,Γ,hoT ) ( 1 T

This gives analyticity and a bound for K^iΔ, φ) = KQ(Δ, ψφ). If we also use

< 2λ1/2~e and take WΦW^ < ho/2mά ||90||oo < ho/2 we find

\K»(Δ,φ)\<l/4.

With the same restrictions on φ we have \V0

N^^)\ < @(l)\h% - Θ{Y)b. Thus
taking δ smaller if necessary we have

Thus if Halloo and H^Hoo are less than ho/2 = 6X~1^/2 we have that Atf(Δ,φ) is
analytic and satisfies

\A$(Δ,φ)-l\<l/2.

Now specialize to S(ρ) = A^(Δ,iϋNp). Since VN(X) and dvχ(x) have the sin-
gularities @(\x\~ι) and &(\x\ 2), the best we can say about both of them is that
they are in Lq(Δ) for q < 3/2. For p > 3 take q < 3/2 so \/q + l/p = 1. Let
Rq = max(||ί5iv||g, | | 0#JV | | 9 ) By Young's inequality we have

\\VN*p\\oo < Rq\\p\\p

+pWoo < Rq\\P\\p'

Thus if HPIIP < R-ιX~^4 with R = 2Rq/δ these quantities are bounded by δ\~1^/2
and so S(p) is analytic and satisfies \S(ρ) — 1| < 1/2.

(2.) By part (1.) for | |p | | p < R-ιλ~^4 we have that log S(p) is analytic and
satisfies |log5(p)| < 1. It follows that for \\pi\\p < R~ι\~ιfAn~x the function
\ogS(s\pι + + snpn) is analytic in \sι\ < 1 and is also bounded by 1. By Cauchy
bounds the derivatives satisfy

dn

ds\... dsn i s = 0

< 1.

This gives the bounds of the theorem with the restriction on the pi. The general case
of pi e LP(Δ) follows by linearity.
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Remarks. The fact that the test functions can be in IP for any p > 3 is a limitation
on how singular the truncated correlation functions can be at coinciding points. The
result is probably not optimal and one could try for a lower value of p and hence
more regularity. The best one could hope for would be p > 12/11, for example this
is needed so that V0

N(Δ, WNP) is well defined. In any case to do better one would
have to get better regularity for the derivatives of the polymer activities K[*, possibly
by using a stronger norm.
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