Commun. Math. Phys. 168, 563-570 (1995)

Anderson Localization for the Almost Mathieu Equation: II. Point Spectrum for $\lambda > 2$

Svetlana Ya. Jitomirskaya*

Department of Mathematics, University of California, Irvine, California 92717, USA

Received: 23 August 1993

Abstract: We prove that for any $\lambda > 2$ and a.e. ω , θ the pure point spectrum of the almost Mathieu operator $(H(\theta)\Psi)_n = \Psi_{n-1} + \Psi_{n+1} + \lambda \cos(2\pi(\theta + n\omega))\Psi_n$ contains the essential closure $\hat{\sigma}$ of the spectrum. Corresponding eigenfunctions decay exponentially. The singular continuous component, if it exists, is concentrated on a set of zero measure which is nowhere dense in $\hat{\sigma}$.

1. Introduction

This paper is another attack on the almost-Mathieu operator on $\ell^2(Z)$:

$$(H(\theta)\Psi)_n = \Psi_{n-1} + \Psi_{n+1} + \lambda \cos(2\pi(\theta + n\omega))\Psi_n .$$

This simple-looking operator has been studied extensively for many years. We refer the reader to [1, 2] for a still incomplete list of references. The critical (and physical) value of the coupling constant λ is $\lambda = 2$ (we assume without loss of generality that $\lambda \ge 0$; it is believed that at $\lambda = 2$ there occurs a transition from pure absolutely continuous to pure point spectrum. The ω here is supposed to be "irrational enough," since for rational ω the potential is periodic and the spectrum is absolutely continuous for all λ , and for Liouville ω (abnormally well approximated by rationals) and $\lambda > 2$ the spectrum of $H(\theta)$ is purely singular continuous [3, 4]. Up to recently the only rigorous reason for this belief was that for $\lambda > 2$ and irrational ω the Lyapunov exponents are positive, which proves the absence of the absolutely continuous part of the spectrum [5, 6]. By Aubry duality there is no pure point spectrum for $\lambda < 2$ [7]. The latest development for any $\lambda < 2$ is the proof of existence of absolutely continuous spectrum that was given by Last [8] for a.e. ω , θ and by Gesztesy and Simon [13] for all ω , θ . Last [8] also proved that for a.e. ω the absolutely continuous spectrum, σ_{ac} , coincides with the spectrum, σ , up to a set of zero Lebesgue measure.

^{*} Permanent address: International Institute of Earthquake Prediction Theory and Mathematical Geophysics. Moscow, Russia

In the present paper we study λ 's above the critical value. Localization, i.e., pure point spectrum with exponentially decaying eigenfunctions, was proved by Sinai [9] and Fröhlich, Spencer and Wittwer [10] in the perturbative regime: λ "big enough." In [11] we developed a nonperturbative way of proving localization, which worked for $\lambda \ge 15$. The method also allowed us to prove localization in the middle of the spectrum for $\lambda \ge 5.4$. These restrictions on λ were caused exclusively by the roughness of the a priori estimates (from above) on the growth of the formal solution Ψ_E , i.e., on the Lyapunov exponents. In this paper we show that the results of [8, 13] together with Aubry duality and certain regularity of the Lyapunov exponent [12] give a much nicer estimate for "most of" the Lyapunov exponents. We combine this soft argument with the method of [11] to prove the existence of "a lot of" pure point spectrum for a.e. ω . The result holds for any $\lambda > 2$ but we have to pay for that by not being able to rule out the possibility of some singular continuous spectrum.

We already denoted the spectrum of $H(\theta)$ by σ , and now denote the singular continuous part of the spectrum by σ_{sc} , and the pure point part of the spectrum by σ_{pp} . It is well known that for irrational ω the sets σ , σ_{sc} and σ_{pp} (understood as the closure of the set of eigenvalues) do not depend on the phase θ for a.e. θ . Although for $\lambda < 2$ the results on the absolutely continuous spectrum probably hold for every θ (see [13]), the pure point spectrum for $\lambda > 2$ should be an essentially "a.e." result, since for generic θ the spectrum is purely singular continuous in this case [14].

We set

$$\Theta = \{\theta: \text{ for every } s > 1 \text{ the relation } \left| \sin 2\pi \left(\theta + \frac{k}{2} \omega \right) \right| < k^{-s} \text{ holds for infinitely many } k's \}.$$

We will assume that the phase θ does not belong to this set of zero measure. As we already mentioned, for $\lambda > 2$ the arithmetic nature of ω plays a major role. Let $\frac{p_n}{q_n}$ be the *n*th continuous fractions approximant of ω . Throughout the rest of the paper we assume that ω is Diophantine, i.e., an irrational such that for some r > 1 and C > 0 we have $|q_n \omega - p_n| > Cq_n^{-r}$. In Theorem 1 we will also use another, rather technical, restriction on ω :

$$\frac{C}{q_n^r} < |q_n \omega - p_n| = \frac{o(1)}{q_n} \text{ as } n \to \infty \quad . \tag{1}$$

The set of ω 's described in (1) has full Lebesgue measure [15].

For $\lambda > 2$ the spectrum σ is a set of positive Lebesgue measure [13]: $|\sigma| \ge 2\lambda - 4$. We set

$$\hat{\sigma} = \{E \in \sigma : \text{for any } \varepsilon > 0 \mid (E - \varepsilon, E + \varepsilon) \cap \sigma \mid > 0\}$$
.

We will prove

Theorem 1. Suppose ω satisfies (1). Then for any $2 < \lambda < 15$ we have

1. $|\sigma_{pp}| = |\sigma|$,

2. σ_{sc} , if it exists, has measure zero and is nowhere dense in $\hat{\sigma}$ (in the relative topology).

3. For $\theta \notin \Theta$ the set of eigenvalues of the operator $H(\theta)$ is dense in $\hat{\sigma}$ and the corresponding eigenfunctions are exponentially decaying.

Anderson Localization for Almost Mathieu Equation

The zero measure set of Diophantine ω 's not satisfying (1) happens to include the golden mean – the most popular object for numerical studies. Without the technical assumption (1) we prove a slightly weaker result:

Theorem 1'. For any Diophantine ω and any $2 < \lambda < 15$ we have

1. $|\sigma_{pp}| \ge 2\lambda - 4$. 2. There exists a closed set $A \subset \sigma_{pp}$, $|A| \ge 2\lambda - 4$, such that σ_{sc} is nowhere dense in A.

3. For $\theta \notin \Theta$ the set of eigenvalues of the operator $H(\theta)$ is dense in A and the corresponding eigenfunctions are exponentially decaying.

Remarks.

- 1. As can be seen from the proof, in order to prove complete localization in $\hat{\sigma}$ for $\lambda > 2$ it suffices to prove the continuity of the Lyapunov exponent $\gamma(E)$. For λ large enough the continuity of $\gamma(E)$ follows from the proof in [9]. This continuity would also be enough to rule out the singular continuous spectrum for $\lambda < 2$ [16].
- 2. An estimate on the rate of the exponential decay of the eigenfunctions can be easily obtained from the proof and is given by $|\Psi(x)| \leq \text{const} \left(\frac{\lambda}{2}\right)^{(-\frac{1}{4}+\varepsilon)|x|}$ for any $\varepsilon > 0$. This decay is clower than what is

for any $\varepsilon > 0$. This decay is slower than what is suggested by the Lyapunov exponent.

3. Theorems 1 and 1' can be proved with θ satisfying a weaker condition. Namely, let us fix $1 < \mu < \left(\frac{\lambda}{2}\right)^{\frac{1}{16}}$ and put

$$\Theta_{\mu} = \left\{ \theta : \left| \sin 2\pi \left(\theta + \frac{k}{2} \omega \right) \right| < \mu^{-k} \text{ holds for infinitely many } k's \right\}.$$

Then for $\theta \notin \Theta_{\mu}$ the same result holds, but the estimate on the decay of the eigenfunctions will be: $|\Psi(x)| \leq \text{const} \left(\left(\frac{\lambda}{2}\right)^{-\frac{1}{4}} \mu^4\right)^{|x|}$. It is quite clear that the rate of decay should depend on μ . This result can be compared with the fact that for $\theta \in \Theta_{\mu}$, μ sufficiently large, the operator $H(\theta)$ has no pure point component in the spectrum [14].

- 4. The Diophantine property can be made weaker (see the comment in [11]) but not too weak since for Liouville ω the spectrum of $H(\theta)$ is purely singular continuous. The upper bound in (1) appears here only because of the same bound in [8] and is presumably an artifact of Last's (and, of course, of the present) proof.
- 5. All the results certainly hold for $\lambda \ge 15$ as well [11].

In Sect. 2 we describe our method for proving localization which is a certain modification of the method of [17] (see also [10, 18]). In Sect. 3 we formulate our main technical result, Theorem 2, which is very similar to Theorem 2 in [11], and present the soft arguments which prove Theorems 1 and 1' from Theorem 2. In Sect. 4 we prove Theorem 2.

2. The General setup

We start with some definitions

Definition. A formal solution $\Psi_E(x)$ of the equation $H(\theta)\Psi_E = E\Psi_E$ will be called a generalized eigenfunction if $|\Psi_E(x)| \leq C(1 + |x|)$ for some $C = C(\Psi_E) < \infty$. The energy E for which such a solution exists will be called a generalized eigenvalue.

It is well known that to prove pure point spectrum one only needs to prove that generalized eigenfunctions belong to ℓ^2 (see [17]). We denote the Green's function $(H - E)^{-1}$ of the operator $H(\theta)$ restricted to the interval $[x_1, x_2]$ with zero boundary conditions at $x_1 - 1$ and $x_2 + 1$ by $G_{[x_1, x_2]}(E)$. Let us fix a number m < 1.

Definition. A point $y \in Z$ will be called (m, k)-regular if <u>there exists</u> an interval $[x_1, x_2]$ containing y such that

 $|G_{[x_1,x_2]}(y,x_i)| < m^k$, and dist $(y,x_i) \leq k$; i = 1, 2.

Otherwise y will be called (m, k)-singular.

Let E be a generalized eigenvalue of H_{θ} , $\Psi(x)$ the corresponding generalized eigenfunction.

Lemma 1. For every $x \in Z$ such that $\Psi(x) \neq 0$ there exists $k_0 = k_0(x, m, \theta, E) < \infty$ such that for $k > k_0$ the point x is (m, k)-singular.

Lemma 1 is the same kind of statement as Lemma 3.1 in [10] and so is the proof. $\hfill \Box$

Suppose one can prove that (m, k)-singular points are "far apart" which we formulate as the following

Quasilemma. Suppose the points x_1, x_2 are (m, k)-singular, k is large enough and $dist(x_1, x_2) > \frac{k}{2}$, then $dist(x_1, x_2) > k$.

Then the rest of the proof can be organized as follows. Assume without loss of generality that $\Psi(0) \neq 0$. Let |x| be bigger than $k_0(0, m, \theta, E)$ and sufficiently large so that we can apply the Quasilemma with k = |x|. Suppose x is (m, |x|)-singular. Since 0 is (m, |x|)-singular, the Quasilemma asserts that dist (0, x) = |x| > |x|. The contradiction implies that x is (m, |x|)-regular. Thus we have that there exists an interval $[x_1, x_2]$ containing x such that

$$|x_i - x| \leq |x|, |G_{[x_1, x_2]}(x, x_i)| \leq m^{|x|}, i = 1, 2.$$

We now can use the formula

$$\Psi(x) = G_{[x_1, x_2]}(x, x_1)\Psi(x_1 - 1) + G_{[x_1, x_2]}(x, x_2)\Psi(x_2 + 1)$$

to obtain the estimate:

$$|\Psi(x)| \leq 2C(1+2|x|)m^{|x|}$$

This argument shows that the localization follows immediately if we make a *l*emma out of the Quasilemma, i.e., provide it with hypotheses and, of course, with a proof.

Anderson Localization for Almost Mathieu Equation

3. Proof of Theorem 1

We define

$$B(\theta, E, \lambda) = \begin{pmatrix} E - \lambda \cos 2\pi\theta & -1 \\ 1 & 0 \end{pmatrix}, B_k(\theta, E, \lambda) = B(\theta + k\omega, E, \lambda) ,$$
$$M_k(\theta, E, \lambda) = B_k(\theta, E, \lambda) \dots B_0(\theta, E, \lambda) .$$

The Lyapunov exponent $\gamma(E, \lambda)$ is given by $\gamma(E, \lambda) = \inf_k \int_0^1 |k|^{-1} \ln \|M_k(\theta, E, \lambda)\| d\theta$. Recall that for $\lambda > 2$ we have $\gamma(E, \lambda) \ge \ln(\lambda/2) > 0$. Theorem 1 will follow from

Theorem 2. Let $\theta \notin \Theta$, ω be as in Theorem 1 and suppose E, λ are such that $\frac{\ln \frac{\lambda}{2}}{\gamma(E,\lambda)} > \frac{3}{4}$ and E is a generalized eigenvalue of $H(\theta)$. Then the corresponding generalized eigenfunction $\Psi(x)$ is exponentially decaying.

Proof of Theorem 1. Take any $\lambda > 2$. The Aubry duality and the Thouless formula yield famous relations [19, 6, 7]

$$\sigma(H(\theta, \lambda)) = \frac{\lambda}{2} \sigma\left(H\left(\theta, \frac{4}{\lambda}\right)\right),$$

$$\gamma(E, \lambda) = \ln\frac{\lambda}{2} + \gamma\left(\frac{2E}{\lambda}, \frac{4}{\lambda}\right).$$
 (2)

Since $\frac{4}{\lambda} < 2$, we can use the result of Last [8] that for a.e. $E \in \sigma\left(H\left(\theta, \frac{4}{\lambda}\right)\right)$ the

Lyapunov exponent $\gamma\left(E,\frac{4}{\lambda}\right)$ is equal to 0.

Craig and Simon [12] have proven that $\gamma(E)$ is continuous at points E where $\gamma(E) = 0$. We set

$$G = \left\{ E : \gamma\left(E, \frac{4}{\lambda}\right) < \frac{1}{3}\ln\frac{\lambda}{2} \right\}.$$

The set $\frac{\lambda}{2}G \cap \sigma$ contains an open (in $\hat{\sigma}$) dense (in $\hat{\sigma}$) set of measure $|\sigma|$, thus the set $\sigma \setminus \frac{\lambda}{2}G$ is a nowhere dense in $\hat{\sigma}$ set of zero measure. For $E \in \frac{\lambda}{2}G$ relation (2) implies that $\gamma(E, \lambda) < \frac{4}{3} \ln \frac{\lambda}{2}$ and we can apply Theorem 2 to obtain that for $\theta \notin \Theta$ (thus, for a full measure set) $\sigma_c \cap \frac{\lambda}{2}G = \emptyset$ which gives statements 1 and 2 of the theorem. To obtain the third statement we recall that the spectrum, σ , does not depend on θ for all θ (see, e.g., [1]). Thus for $\theta \notin \Theta$ the set of the eigenvalues is dense in $\frac{\lambda}{2}G \cap \sigma$ and, consequently, in $\hat{\sigma}$.

Proof of Theorem 1'. Gesztesy and Simon [13] have proven that for any irrational ω and any λ the inequality $|\sigma_{ac}| \ge 4 - 2\lambda$ holds. This plus the Ishii–Pastur–Kotani theorem (see [1]) and the same argument as above implies the result.

4. Proof of Theorem 2

As we learned from Sect. 2 it suffices to prove the Quasilemma under the conditions of Theorem 2.

S.Ya. Jitomirskaya

Following [11], let us put

$$P_k(\theta, E) = \det\left[\left(H(\theta) - E\right)|_{[0, k-1]}\right].$$

 $P_k(\theta, E)$ is an even function of the argument $\theta + \frac{k-1}{2}\omega$ and can be written as a polynomial of the degree k in $\cos\left(2\pi\left(\theta + \frac{k-1}{2}\omega\right)\right)$:

$$P_k(\theta, E) = \sum_{j=0}^k b_j(E) \cos^j \left(2\pi \left(\theta + \frac{k-1}{2} \omega \right) \right).$$

To simplify the notation we will sometimes omit the dependence on E.

It is easy to see that $b_k = 2\lambda^k$. We now fix $E \in R$; $1 < m_1 < \frac{\lambda}{2}$. Given k > 0 we set

$$A_k = \{x: |P_k(\theta + x\omega)| > m_1^k\}.$$

For any $x_1, x_2 = x_1 + k - 1, x_1 \leq y \leq x_2$ we have

$$|G_{[x_1, x_2]}(x_1, y) = \left| \frac{P_{x_2 - y}(\theta + (y + 1)\omega)}{P_k(\theta + x_1\omega)} \right|,$$

$$|G_{[x_1, x_2]}(y, x_2) = \left| \frac{P_{y - x_1}(\theta + x_1\omega)}{P_k(\theta + x_1\omega)} \right|.$$
(3)

Since $P_k(\theta, E)$ is one of the entries of the matrix $M_k(\theta, E)$ we have the evident upper bound $|P_k(\theta, E)| \leq ||M_k(\theta, E)||$. It is proved in [12] that for all θ, E, λ the inequality

$$\limsup |k|^{-1} \ln \|M_k(\theta, E, \lambda)\| \leq \gamma(E, \lambda)$$

holds. Thus for any $\varepsilon > 1$ there exists $k(\varepsilon, E)$ such that for $k > k(\varepsilon, E)$ we have

$$\ln|P_k(\theta, E)| < k(\varepsilon\gamma(E, \lambda)).$$
(4)

It follows from (3), (4) that for $x_1 \in A_k$, $x_2 = x_1 + k - 1$, $k > k(\varepsilon, \theta, E)$, $\frac{1}{m_1} < m < 1$ and $y \in [x_1, x_2]$ such that

$$k\left(1-\frac{\ln(m_1m)}{n\varepsilon\gamma(E,\lambda)}\right) < y-x_1 < k\left(\frac{\ln(m_1m)}{\varepsilon\gamma(E,\lambda)}\right),$$

we have

$$|G_{[x_1, x_2]}(y, x_i)| < m^k, \ i = 1, 2.$$
⁽⁵⁾

We set $c_{\lambda,\varepsilon} = \frac{\ln(m_1 m)}{\varepsilon \gamma(E, \lambda)}$.

Proposition 1. Suppose $y \in Z$ is (m, k)-singular. Then for any such x that $k(1 - c_{\lambda,\varepsilon}) \leq y - x \leq kc_{\lambda,\varepsilon}$ we have that x does not belong to A_k .

Proposition 1 follows immediately from (5).

Anderson Localization for Almost Mathieu Equation

The rigorous statement of the Quasilemma can now be obtained from the following lemma:

Lemma 2 [11]. Suppose ω is Diophantine, $E \in \mathbb{R}$. For $\theta \notin \Theta$ there exists $k_1(\theta, E)$ such that for $k > k_1(\theta, E)$ if the points x_1, x_2 satisfy

1)
$$x_i, x_i + 1, ..., x_i + \left[\frac{k+1}{2}\right] \notin A_k, i = 1, 2,$$

2) dist $(x_1, x_2) > \left[\frac{k+1}{2}\right]$,

then

 $\operatorname{dist}(x_1, x_2) > \alpha^k$

with $\alpha = \alpha(m_1, m, \lambda, E, s, r) > 1$. Indeed, let us suppose that $\frac{\ln \frac{\lambda}{2}}{\gamma(E, \lambda)} > \frac{3}{4}$. Then three exist $1 < m_1 < \frac{\lambda}{2}, m < 1$ and $\varepsilon > 1$ such that $2c_{\lambda,\varepsilon} - 1 > \frac{1}{2}$. Let k be bigger than $\max[k(\varepsilon, E), k_1(\theta, E)]$. Suppose x'_1, x'_2 are (m, k)-singular and $\operatorname{dist}(x'_1, x'_2) > \left[\frac{k+1}{2}\right]$. Since $2c_{\lambda,\varepsilon} - 1 > \frac{1}{2}$, we obtain using Proposition 1 that the points $x_1 = x'_1 - c_{\lambda,\varepsilon}k$ and $x_2 = x'_2 - c_{\lambda,\varepsilon}k$ satisfy the conditions of Lemma 2. Applying Lemma 2 we get that $\operatorname{dist}(x'_1, x'_2) > \alpha^k > k$ for large k. After that the rest of the argument is the same as in the end of Sect. 2.

5. Acknowledgement. It is a pleasure to thank A. Klein for many useful discussions.

References

- Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators. Berlin Heidelberg New York: Springer, 1987
- 2. Shubin, M.A.: Discrete magnetic Laplacian. Preprint, 1993
- Gordon, A.: On the point spectrum of the one-dimensional Schrödinger operator. Usp. Math. Nauk. 31, 257 (1976)
- Avron, J., Simon, B.: Singular continuous spectrum for a class of almost periodic Jacobi matrices. Bull. AMS 6, 81-85 (1982)
- 5. Avron, J., Simon, B.: Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math. J. 50, 369-391 (1983)
- Figotin, A., Pastur, L.: The positivity of Lyapunov exponent and absence of absolutely continuous spectrum for almost Mathieu equation. J. Math. Phys. 25, 774–777 (1984)
- 7. Delyon, F.: Absence of localization for the almost Mathieu equation. J. Phys. A 20, L21-L23 (1987)
- 8. Last, Y.: A relation between absolutely continuous spectrum of ergodic Jacobi matrices and the spectra of periodic approximants. Commun. Math. Phys. **151**, 183–192 (1993)
- 9. Sinai, Ya.: Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential. J. Stat. Phys. 46, 861–909 (1987)
- Fröhlich J., Spencer, T., Wittwer, P.: Localization for a class of one dimensional quasiperiodic Schrödinger operators. Commun. Math. Phys. 132, 5–25 (1990)
- Jitomirskaya, S.: Anderson localization for the almost Mathieu equation: A nonperturbative proof. Commun. Math. Phys. 165, 49–57 (1994)
- 12. Craig, W., Simon, B.: Subharmonicity of the Lyapunov index. Duke Math. J. 50, 551–560 (1983)

- 13. Gesztesy, F., Simon, B.: The xi function. Annals of Math, to appear
- 14. Jitomirskaya, S., Simon, B.: Operators with singular continuous spectrum, III: Almost periodic Schrödinger operators. Commun. Math. Phys. 165, 201-205 (1994)
- 15. Cornfeld, I., Fomin, S., Sinai, Ya.: Ergodic theory. Berlin Heidelberg New York: Springer 1982
- Mandelshtam, V., Zhitomirskaya, S.: 1D-quasiperiodic operators. Latent symmetries. Commun. Math. Phys. 139, 589-604 (1991)
- 17. Fröhlich, J., Martinelli, F., Scoppola, É., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101, 21-46 (1985)
- von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285–299 (1989)
- 19. Aubry, G., Andre, G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3, 133-140 (1980)

Communicated by T. Spencer