Anderson Localization for the Almost Mathieu Equation: II. Point Spectrum for $\lambda>2$

Svetlana Ya. Jitomirskaya ${ }^{\star}$
Department of Mathematics, University of California, Irvine, California 92717, USA

Received: 23 August 1993

Abstract

We prove that for any $\lambda>2$ and a.e. ω, θ the pure point spectrum of the almost Mathieu operator $(H(\theta) \Psi)_{n}=\Psi_{n-1}+\Psi_{n+1}+\lambda \cos (2 \pi(\theta+n \omega)) \Psi_{n}$ contains the essential closure $\hat{\sigma}$ of the spectrum. Corresponding eigenfunctions decay exponentially. The singular continuous component, if it exists, is concentrated on a set of zero measure which is nowhere dense in $\hat{\sigma}$.

1. Introduction

This paper is another attack on the almost-Mathieu operator on $\ell^{2}(Z)$:

$$
(H(\theta) \Psi)_{n}=\Psi_{n-1}+\Psi_{n+1}+\lambda \cos (2 \pi(\theta+n \omega)) \Psi_{n}
$$

This simple-looking operator has been studied extensively for many years. We refer the reader to [1,2] for a still incomplete list of references. The critical (and physical) value of the coupling constant λ is $\lambda=2$ (we assume without loss of generality that $\lambda \geqq 0$); it is believed that at $\lambda=2$ there occurs a transition from pure absolutely continuous to pure point spectrum. The ω here is supposed to be "irrational enough," since for rational ω the potential is periodic and the spectrum is absolutely continuous for all λ, and for Liouville ω (abnormally well approximated by rationals) and $\lambda>2$ the spectrum of $H(\theta)$ is purely singular continuous [3,4]. Up to recently the only rigorous reason for this belief was that for $\lambda>2$ and irrational ω the Lyapunov exponents are positive, which proves the absence of the absolutely continuous part of the spectrum [5, 6]. By Aubry duality there is no pure point spectrum for $\lambda<2$ [7]. The latest development for any $\lambda<2$ is the proof of existence of absolutely continuous spectrum that was given by Last [8] for a.e. ω, θ and by Gesztesy and Simon [13] for all ω, θ. Last [8] also proved that for a.e. ω the absolutely continuous spectrum, $\sigma_{\text {ac }}$, coincides with the spectrum, σ, up to a set of zero Lebesgue measure.

[^0]In the present paper we study λ 's above the critical value. Localization, i.e., pure point spectrum with exponentially decaying eigenfunctions, was proved by Sinai [9] and Fröhlich, Spencer and Wittwer [10] in the perturbative regime: λ "big enough." In [11] we developed a nonperturbative way of proving localization, which worked for $\lambda \geqq 15$. The method also allowed us to prove localization in the middle of the spectrum for $\lambda \geqq 5.4$. These restrictions on λ were caused exclusively by the roughness of the a priori estimates (from above) on the growth of the formal solution Ψ_{E}, i.e., on the Lyapunov exponents. In this paper we show that the results of $[8,13]$ together with Aubry duality and certain regularity of the Lyapunov exponent [12] give a much nicer estimate for "most of" the Lyapunov exponents. We combine this soft argument with the method of [11] to prove the existence of "a lot of" pure point spectrum for a.e. ω. The result holds for any $\lambda>2$ but we have to pay for that by not being able to rule out the possibility of some singular continuous spectrum.

We already denoted the spectrum of $H(\theta)$ by σ, and now denote the singular continuous part of the spectrum by σ_{sc}, and the pure point part of the spectrum by σ_{pp}. It is well known that for irrational ω the sets $\sigma, \sigma_{\mathrm{sc}}$ and σ_{pp} (understood as the closure of the set of eigenvalues) do not depend on the phase θ for a.e. θ. Although for $\lambda<2$ the results on the absolutely continuous spectrum probably hold for every θ (see [13]), the pure point spectrum for $\lambda>2$ should be an essentially "a.e." result, since for generic θ the spectrum is purely singular continuous in this case [14].

We set
$\Theta=\left\{\theta\right.$: for every $s>1$ the relation $\left|\sin 2 \pi\left(\theta+\frac{k}{2} \omega\right)\right|<k^{-s}$ holds for infinitely many k 's $\}$.
We will assume that the phase θ does not belong to this set of zero measure. As we already mentioned, for $\lambda>2$ the arithmetic nature of ω plays a major role. Let $\frac{p_{n}}{q_{n}}$ be the $n^{\text {th }}$ continuous fractions approximant of ω. Throughout the rest of the paper we assume that ω is Diophantine, i.e., an irrational such that for some $r>1$ and $C>0$ we have $\left|q_{n} \omega-p_{n}\right|>C q_{n}^{-r}$. In Theorem 1 we will also use another, rather technical, restriction on ω :

$$
\begin{equation*}
\frac{C}{q_{n}^{r}}<\left|q_{n} \omega-p_{n}\right|=\frac{o(1)}{q_{n}} \text { as } n \rightarrow \infty . \tag{1}
\end{equation*}
$$

The set of ω^{\prime} s described in (1) has full Lebesgue measure [15].
For $\lambda>2$ the spectrum σ is a set of positive Lebesgue measure [13]:| $\sigma \mid$ $\geqq 2 \lambda-4$. We set

$$
\hat{\sigma}=\{E \in \sigma: \text { for any } \varepsilon>0|(E-\varepsilon, E+\varepsilon) \cap \sigma|>0\} .
$$

We will prove
Theorem 1. Suppose ω satisfies (1). Then for any $2<\lambda<15$ we have

1. $\left|\sigma_{\mathrm{pp}}\right|=|\sigma|$,
2. σ_{sc}, if it exists, has measure zero and is nowhere dense in $\hat{\sigma}$ (in the relative topology).
3. For $\theta \notin \Theta$ the set of eigenvalues of the operator $H(\theta)$ is dense in $\hat{\sigma}$ and the corresponding eigenfunctions are exponentially decaying.

The zero measure set of Diophantine ω^{\prime} s not satisfying (1) happens to include the golden mean - the most popular object for numerical studies. Without the technical assumption (1) we prove a slightly weaker result:

Theorem 1'. For any Diophantine ω and any $2<\lambda<15$ we have

1. $\left|\sigma_{\mathrm{pp}}\right| \geqq 2 \lambda-4$.
2. There exists a closed set $A \subset \sigma_{\mathrm{pp}},|A| \geqq 2 \lambda-4$, such that σ_{sc} is nowhere dense in A.
3. For $\theta \notin \Theta$ the set of eigenvalues of the operator $H(\theta)$ is dense in A and the corresponding eigenfunctions are exponentially decaying.

Remarks.

1. As can be seen from the proof, in order to prove complete localization in $\hat{\sigma}$ for $\lambda>2$ it suffices to prove the continuity of the Lyapunov exponent $\gamma(E)$. For λ large enough the continuity of $\gamma(E)$ follows from the proof in [9]. This continuity would also be enough to rule out the singular continuous spectrum for $\lambda<2$ [16].
2. An estimate on the rate of the exponential decay of the eigenfunctions can be easily obtained from the proof and is given by $|\Psi(x)| \leqq \operatorname{const}\left(\frac{\lambda}{2}\right)^{\left(-\frac{1}{4}+\varepsilon\right)|x|}$ for any $\varepsilon>0$. This decay is slower than what is suggested by the Lyapunov exponent.
3. Theorems 1 and 1^{\prime} can be proved with θ satisfying a weaker condition. Namely, let us fix $1<\mu<\left(\frac{\lambda}{2}\right)^{\frac{1}{16}}$ and put

$$
\Theta_{\mu}=\left\{\theta:\left|\sin 2 \pi\left(\theta+\frac{k}{2} \omega\right)\right|<\mu^{-k} \text { holds for infinitely many } k^{\prime} \mathbf{s}\right\} .
$$

Then for $\theta \notin \Theta_{\mu}$ the same result holds, but the estimate on the decay of the eigenfunctions will be: $|\Psi(x)| \leqq$ const $\left(\left(\frac{\lambda}{2}\right)^{-\frac{1}{4}} \mu^{4}\right)^{|x|}$. It is quite clear that the rate of decay should depend on μ. This result can be compared with the fact that for $\theta \in \Theta_{\mu}, \mu$ sufficiently large, the operator $H(\theta)$ has no pure point component in the spectrum [14].
4. The Diophantine property can be made weaker (see the comment in [11]) but not too weak since for Liouville ω the spectrum of $H(\theta)$ is purely singular continuous. The upper bound in (1) appears here only because of the same bound in [8] and is presumably an artifact of Last's (and, of course, of the present) proof.
5. All the results certainly hold for $\lambda \geqq 15$ as well [11].

In Sect. 2 we describe our method for proving localization which is a certain modification of the method of [17] (see also [10, 18]). In Sect. 3 we formulate our main technical result, Theorem 2, which is very similar to Theorem 2 in [11], and present the soft arguments which prove Theorems 1 and 1^{\prime} from Theorem 2. In Sect. 4 we prove Theorem 2.

2. The General setup

We start with some definitions
Definition. A formal solution $\Psi_{E}(x)$ of the equation $H(\theta) \Psi_{E}=E \Psi_{E}$ will be called a generalized eigenfunction if $\left|\Psi_{E}(x)\right| \leqq C(1+|x|)$ for some $C=C\left(\Psi_{E}\right)<\infty$. The energy E for which such a solution exists will be called a generalized eigenvalue.

It is well known that to prove pure point spectrum one only needs to prove that generalized eigenfunctions belong to ℓ^{2} (see [17]). We denote the Green's function $(H-E)^{-1}$ of the operator $H(\theta)$ restricted to the interval $\left[x_{1}, x_{2}\right.$] with zero boundary conditions at $x_{1}-1$ and $x_{2}+1$ by $G_{\left[x_{1}, x_{2}\right]}(E)$. Let us fix a number $m<1$.

Definition. A point $y \in Z$ will be called (m, k)-regular if there exists an interval $\left[x_{1}, x_{2}\right]$ containing y such that

$$
\left|G_{\left[x_{1}, x_{2}\right]}\left(y, x_{i}\right)\right|<m^{k}, \text { and } \operatorname{dist}\left(y, x_{i}\right) \leqq k ; i=1,2
$$

Otherwise y will be called (m, k)-singular.
Let E be a generalized eigenvalue of $H_{\theta}, \Psi(x)$ the corresponding generalized eigenfunction.

Lemma 1. For every $x \in Z$ such that $\Psi(x) \neq 0$ there exists $k_{0}=k_{0}(x, m, \theta, E)<\infty$ such that for $k>k_{0}$ the point x is (m, k)-singular.

Lemma 1 is the same kind of statement as Lemma 3.1 in [10] and so is the proof.

Suppose one can prove that (m, k)-singular points are "far apart" which we formulate as the following

Quasilemma. Suppose the points x_{1}, x_{2} are (m, k)-singular, k is large enough and $\operatorname{dist}\left(x_{1}, x_{2}\right)>\frac{k}{2}$, then $\operatorname{dist}\left(x_{1}, x_{2}\right)>k$.

Then the rest of the proof can be organized as follows. Assume without loss of generality that $\Psi(0) \neq 0$. Let $|x|$ be bigger than $k_{0}(0, m, \theta, E)$ and sufficiently large so that we can apply the Quasilemma with $k=|x|$. Suppose x is ($m,|x|$)-singular. Since 0 is $(m,|x|)$-singular, the Quasilemma asserts that dist $(0, x)=|x|>|x|$. The contradiction implies that x is $(m,|x|)$-regular. Thus we have that there exists an interval $\left[x_{1}, x_{2}\right]$ containing x such that

$$
\left|x_{i}-x\right| \leqq|x|,\left|G_{\left[x_{1}, x_{2}\right]}\left(x, x_{i}\right)\right| \leqq m^{|x|}, i=1,2 .
$$

We now can use the formula

$$
\Psi(x)=G_{\left[x_{1}, x_{2}\right]}\left(x, x_{1}\right) \Psi\left(x_{1}-1\right)+G_{\left[x_{1}, x_{2}\right]}\left(x, x_{2}\right) \Psi\left(x_{2}+1\right)
$$

to obtain the estimate:

$$
|\Psi(x)| \leqq 2 C(1+2|x|) m^{|x|}
$$

This argument shows that the localization follows immediately if we make a lemma out of the Quasilemma, i.e., provide it with hypotheses and, of course, with a proof.

3. Proof of Theorem 1

We define

$$
\begin{aligned}
B(\theta, E, \lambda)= & \left(\begin{array}{cr}
E-\lambda \cos 2 \pi \theta & -1 \\
1 & 0
\end{array}\right), B_{k}(\theta, E, \lambda)=B(\theta+k \omega, E, \lambda) \\
& M_{k}(\theta, E, \lambda)=B_{k}(\theta, E, \lambda) \ldots B_{0}(\theta, E, \lambda)
\end{aligned}
$$

The Lyapunov exponent $\gamma(E, \lambda)$ is given by $\gamma(E, \lambda)=\inf _{k} \int_{0}^{1}|k|^{-1}$ $\ln \left\|M_{k}(\theta, E, \lambda)\right\| d \theta$. Recall that for $\lambda>2$ we have $\gamma(E, \lambda) \geqq \ln (\lambda / 2)>0$. Theorem 1 will follow from

Theorem 2. Let $\theta \notin \Theta, \omega$ be as in Theorem 1 and suppose E, λ are such that $\frac{\ln \frac{\lambda}{2}}{\gamma(E, \lambda)}>\frac{3}{4}$ and E is a generalized eigenvalue of $H(\theta)$. Then the corresponding generalized eigenfunction $\Psi(x)$ is exponentially decaying.
Proof of Theorem 1. Take any $\lambda>2$. The Aubry duality and the Thouless formula yield famous relations [19, 6, 7]

$$
\begin{align*}
\sigma(H(\theta, \lambda)) & =\frac{\lambda}{2} \sigma\left(H\left(\theta, \frac{4}{\lambda}\right)\right) \\
\gamma(E, \lambda) & =\ln \frac{\lambda}{2}+\gamma\left(\frac{2 E}{\lambda}, \frac{4}{\lambda}\right) \tag{2}
\end{align*}
$$

Since $\frac{4}{\lambda}<2$, we can use the result of Last [8] that for a.e. $E \in \sigma\left(H\left(\theta, \frac{4}{\lambda}\right)\right)$ the Lyapunov exponent $\gamma\left(E, \frac{4}{\lambda}\right)$ is equal to 0 .

Craig and Simon [12] have proven that $\gamma(E)$ is continuous at points E where $\gamma(E)=0$. We set

$$
G=\left\{E: \gamma\left(E, \frac{4}{\lambda}\right)<\frac{1}{3} \ln \frac{\lambda}{2}\right\} .
$$

The set $\frac{\lambda}{2} G \cap \sigma$ contains an open (in $\hat{\sigma}$) dense (in $\hat{\sigma}$) set of measure $|\sigma|$, thus the set $\sigma \backslash \frac{\lambda}{2} G$ is a nowhere dense in $\hat{\sigma}$ set of zero measure. For $E \in \frac{\lambda}{2} G$ relation (2) implies that $\gamma(E, \lambda)<\frac{4}{3} \ln \frac{\lambda}{2}$ and we can apply Theorem 2 to obtain that for $\theta \notin \Theta$ (thus, for a full measure set) $\sigma_{c} \cap \frac{\lambda}{2} G=\emptyset$ which gives statements 1 and 2 of the theorem. To obtain the third statement we recall that the spectrum, σ, does not depend on θ for all θ (see, e.g., [1]). Thus for $\theta \notin \Theta$ the set of the eigenvalues is dense in $\frac{\lambda}{2} G \cap \sigma$ and, consequently, in $\hat{\sigma}$.
Proof of Theorem 1'. Gesztesy and Simon [13] have proven that for any irrational ω and any λ the inequality $\left|\sigma_{a c}\right| \geqq 4-2 \lambda$ holds. This plus the Ishii-Pastur-Kotani theorem (see [1]) and the same argument as above implies the result.

4. Proof of Theorem 2

As we learned from Sect. 2 it suffices to prove the Quasilemma under the conditions of Theorem 2.

Following [11], let us put

$$
P_{k}(\theta, E)=\operatorname{det}\left[\left.(H(\theta)-E)\right|_{[0, k-1]}\right] .
$$

$P_{k}(\theta, E)$ is an even function of the argument $\theta+\frac{k-1}{2} \omega$ and can be written as a polynomial of the degree k in $\cos \left(2 \pi\left(\theta+\frac{k-1}{2} \omega\right)\right)$:

$$
P_{k}(\theta, E)=\sum_{j=0}^{k} b_{j}(E) \cos ^{j}\left(2 \pi\left(\theta+\frac{k-1}{2} \omega\right)\right) .
$$

To simplify the notation we will sometimes omit the dependence on E.
It is easy to see that $b_{k}=2 \lambda^{k}$. We now fix $E \in R ; 1<m_{1}<\frac{\lambda}{2}$. Given $k>0$ we set

$$
A_{k}=\left\{x:\left|P_{k}(\theta+x \omega)\right|>m_{1}^{k}\right\} .
$$

For any $x_{1}, x_{2}=x_{1}+k-1, x_{1} \leqq y \leqq x_{2}$ we have

$$
\begin{align*}
& \left|G_{\left[x_{1}, x_{2}\right]}\left(x_{1}, y\right)=\left|\frac{P_{x_{2}-y}(\theta+(y+1) \omega)}{P_{k}\left(\theta+x_{1} \omega\right)}\right|\right. \\
& \left|G_{\left[x_{1}, x_{2}\right]}\left(y, x_{2}\right)=\left|\frac{P_{y-x_{1}}\left(\theta+x_{1} \omega\right)}{P_{k}\left(\theta+x_{1} \omega\right)}\right|\right. \tag{3}
\end{align*}
$$

Since $P_{k}(\theta, E)$ is one of the entries of the matrix $M_{k}(\theta, E)$ we have the evident upper bound $\left|P_{k}(\theta, E)\right| \leqq\left\|M_{k}(\theta, E)\right\|$. It is proved in [12] that for all θ, E, λ the inequality

$$
\limsup |k|^{-1} \ln \left\|M_{k}(\theta, E, \lambda)\right\| \leqq \gamma(E, \lambda)
$$

holds. Thus for any $\varepsilon>1$ there exists $k(\varepsilon, E)$ such that for $k>k(\varepsilon, E)$ we have

$$
\begin{equation*}
\ln \left|P_{k}(\theta, E)\right|<k(\varepsilon \gamma(E, \lambda)) . \tag{4}
\end{equation*}
$$

It follows from (3), (4) that for $x_{1} \in A_{k}, x_{2}=x_{1}+k-1, k>k(\varepsilon, \theta, E)$, $\frac{1}{m_{1}}<m<1$ and $y \in\left[x_{1}, x_{2}\right]$ such that

$$
k\left(1-\frac{\ln \left(m_{1} m\right)}{\mathrm{n} \varepsilon \gamma(E, \lambda)}\right)<y-x_{1}<k\left(\frac{\ln \left(m_{1} m\right)}{\varepsilon \gamma(E, \lambda)}\right)
$$

we have

$$
\begin{equation*}
\left|G_{\left[x_{1}, x_{2}\right]}\left(y, x_{i}\right)\right|<m^{k}, i=1,2 . \tag{5}
\end{equation*}
$$

We set $c_{\lambda, \varepsilon}=\frac{\ln \left(m_{1} m\right)}{\varepsilon \gamma(E, \lambda)}$.
Proposition 1. Suppose $y \in Z$ is (m, k)-singular. Then for any such x that $k\left(1-c_{\lambda, \varepsilon}\right) \leqq y-x \leqq k c_{\lambda, \varepsilon}$ we have that x does not belong to A_{k}.

Proposition 1 follows immediately from (5).

The rigorous statement of the Quasilemma can now be obtained from the following lemma:

Lemma 2 [11]. Suppose ω is Diophantine, $E \in R$. For $\theta \notin \Theta$ there exists $k_{1}(\theta, E)$ such that for $k>k_{1}(\theta, E)$ if the points x_{1}, x_{2} satisfy

1) $x_{i}, x_{i}+1, \ldots, x_{i}+\left[\frac{k+1}{2}\right] \notin A_{k}, i=1,2$,
2) $\operatorname{dist}\left(x_{1}, x_{2}\right)>\left[\frac{k+1}{2}\right]$,
then

$$
\operatorname{dist}\left(x_{1}, x_{2}\right)>\alpha^{k}
$$

with $\alpha=\alpha\left(m_{1}, m, \lambda, E, s, r\right)>1$.
Indeed, let us suppose that $\frac{\ln \frac{\lambda}{2}}{\gamma(E, \lambda)}>\frac{3}{4}$. Then three exist $1<m_{1}<\frac{\lambda}{2}, m<1$ and $\varepsilon>1$ such that $2 c_{\lambda, \varepsilon}-1>\frac{1}{2}$. Let k be bigger than $\max \left[k(\varepsilon, E), k_{1}(\theta, E)\right]$. Suppose $x_{1}^{\prime}, x_{2}^{\prime}$ are (m, k)-singular and $\operatorname{dist}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)>\left[\frac{k+1}{2}\right]$. Since $2 c_{\lambda, \varepsilon}-1>\frac{1}{2}$, we obtain using Proposition 1 that the points $x_{1}=x_{1}^{\prime}-c_{\lambda, \varepsilon} k$ and $x_{2}=x_{2}^{\prime}-c_{\lambda, \varepsilon} k$ satisfy the conditions of Lemma 2. Applying Lemma 2 we get that $\operatorname{dist}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)>\alpha^{k}>k$ for large k. After that the rest of the argument is the same as in the end of Sect. 2.
5. Acknowledgement. It is a pleasure to thank A. Klein for many useful discussions.

References

1. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators. Berlin Heidelberg New York: Springer, 1987
2. Shubin, M.A.: Discrete magnetic Laplacian. Preprint, 1993
3. Gordon, A.: On the point spectrum of the one-dimensional Schrödinger operator. Usp. Math. Nauk. 31, 257 (1976)
4. Avron, J., Simon, B.: Singular continuous spectrum for a class of almost periodic Jacobi matrices. Bull. AMS 6, 81-85 (1982)
5. Avron, J., Simon, B.: Almost periodic Schrödinger operators. II. The integrated density of states. Duke Math. J. 50, 369-391 (1983)
6. Figotin, A., Pastur, L.: The positivity of Lyapunov exponent and absence of absolutely continuous spectrum for almost Mathieu equation. J. Math. Phys. 25, 774-777 (1984)
7. Delyon, F.: Absence of localization for the almost Mathieu equation. J. Phys. A 20, L21-L23 (1987)
8. Last, Y.: A relation between absolutely continuous spectrum of ergodic Jacobi matrices and the spectra of periodic approximants. Commun. Math. Phys. 151, 183-192 (1993)
9. Sinai, Ya.: Anderson localization for one-dimensional difference Schrödinger operator with quasi-periodic potential. J. Stat. Phys. 46, 861-909 (1987)
10. Fröhlich J., Spencer, T., Wittwer, P.: Localization for a class of one dimensional quasiperiodic Schrödinger operators. Commun. Math. Phys. 132, 5-25 (1990)
11. Jitomirskaya, S.: Anderson localization for the almost Mathieu equation: A nonperturbative proof. Commun. Math. Phys. 165, 49-57 (1994)
12. Craig, W., Simon, B.: Subharmonicity of the Lyapunov index. Duke Math. J. 50, 551-560 (1983)
13. Gesztesy, F., Simon, B.: The xi function. Annals of Math, to appear
14. Jitomirskaya, S., Simon, B.: Operators with singular continuous spectrum, III: Almost periodic Schrödinger operators. Commun. Math. Phys. 165, 201-205 (1994)
15. Cornfeld, I., Fomin, S., Sinai, Ya.: Ergodic theory. Berlin Heidelberg New York: Springer 1982
16. Mandelshtam, V., Zhitomirskaya, S.: 1D-quasiperiodic operators. Latent symmetries. Commun. Math. Phys. 139, 589-604 (1991)
17. Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive proof of localization in the Anderson tight binding model. Commun. Math. Phys. 101, 21-46 (1985)
18. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285-299 (1989)
19. Aubry, G., Andre, G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3, 133-140 (1980)

Communicated by T. Spencer

[^0]: * Permanent address: International Institute of Earthquake Prediction Theory and Mathematical Geophysics. Moscow, Russia

