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Abstract: We prove that for any λ > 2 and a.e. ω, θ the pure point spectrum of the
almost Mathieu operator (H(θ)Ψ)n = ψn_1 + ψn + 1 + Acos(2π(0 + nω))Ψn con-
tains the essential closure σ of the spectrum. Corresponding eigenfunctions decay
exponentially. The singular continuous component, if it exists, is concentrated on
a set of zero measure which is nowhere dense in σ.

1. Introduction

This paper is another attack on the almost-Mathieu operator on / 2(Z):

(H(θ)Ψ)n = Ψn_ί + ΨH + 1 + Λcos(2π((9 + nω))Ψn .

This simple-looking operator has been studied extensively for many years. We
refer the reader to [1, 2] for a still incomplete list of references. The critical (and
physical) value of the coupling constant λ is λ = 2 (we assume without loss of
generality that λ ^ 0); it is believed that at λ = 2 there occurs a transition from pure
absolutely continuous to pure point spectrum. The ω here is supposed to be
"irrational enough," since for rational ω the potential is periodic and the spectrum
is absolutely continuous for all A, and for Liouville ω (abnormally well approxi-
mated by rationals) and λ > 2 the spectrum of H(θ) is purely singular continuous
[3,4]. Up to recently the only rigorous reason for this belief was that for λ > 2 and
irrational ω the Lyapunov exponents are positive, which proves the absence of the
absolutely continuous part of the spectrum [5, 6]. By Aubry duality there is no
pure point spectrum for λ < 2 [7]. The latest development for any λ < 2 is the
proof of existence of absolutely continuous spectrum that was given by Last [8] for
a.e. ω, θ and by Gesztesy and Simon [13] for all ω, θ. Last [8] also proved that for
a.e. ω the absolutely continuous spectrum, σac, coincides with the spectrum, σ, up
to a set of zero Lebesgue measure.
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In the present paper we study 1's above the critical value. Localization, i.e., pure
point spectrum with exponentially decaying eigenfunctions, was proved by Sinai
[9] and Frδhlich, Spencer and Wittwer [10] in the perturbative regime: λ "big
enough." In [11] we developed a nonperturbative way of proving localization,
which worked for λ ^ 15. The method also allowed us to prove localization in the
middle of the spectrum for λ ^ 5.4. These restrictions on λ were caused exclusively
by the roughness of the a priori estimates (from above) on the growth of the formal
solution ΨE, i.e., on the Lyapunov exponents. In this paper we show that the results
of [8,13] together with Aubry duality and certain regularity of the Lyapunov
exponent [12] give a much nicer estimate for "most of" the Lyapunov exponents.
We combine this soft argument with the method of [11] to prove the existence of "a
lot of" pure point spectrum for a.e. ω. The result holds for any λ > 2 but we have to
pay for that by not being able to rule out the possibility of some singular
continuous spectrum.

We already denoted the spectrum of H(θ) by σ, and now denote the singular
continuous part of the spectrum by σsc, and the pure point part of the spectrum by
σpp. It is well known that for irrational ω the sets σ, σsc and σp p (understood as the
closure of the set of eigenvalues) do not depend on the phase θ for a.e. θ. Although
for λ < 2 the results on the absolutely continuous spectrum probably hold for every
θ (see [13]), the pure point spectrum for λ > 2 should be an essentially "a.e." result,
since for generic θ the spectrum is purely singular continuous in this case [14].

We set

Θ = {Θ: for every s > 1 the relation (0 < k s holds for infinitely many fc's} .

We will assume that the phase θ does not belong to this set of zero measure. As we

already mentioned, for λ > 2 the arithmetic nature of ω plays a major role. Let —

be the nth continuous fractions approximant of ω. Throughout the rest of the paper
we assume that ω is Diophantine, i.e., an irrational such that for some r > 1 and
C > 0 we have \qnω — pn\ > Cq~r. In Theorem 1 we will also use another, rather
technical, restriction on ω:

— < \qnω - p n \ = as n -> oo . (1)
qn qn

The set of ω's described in (1) has full Lebesgue measure [15].
For λ > 2 the spectrum σ is a set of positive Lebesgue measure [13]:|σ|

;> 2λ - 4. We set

σ = {Eeσ Λor any e > 0 \(E - ε9 E + ε)nσ\ > 0} .

We will prove

Theorem 1. Suppose ω satisfies (1). Then for any 2 < λ < 15 we have

2. <7SC, if it exists, has measure zero and is nowhere dense in σ (in the relative
topology).

3. For θφΘ the set of eigenvalues of the operator H(θ) is dense in σ and the
corresponding eigenfunctions are exponentially decaying.
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The zero measure set of Diophantine ω's not satisfying (1) happens to include
the golden mean - the most popular object for numerical studies. Without the
technical assumption (1) we prove a slightly weaker result:

Theorem 1'. For any Diophantine ω and any 2 < λ < 15 we have

2. There exists a closed set A c σpp, | A | ^ 2 2 — 4, such that σsc is nowhere dense
in A.

3. For θφΘ the set of eigenvalues of the operator H(Θ) is dense in A and the
corresponding eigenfunctions are exponentially decaying.

Remarks.

1. As can be seen from the proof, in order to prove complete localization in
σ for λ > 2 it suffices to prove the continuity of the Lyapunov exponent y{E).
For λ large enough the continuity of γ(E) follows from the proof in [9]. This
continuity would also be enough to rule out the singular continuous spec-
trum for λ < 2 [16].

2. An estimate on the rate of the exponential decay of the eigenfunctions can be

easily obtained from the proof and is given by | Ψ(x)\ S const I -

for any ε > 0. This decay is slower than what is suggested by the Lyapunov
exponent.

3. Theorems 1 and Γ can be proved with θ satisfying a weaker condition.
fλ\—

Namely, let us fix 1 < μ < I - I and put

k
sin2π ( θ + -ω < μ k holds for infinitely many fc's}.

Then for θ φ Θμ the same result holds, but the estimate on the decay of the

eigenfunctions will be: | Ψ(x)\ S const ( I T ) μ4 ) . It is quite clear that

the rate of decay should depend on μ. This result can be compared with the
fact that for θ e <9μ, μ sufficiently large, the operator H(θ) has no pure point
component in the spectrum [14].

4. The Diophantine property can be made weaker (see the comment in [11])
but not too weak since for Liouville ω the spectrum of H(θ) is purely singular
continuous. The upper bound in (1) appears here only because of the same
bound in [8] and is presumably an artifact of Last's (and, of course, of the
present) proof.

5. All the results certainly hold for λ ^ 15 as well [11].

In Sect. 2 we describe our method for proving localization which is a certain
modification of the method of [17] (see also [10,18]). In Sect. 3 we formulate our
main technical result, Theorem 2, which is very similar to Theorem 2 in [11], and
present the soft arguments which prove Theorems 1 and Γ from Theorem 2. In
Sect. 4 we prove Theorem 2.
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2. The General setup

We start with some definitions

Definition. A formal solution ΨE(x) of the equation H(Θ)ΨE = EΨE will be called
a generalized eigenfunction if\ΨE(x)\ ^ C(l + \x\)for some C = C(ΨE) < oo. The
energy E for which such a solution exists will be called a generalized eigenvalue.

It is well known that to prove pure point spectrum one only needs to prove that
generalized eigenfunctions belong to / 2 (see [17]). We denote the Green's function
(H — E)'1 of the operator H(θ) restricted to the interval [ x i , x 2 ] with zero
boundary conditions at xx — 1 and x2 + 1 by G[XltX2](E). Let us fix a number
m < 1.

Definition. A point y e Z will be called (m, k)-regular if there exists an interval
[x l 5 x 2 ] containing y such that

\G[χi,χ2](y> χi)\ < mk> a n d d i s t ( ^ χi) ^ fc; i = 1, 2 .

Otherwise y will be called (m, k)-singular.

Let £ be a generalized eigenvalue of HΘ, Ψ(x) the corresponding generalized
eigenfunction.

Lemma 1. For every x e Z such that Ψ(x) Φ 0 there exists k0 = feo(x, m, 0, E) < oo
such that for k > k0 the point x is (m, k)-singular.

Lemma 1 is the same kind of statement as Lemma 3.1 in [10] and so is the
proof. D

Suppose one can prove that (m, fc)-singular points are "far apart" which we
formulate as the following

Quasilemma. Suppose the points Xχ,x2 are (m, fc)-singular, k is large enough and
k

dist(x l 5 x2) > -, then dist (x l 5 x 2) > k.

Then the rest of the proof can be organized as follows. Assume without loss of
generality that Ψ(0) φ 0. Let |x | be bigger than feo(0, m, θ, E) and sufficiently large
so that we can apply the Quasilemma with k = \x\. Suppose x is (m, |x|)-singular.
Since 0 is (m, |x|)-singular, the Quasilemma asserts that dist (0, x) = |x | > |x|. The
contradiction implies that x is (m, |x|)-regular. Thus we have that there exists an
interval [x l 9 x 2 ] containing x such that

\Xi -x\S \x\, \G[Xl,X2](x, xd\ S mW, i = 1, 2 .

We now can use the formula

Ψ(x) = G[XltX2l(x9x1)Ψ(x1 - 1) + G[Xι,X2](x,x2)Ψ(x2 + 1)

to obtain the estimate:

\Ψ(x)\ ^ 2 C ( 1 +2\x\)m{xl .

This argument shows that the localization follows immediately if we make a lemma
out of the Quasilemma, i.e., provide it with hypotheses and, of course, with a proof.
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3. Proof of Theorem 1

We define

B(θ, E,λ) = (E~ λ°0S 2 π θ ~ 1 Y Bk(θ, E, λ) = B(θ + kω, E, λ) ,

Mk{θ, E9 λ) = Bk(θ, E,λ)... B0{θ9 E9 λ) .

The Lyapunov exponent y(E9λ) is given by y(E, λ) = infk fjlfel"1

In || Mfc(0, E9 λ) || dθ. Recall that for λ > 2 we have y(E, λ) ^ ln(λ/2) > 0. Theorem 1
will follow from

Theorem 2. Let ΘφΘ, ω be as in Theorem 1 and suppose E, λ are such that
In — ^

— > - and E is a generalized eigenvalue of H(θ). Then the corresponding
y(E9λ) 4
generalized eigenfunctίon Ψ(x) is exponentially decaying.
Proof of Theorem 1. Take any λ > 2. The Aubry duality and the Thouless formula
yield famous relations [19, 6, 7]

(E λ) = ln-+ (— -) (2)

4 / / 4\\
Since - < 2, we can use the result of Last [8] that for a.e. E e σl HI θ, - I I the

Lyapunov exponent γ I E, - I is equal to 0.

V λJ
Craig and Simon [12] have proven that y(E) is continuous at points E where

= 0. We set

The set f Gnσ contains an open (in σ) dense (in σ) set of measure |σ|, thus the set
σ\| G is a nowhere dense in σ set of zero measure. For Ee\G relation (2) implies
that y(E, λ) < | l n | and we can apply Theorem 2 to obtain that for θφΘ (thus, for
a full measure set) σcr\\G = 0 which gives statements 1 and 2 of the theorem. To
obtain the third statement we recall that the spectrum, σ, does not depend on θ for
all θ (see, e.g., [1]). Thus for ΘφΘ the set of the eigenvalues is dense in jGnσ and,
consequently, in σ. D

Proof of Theorem T. Gesztesy and Simon [13] have proven that for any irrational
ω and any λ the inequality |σαc| ^ 4 — 2λ holds. This plus the Ishii-Pastur-Kotani
theorem (see [1]) and the same argument as above implies the result. D

4. Proof of Theorem 2

As we learned from Sect. 2 it suffices to prove the Quasilemma under the conditions
of Theorem 2.
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Following [11], let us put

k- 1
Pk(0, E) is an even function of the argument 0 H — ω and can be written as

/ / k _ i \\
a polynomial of the degree k in cosί 2π( θ -\ ω ) I:

Pk(θ, E) = +
fc-1

To simplify the notation we will sometimes omit the dependence on E.

It is easy to see that bk = 2λk. We now fix E e R; 1 < mγ < -. Given k > 0 we set

For any xu x2 = Xi + k — 1, Xi ^ y ^ x2 we have

|G[jCl>JC2](xi,)0 =

(3)
Pk(θ

Since Pk(θ, E) is one of the entries of the matrix Mk(θ, E) we have the evident upper
bound I Pk(0, £) | g || Mk(θ, E) \\. It is proved in [12] that for all θ, E, λ the inequality

]imsup\k\-1\n\\Mk{θ,E9λ)\\ ^y(E9λ)

holds. Thus for any ε > 1 there exists fe(ε, E) such that for fc > fc(ε, £) we have

In IP,(6>,£)I <fc(βy(£U)). (4)

It follows from (3), (4) that for xx e Ak, x2 = X\ + k — 1, fe > fe(ε, 0, £),

— < m < 1 and 3; e [x l 5 x 2 ] s u c r i that
m

we have

We set cΛj£ =

(5)

εy(E, λ)

Proposition 1. Suppose y e Z is (m, k)-singular. Then for any such x that
fe(l — cλt£) ^ y — x ^ fccλj£ we /tαi e ί/iαί x does not belong to Ak.

Proposition 1 follows immediately from (5). D
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The rigorous statement of the Quasilemma can now be obtained from the

following lemma:

Lemma 2 [11]. Suppose ω is Diophantine, E e R. For θφΘ there exists kγ (θ, E) such

that for k > k^θ, E) if the points xl9 x2 satisfy

1) χi9 xt + 1, ... 9xt + - y - \φAk9 i = 1,2,

2) dist(x1,χ2)> y 1

then

dist(x1? x2) > oίk

with α = α(m1? m, λ, E, s, r) > 1.
i λ_ o 2

Indeed, let us suppose that ——^— > - . Then three exist 1 < mγ < - , m < 1 and

ε > 1 such that 2cλ ε — 1 > \. Let k be bigger than max[fc(ε, E), k1(θ, £ ) ] . Suppose

1
xΊ, x'2 are (m, fe)-singular and dist(xΊ, x'2) > \ . Since 2cλtE — 1 > - , we ob-

tain using Proposition 1 that the points xί = x\ — cλLk and x2 = x2 — cλ^k satisfy

the conditions of Lemma 2. Applying Lemma 2 we get that dist(xΊ, x'2) > ak > k

for large k. After that the rest of the argument is the same as in the end of

Sect. 2. D

5. Acknowledgement. It is a pleasure to thank A. Klein for many useful discussions.
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