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Abstract: The cubic Schrόdinger equation is considered on the circle, both in the
de-focussing and the focussing case. The existence of the flow is proved together
with the invariance of the appropriate Gibbsian measure, namely the petit canonical
measure in the defocussing case and the micro-canonical measure in the focussing
case.

1. Introduction

McKean-Vaninsky [1994(1)] discussed the petit canonical resemble for wave
equations UQ = d2Q/dt2 - d2Q/dx2 = -f(Q) of classical type, both on the circle
0 ^ x < L and also for L | oo. The force f{Q) is odd and of the same signa-
ture as Q, i.e., it is a restoring force; also, it is so large that /0°° e~LF^dh < oo

for F(Q) = JQ

Qf. Let1 β = P and H = (\/2) JQ

L[P2 + (Qf)2] + JQ

LF(Q). Then,
with a suitable interpretation of this object, the Gibbsian petit canonical mea-
sure e~HdOQPdooQ is of total mass Z < oo and is invariant under the flow
Q =P = dH/dP,P9 = Q" - f(Q) = -δH/dQ of UQ = -f(Q); in particular, the
flow exists for almost every choice of data from the petit ensemble.2

The present paper deals with nonclassical (dispersive) waves in the special case
of the cubic Schrόdinger equation:

Q = _pn ± ςp2 + Ql^p = dH/δp^ pn = +Q>' ψ (p2 + Q2)Q = -

with

\ h + {Q'fλdx ± \ /OP2 + Q2fdx .
4 0

The work reported here was performed at the Courant Institute of Mathematical Sciences, with the
partial support of the National Science Foundation under NSF Grant No. DMS-9112654, which is
gratefully acknowledged.

1 signifies d/dt.
2 Compare Friedlander [1985].
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It owes its inception to Lebowitz-Rose-Speer [1989] who introduced the petit
canonical ensemble:

-(1/2)/(P')2

 e-{\β)!{Q')2

* * ~ (2πO+)°°/2 (2πO+)~/2 " * ~

and studied the possibility of phase changes in the temperature-dependent variant
with e~Hlτ in place of e~H. The meaning of this formal object is easy to explain:
for example, the second factor signifies that Q is "circular Brownian motion," i.e.,
it is standard Brownian motion starting at Q(0) = m, conditioned so as to come
back to m at x = L, this common value being distributed over the line according to
the law (2πL)~ι^2dm of total mass -foo : in symbols,

?-(i/2)/(2')2

for nice functions I(Q) of Q(x);0 ^ x < L,EOQ being the mean for the tied Brow-
nian motion with Q(0) = 0 = Q(L). The first factor has the same interpretation.
The third is just a density, having a proper sense because the Brownian path is
continuous. The ensemble is of total mass Z < oo if the upper (defocussing) sign
is chosen. Contrariwise, the lower (focussing) sign produces infinite total mass,
prompting Lebowitz-Rose-Speer [1989] to introduce a micro-canonical ensemble
whereby the measure is restricted by fixing the value of the constant of motion
Jo(p2 + Q2) = N-3 This ensemble, too, has total mass Z < oo even if (P2 + Q2)2

is replaced by (P2 -+- Q2)3~, as they found; see 4, below.

Thus far, the petit and micro-canonical ensembles. The rest of the paper is de-
voted to the proof that, for I < oo, the flow makes sense in these ensembles and
leaves them invariant. The method is novel: it relies upon a criterion for com-
pactness of measures in path-space due to Kolmogorov-Centsov, viz., if for some
fixed α > 0 and β > 1, E\Q(x + h) - Q(x)\a ^ hβ for 0 ^ x ^ 1 and 0 ^ h < 1,
then P[\Q( + h) - β( )|oo S cF,0 ̂  h < 1] > 1 - ε for fixed γ < (β - l)/α
and some universal constant c depending on ε alone; see, for example, McKean
[1969:16].

Bourgain [1992] proves the existence of the (individual) flow in H° by a clever
mixture of trigonometrical series and number theory. Strichartz [1977] had proved

1 oo 2

Jdt J dx\e^λtD
 /(JC)|6 ^ constant x

0 - o o
/ \f(x)\2dx

and used it to verify the existence of the flow on the whole line. The estimate owes
its validity to dispersion, and that does not operate on the circle. Bourgain [1992]
replaced it by

1 L

0 0

J\f(x)\2dx
0

3 LRS [1989] actually took / = J(P2 + Q2) ̂  N instead of I = N; in fact the latter, which is

preferred here, is no more delicate than the former.
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in which p projects onto the span of e

lΊί^-^nχlL

 : \n\ < d. In the present paper,
an averaged version of Strichartz's estimate makes its appearance: if I(PQ) is any
polynomial of P and Q, of fixed degree d ^ 1, then

cos
Mo\ (tD2)I(PQ)\β ^ c(d)[M0\I(PQ)\2]3,

sin

in which MQ is the mean based upon the "free" ensemble e~H°d00PdcoQ with Ho =
(1/2) f[(P')2 + (Q'f + P2 + Q2], and the constant depends on the degree only,
growing like a factorial for d | oo. The reader may deduce this estimate from the
sample in Step 4.3 below. Unlike Bourgain's estimate, it is not destabilized by
sharper trigonometrical approximation, and, as the basic non-linearity is of fixed
degree (3), so it has an advantage. It is the key to the existence of the flow,
with probability 1, in the petit ensemble. Naturally, Bourgain's individual flow is
better, but the present method has much to recommend it: besides being easier, it
is insensitive to the degree of the non-linearity, unlike the individual flow which
must respect the "critical exponent" (n = 2) in (P 2 + Q2)n(P - Q). Bourgain [1994]
himself has considered the invariance of the petit ensemble and has made remarkable
progress in the case of 2 spatial dimensions, as well.

The thermodynamic limit L j oo presents no difficutly for the upper (de-
focussing) signature: the petit ensemble, normalized by Z~ ι , tends to the law of the
2-dimensional stationary diffusion with infinitesimal operator © = (\/2)(d2/dP2 +
d2/dQ2) + m grad, in which m is the logarithmic gradient of the ground state
of ©o = -(l/2)(d2/dP2 + d2/dQ2) + (1/4)(P2 + Q2)2; compare McKean-Vaninsky
[1994(1)]. The corresponding microcanonical ensemble with J(P2 + Q2) — N9 fixed
D — N/L, and L | oo can also be described: the only change is that a constant mul-
tiple P2 + Q2 must be added to ©o and the constant adjusted, in conformity with
Gibbs' postulate, so that the stationary mean of P2 + Q2 has the prescribed value D;
compare McKean-Vaninsky [1994(2)]. Contrariwise, the lower (focussing) signa-
ture seems really hard. Now (1/4) J(P2 + Q2) with its bad sign acts as a repulsive
force, counteracted by the microcanonical fiat J(P2 + Q2) = N = DL, and the out-
come of this competition is not at all clear. Lebowitz-Rose-Speer [1989] present
numerical evidence that the thermodynamic limit exists and suggest the fascinating
possibility that the temperature-dependent microcanonical ensemble e~H^τdooPdooQ
favors radiation/solitons at high/low temperature, i.e., that there is a phase change
or "softening" here. No proof is known. Here, it is noted only that the ensemble can
be reduced to a simpler one for L | oo. The microcanonical law is based upon a 2-
dimensional circular Brownian motion. This may be expressed in polar coordinates
as a skew product [R, Θ(T)] in which R = \JP2 -f Q2 is the (circular) 2-dimensional
Bessel process BES(2) and the angle Θ(T) is an independent 1-dimensional Brow-
nian motion BM(\), reduced modulo 2π and run with the clock T = / 0*R~ 2 . Now,
conditional on the radial path, the return of the angle, dXx—L, to its value at x = 0
costs4

oo e-(2πnf/2T(L)

in view of [T(L) = ^ R'2} x [J^R2 = LD] ^ L2, the moral being that the mi-
crocanonical ensemble behaves like the skew product of 1) BES(2) with weight

4 Poisson summation is used.
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exp[(l/4) f R4], microcanonical restriction J R2 = N — DL, and L | oo, and 2)
BM(1) reduced modulo 2π with clock T — /* R~2. This reduced problem awaits in-
vestigation. It must also be confessed that the existence of the flow for L = oo is not
known in any of these ensembles: for wave equations of classical type, propagation
speed 1 does the trick, but now that is lost.

2. De-focussing Case

A cut-off tames the nonlinearity by suppressing high wave-numbers; later, it will
be removed with the help of Kolmogorov-Centsov. Let the perimeter of the circle
be fixed at L = 1 (it plays no role), and (by abuse of notation) let p be the Fejer

5operator:5

p : β 4 Σ Σ δ W ^ f Q ( X + x ) φ d x ,
d m=0 \n\£m -1/2 d X Sin {%%')

noting pi = p and also pi = 1. Introduce, too, the cutoff Hamiltonian

Hd =6 \ }\iP'f + (β')2 + P2 + β2] dx+l- JΛP2 + Q2 - 1 fdx ,
1 0 4 0

with its associated vector field

Q -> -p" + p + p τ ( P 2 + ρ 2 - i
Xd =1 [I - D2 + V\P2 + Q2 - \)]J:

and petit canonical measure

Md =

and observe that everything splits according to the splitting of P and β, by projec-

tion onto low harmonics e2πv-ϊ«* : | w | < J ? and by co-projection onto high harmon-

ics e2π^^nx : |n| ^ d. The low harmonics form a classical (2d — 1 )-dimensional

Hamiltonian system with its private Hamiltonian

H- = \ Σ (1 + 4πV) \\P(n)\2 + \Q(n)\2} + 1 /p^p 2 + Q2 - ifdx :
2 \n\<d L J 4

it preserves the associated classical petit ensemble and also its contribution to the
constant of motion N — J(P2 -+- Q2). The high harmonics have the simpler Hamil-
tonian

5 Q{n) = J Q(x)e lΊl^~^nxdx etc. The present p is preferred to the projection because it

reduces |β|oo
P1I(PQ) means I(pP,pQ).

7 j = I o ) ' ^ ^ ^ a s a n e x t r a V m
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H+ = \ (1 +4πV) \\P(n)\2 + \Q(n)\

here also the associated petit ensemble is preserved since P(n) and Q(n): n ^ d
are independent isotropic Gaussian variables with (absolute) mean squares (1 -f
4π2n2)~ι and these statistics are undisturbed by the individual flows induced by
expί(l -D2)J :

Q(n) ί cos sin

P(n) "" V~ s i n c o s

The preservation of the full ensemble Md under the flow of Xd will be plain from
these remarks. It remains only to remove the cut-off with the help of Kolmogorov-
Centsov. The free (Gaussian) measure

Mo =

is used for reference; it exceeds Md for every d ^ I,d — oo included. The constants
c\,C2, etc. appearing below are independent of d,t,x - whatever.

Step 1.

Md ύ cχh2

Proof. Md is preserved by the flow and also by rotations of the circle, so you may
reduce to t — x — 0; also, Md g Mo, and as the latter is Gaussian and symmetric
in Q and P9 so the mean in question is overestimated by a universal multiple of

~ β(0) | 2 squared* Now compute

- β(0) | 2

the substitution m -^ m — (Q = JQ Q) being used inside the expectation in line 2.

Step 2.

Proof. Reduce to t — x = 0 as before and note that

+9

8 Mo is Gaussian and Γ°° jc 4 ^- t 2 / 2 σ 2 (2π(T 2 )- 1 / 2 = 3σ4.
«/ — oo

9 e(h-t)X0 a c t s outsit j n ̂ g conventional way. ( e ^ ) ^ acts inside, i.e., it replaces P and 2 by
etXdP and e ^ g throughout.
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with XQ = the free field (1 — D2)J, and Mj ^ MQ. The first piece of the right-hand
sum is overestimated by a multiple of MQ\(ehx° — l)Q\2 cubed.10 Now compute

It remains to estimate

h

fe
o

Md
-\)jQ

pdt

ύ h5jMd

o

g 1 1 h5jM0

dt

dt.

The discussion is broken off at this point to prepare the averaged version of
Strichartz's inequality cited above.

Step 3. The Gaussian character of MQ permits the universal estimate

, β ύ cA Mo evc0Q
P

r

3

= C4
MQ

Q
P

2"Ί 3

the final equality being the result of the rotation invarianee of Mo and the fact that
e'χo is an orthogonal transformation:

= Mof , β
(X) dx = Moj

Q
(x) dx = MQ

Q
(0)

It is desired to extend this type of thing to cubics such as p^(P2 -f Q2)Q so as to
confirm that M0\etX°p^(P2 + Q2) - l)jf\6 lies under a fixed bound, independently
of t ^ 0 and d ^ 1. This will complete step 2.

Sample Proof. cos[ί(l — D2)]p^Q3 is treated: in extenso,

cos[ί(l - D2)] p ^ 3 ( 0 ) = Σ ~ ^ c o s t{\ + 4π2n2) Σ Π ^

in which n and the /s run from —d + 1 to d — 1. The (absolute) sixth power of
this (real) quantity takes the form of a sum

ΣΠ
— \rii

ί=l

over certain restricted values of (p\,...,p\%) G Z 1 8 and n o w , if the m e a n Mo

b e taken, the only s u m m a n d s that survive have the n u m b e r s p\9...,p\& paired,

f°°
J -c

is preserved by the flow of Xc\ and
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p' to —pN}2 the reason being that under the free measure, the several co-
efficients Q(p) are independent isotropic Gaussian variables of the form (1 -f
4π2p2)~1/2 JQ e~

2πy^Pχ (white noise) dx. The mean is now expressed as a sum
of products

M0\Q(Pj)?

over certain restricted values of (p\,..., p$) € Z9, and striking out the cosines pro-
duces the averaged variant of Strichartz's inequality:

Λf0|cos[f(l - ^ 2 ) ] p τ β 3 ( 0 ) | 6 S M 0 | p τ ρ 3 ( 0 ) | 6 ^ MO0 1 8(O).

The details are not important now: you need only carry away the fact that the bound
is independent of both t ^ 0 and d ^ 1.

Step 4. The variable t is now limited (temporarily) to the interval [0,1], say, and
Steps 1 and 2 are used to guarantee that, if 0 ^ c < oo is large enough, then,
independently of d ^ l,Md is nearly concentrated on the compact class of paths
Z: [0,l] 2 ->R2 with

\Z(t2,x2) - Z(tux{)\ S c[\t2 - h\ι/4- + \x2~xι\l/l2~] ,

exemplified by Z(t, x) — etXd®(x)P Now change the point of view, regarding the
paths as secondary and the measure MJ induced on them as primary, i.e., fix the
paths and encode the flow into the measure. Pick d — d\ < d2 < etc. | oo so that
MJ tends weakly to some measure M^ and let I{QP) be a nice function of (QP) =
Z(0,JC) :0 ^ x ^ 1. Then

ΛO[Z(0, •)] = Jim M;/[Z(0, •)] = Jim MdI(PQ)
a\oo d\oo

= Jim Md(e^γl(PQ) = Jim M;i[Z(t, )] = M
djoo d\oo

i.e., M^ is invariant under the shift Z(0,•) —> Z(t, ). But what is that?

Step 5 provides the answer: it is nothing but the flow Z* = X^Z = (— D2 -f Z2)JZ
in a weak form. Fix d ^ oo. Then the weak flow Z* = XdZ = [1 - D2 -f p^(Z2 -
1)]JZ is expressed by the vanishing of

for any (sure) compact test function φ(ί, x) of class C°° R x (0, 1) —* 7?2, and now
the statement follows from

1 2 The recipe will be found in Wiener [1958:11].
1 3 This is Kolmogorov-Centsov. 1/4— stands for any fixed number < 1/4 = (2 — l)/4; simi-

larly, 1/12- is any fixed number < 1/12 = (3/2 - l)/6.
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— oo 0

30, d2

= lim M2°\ditto

= lim
rfTc

^ C5
dfoo

oo 1

/ dtJdx(etXdγ(\ -pϊ)(Z2)JZ
- o o 0

|(1 — p )(Z — \)JL\

= o ,

for which the elementary estimate |ρ|oo ϊΞ 1 provides a domination.

Step 6 improves upon Step 5. M ^ lives on paths Z G C[0, oo] x [0, 1] —> i?2, so

for any (sure) test function φ(x) of class C°°(0, \) -* R2. Now put

Z*(ί, •) - e~ω2jZ(0, ) + fe-C-^Z2 JZ{t',.)dtf ,

interpreting everything in L2[0, 1) x L2[0, 1), as you may in view of J o Z 6 < oo.
Then

eω2jJφZ* - Jeω2jφ ίz(0, )
0 0 L

so that

dt dx2'

in particular,14 cn{t) = (Z — Z*)Λ(n) satisfies c* = 4π2n2cn, and as c«(0) = 0, so
cn{t) vanishes for t ^ 0, which is to say that the shift Z(0, •) —>Z(ί, ) satisfies
the identity

Z(ί, ) -

in L2[0, 1) x L2[0, 1). The fact that Z(ί, x) is of class C[0,oo) x [0, 1) -> i?2 is
now re-invoked to justify the replacement of Z2JZ by K^Z2JZ with a cut-off such
as # Z = [k(Q), k(P)] in which i ( β ) = -N9 or g, or + N according as β ^ -N,
or N ^ Q ^ +N, or Q > +N. This has no effect on the identity for the shift up
to time t = 1, say, if Λf > max\Z{t, x)\ : 0 ^ /, x ^ 1, but now you may solve the
cutoff identity for Z(ί, •) in terms of Z(0, •) as the fixed point of a contraction in

is taken as exp(—
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L2[0, 1) x L2[0, 1), and that tells you two things: 1) the shift is nothing but the
flow etX of Z* = (— D2 + Z2)JZ, not only in the weak version of Step 5, but in the
present more constructive version; 2) Z(t, •) is measurable over the field of Z(0, •).
The latter fact was the aim of Step 6.

Step 7 is the punch-line: lim^ooM^ — M^ in variation since exp—1/ 0 p^(P2 +

Q2 — 1 )2 tends to exp —\J0 {P2 + Q2 — 1 )2 under the bound 1 where the free mea-
sure lives; in particular, M^ — M^ on functions of Z(0, •) = QP. Now let / be
any nice function of QP, note that {etXγl(QP) is a measurable function V of QP
by Step 6, and compute as follows:

= M^I(QP) since M^ - M^ on the fixed of QP

= M^(etXγl(QP) by shift invariance of M^

= M^Γ(QP) by definition of I\QP)

by the first reason

by the third reason .

The discussion is finished: the flow of Z* = (—D2 -f Z2)JZ exists (with probability
1) in the petit ensemble and preserves the canonical mean-value M = M^. Now
on to the focussing case. The difference is surprisingly little.

3. Focussing Case: Preparations

The present section prepares some tricks for the evaluation of micro-canonical av-
erages. Fix 1 ^ d ^ ex). The micro-canonical measure is

Md =

conditioned on the value of the constant of motion J(P2 + Q2) — N, i.e.,

M o ^ g i V 1 / 4 ) / ^ 2 ^ 2 ) 2 , /QP2 + Q2) - N]
d ^ } Zd = M0[e^)^(P^QψJ(p2 + ρ2) = TV]

with the understanding that p = 1 if d = oo. The reference measure Mo is now the
joint law of 2 independent (circular) Brownian motions, and the peculiar but helpful
notation used top and bottom indicates a density, as in Mo[K(QP), J(P2 + Q2) —
N] = (d/dN)M0[K(QP), J(P2 + β 2 ) ^ iV].

*S?e/> 7. Zd is bounded from 0 and oo, independently of 1 ^ d ^ oo, for any fixed
N. The fact is due to Lebowitz-Rose-Speer [1989] for d = oo; they even show that
Z < oo with a small constant x(P 2 + Q2)3 in place of (P 2 -f- β 2 ) 2 , as will appear
below, and that these limitations (on constant and power) are sharp.

Item 1. Let E be the double tied Brownian mean EQQ X isoo Zd is the ratio of the
infinitesimal dN to

1 oo oo Γ Ί

— / da J dbE pW/p^C+^-KC+ft)2]2,/^ + a)2 + {Q + bf] e dN]
2^-oo -oo •- -*

oo i 2π , _ Ί Ί

= Jrdr— jdθE[eW4)I^p'p+rcosθ)+(β-Q+rsiaθ)\l + r2 € dN]
2π

j
o 2π 0
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with ? = /J P, β = /O β, and / = f*[(P - P)2 + ( β - β ) 2 ] , _as you will check
by putting J Jdadb inside is and changing variables αδ - > P g + (r,θ), and this
expression, in turn, is equal to

2 2π
0

\P(I ^
^ \P(I ^ N) is immediate; it is the desired lower bound.

Item 2 prepares the way for the upper bound. Za is controlled from above by15

E[ei f Pl[(P-P)4HQ-Q)4HN-i)2]j ^ N]

< ew x

in view of the independence of P and β and the simple estimate16

j V ( β - β ) 4 ^ m a x p ^ | β - β | 2 x / | p ( β - β ) | 2 ^ max|β - β|2 x

Step 3. 1 7 f(Q - ~Qγ <, N implies that meas(x: |β(jc) - β | ^ n/2) cannot exceed
4N/n2, so | β — β|oo ^ w only if18 Q suffers a displacement ^ w/2 in some small
subinterval of [0,1) of length 4N/n2. Let n2/4N — m— 1,2,3, etc. for convenience.
Then \Q(x) — Q(j/m)]\ ^ w/4 for some 0 ̂  j ^ m and some x at distance ^ 1/m
from j/m. Let «, and so also m, be large. Then both x and y'/m are distant ^ 1 / 3
either from x = 0 or from x = 1. But if 5 is an event from the field of β(x):

x g 2/3, say, then the tried Brownian probability POo(£) = \/y2E0[e~3Q2{2/3)/4,B]
is less than y/3/2Po(B), in which £Ό and Po refer to the standard Brownian motion
with Q{\) free, and now the (tied) automorphism Q{x) —> β ( l — x) permits you to
control POo[|β - β|oo ^ n] by

mP, [max |β(jc)| > -1 = χβm^2Je-mχ2/2dx < ^e^

The rest will be plain, and you will understand why Z < oo not only for (P2 -f β 2 )2

but for a small constant x(P2 + β 2 ) 3 , as well.

Ste/? 2. The procedure of Step 1 supplies a nice upper bound for the general micro-
canonical mean Md(K): it is overestimated by a fixed multiple of

2π _ _

JdθE[K(P -P + VN - / C O S 0, β - β + x/JV - / sin θ)
o

χ e3/p[(P-F)+(β-

x the indicator of / = J[(P - P)2 + ( β - β ) 2 ] ^

15 p is an average; also [{a + b)2 + (c + dff ^ 12[α4 + c4 + (b2 + ί/2)2].
16 p is an average, esp. vQ — Q-
17 Varadhan helped with this [private communication].
18 Q-Q = 0 some place.
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S jdθ^/E[K2(P-P + VT^Πcosθetc.) J ^ N]
o

489

x e

x E

in which the last piece may be overestimated, independently of d, in the manner
of Step 1.

4. Focussing Case: Micro-Canonical Ensemble

The discussion is not much changed from Sect. 2, only the estimates are a little
more elaborate. The existence of the cutoff flow Z# = (— D2 + p^Z2)JZ is proved as
before: it splits into a free flow at high wave numbers and a {Id — 1 )-dimensional
classical Hamiltonian flow at low wave numbers, each preserving its private Hamil-
tonian and also its contribution to the constant of motion J(P2 + Q2). The preser-
vation of the (cutoff) micro-canonical ensemble is obvious from that. Now come
the estimates for the Kolmogorov-Centsov trick, parallel to Steps 2.1, 2, and 3.

Step L
1 9

w ^ c6h
2

Proof. By item 3.2, you have only to control, e.g., \/EooQ*(h) which is proportional
to [EwQ

2{h)f=h\\-hf.

Step 2.

Md
,(t+h)xd

Q
( * ) •

, β (x)

Proo/ Now ( V ^ - l ) ^
rest of the proof is divided into 3 small items.

Item 1.

p

. The

Md

by the usual Gaussian trick.

19 Xd is now -D2J + p τ ( P 2 + Q2)J.
2 0 see Item 3.2.

constants.



490 H. P. McKean

Item 2. E\(ehx* - \)®|2 ^ cuh
ι/2, much as in Step 2.2. The point is that the tied

Brownian motion Q is identical in law to Q(x) — * β ( l ) with a free Brownian

motion Q starting at 0, so Qtied{n) = (2π v

/ I Γ T«)" 1 x JQ erlΊίyf-lmdQfree for n + 0,

and the only change from Step 2.2 is that the correlation EOo[Q(O)ehXoQ(O)] is now

2Σ-
«+o

— cos4π2n2h

4π2n2 instead of 2 ' ^
1 + 4π2n2

Item 3.

Md

^ h5fdtMd

o

0 0

and this is controlled by a sum of means typified by EQQ\ cos(tD2)p^(Q — β ) 3 | 1 2

It remains to bound such things independently of t ^ 0 and J ^ 1.

Step 3 does that. Qtied — Q/ree ~xQfree(l), a s noted in Item 2, and Qtιed(n) : nz^®
are independent isotropic Gaussian variables. This is the basis of the computation:

_ 2 3 yϊ—L
^ d

'-cos(4πznzt) π (Q-Q)Λ(P,)

12

1=1
-^cos(4π2«?ί)Σ Π

36 d -

with |«i| < J, |/77| < d, and p\ + pi + pi = nu etc. in blocks of 3, and if now the
expectation EQQ be taken, the /?'s must be paired, p' to -/? / ;, or else that summand
is killed, with the result that the whole sum is overestimated by

18

Σ Π
P Γ P 1 8 ΦO

= Σ

The rest is plain: just put this back into Item 3, bounding the expression considered
there by c\-$h6.

The remainder of Sect. 2 is now repeated verbatim. The proof of the existence
of the flow in the micro-canonical ensemble and of the invariance of the latter under
the former is finished.

2 2 see I tem 3.2.
2 3 n a n d t h e /?'s r u n f rom —d + 1 to d — 1.
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Note Added in Proof. P.E. Zhidkov has kindly pointed out the following refer-
ences to his work: Dokl Akad Nauk CCCP 317 (1991); Soυ. Math. Dokl. 43,
431-433 (1991); Nonlinear Anal. 22, 319-325 (1994). The first establishes the in-
variant measure for the classical wave equation δ2Q/dt2 — d2Q/dx2 -f f(Q) = 0, as
in McKean-Vaninsky [1994 (1)], but only for restoring force f(Q) comparable to
Q. The second announces the result of the present paper with a like restriction on
the nonlinearity, esp., the cubic is excluded.
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