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Abstract: Let V(θ) be a smooth, non-constant function on the torus and let T be
a hyperbolic toral automorphism. Consider a discrete one dimensional Schrόdinger
operator H, whose potential at site j is given by gVj — gV(TJθ). We prove that
when g ^ 0 is small and g1^2 ^ \E\ ̂  2 — g1^2, the Lyapunov exponent for the
cocycle generated by H-E is proportional to g2. The proof relies on a formula of
Pastur and Figotin and on symbolic dynamics.

1. Introduction

In this paper we study the Lyapunov exponent of Schrόdinger operators on a one
dimensional lattice with an ergodic potential. To define an ergodic potential, let
T be an ergodic, measure preserving transformation of a measure space Θ with
invariant measure dv. Let the potential at site n be Vn(θ) = V(Tn(θ)) where V is
a measurable function on Θ. The discrete Schrόdinger operator we shall study is
given by

(H-E)φn = (H(Θ)-E)φn = φn+ι + ι/v_! + [gVn(θ)-E]φn . (1)

Here g > 0 is the coupling constant and φ is a real valued function on the integer
lattice. The Lyapunov exponent defined by

= lim & L | r J V | ι r " ^ J ^ 0 (2)
N-*oo 2N

is constant almost everywhere on Θ and independent of the initial values of φ.
If g > 0 and F7 are independent random variables or V comes from a Markov

process, positivity of y(E) was proved long ago by Furstenberg [1], Virtser [2], see
[3,4] for a review. More generally, Simon [5, b], following the original work by
Kotani [5, a] who studied the continuous case, has shown that if the potential of
the discrete one-dimensional Schrόdinger operator is not determined from values in
the past (the class of non-deterministic potentials) then for almost all energies E,
the Lyapunov exponent is positive.
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For small g, there is a formal asymptotic expression for the Lyapunov exponent
which to leading order in g is given by a formula of Thouless,

where p is the spectral density for the random process Vn (i.e. the Fourier transform
of the Vn pair correlation) and E = 2cos K. Kappus and Wegner [6] noted that on the
lattice, even when V are independent, there are anomalies in the formal perturbation
series in powers of g for y(E) when K is a rational multiple of 2π. See [7] for a
rigorous treatment of these anomalies when Vn are independent. In the continuum,
there are no anomalies provided the underlying dynamics comes from a diffusion
process [8].

In this paper we obtain bounds on the Lyapunov exponent of the form (3)
for a class of deterministic potentials, when the coupling constant g is small and
g^1 < \E\ < 2 — g1/2. There are few rigorous bounds on Lyapunov exponents for
deterministic potentials. The study of such systems is particularly natural in the
context of dynamical systems. We consider a class of deterministic potentials defined
by certain strongly mixing, hyperbolic dynamical systems. The main examples we
have in mind are the toral automorphisms for which there is a good symbolic
dynamics. In particular let Θ be the two dimensional torus and T a matrix in
SL(2,Έ) with a real eigenvalue strictly larger than 1. Whenever V is a smooth,
non-constant function on Θ we prove that the Lyapunov exponent satisfies (3).
The positivity of y(E) can be established using the Kotani support theorem [10]
for certain values of E (e.g. for almost all E such that \E\ ^ g, see [11]) but
the g dependence of y(E) is not obtained. Note that although we assume that T
is uniformly hyperbolic, the cocycle defined by (1) is in general not uniformly
hyperbolic. We shall also show that (3) holds for a wide class of uniformly mixing
potentials such as those with Gaussian distribution whose covariance falls off faster
than \i-j\-1.

The main idea of this note comes from a very elegant analysis of Pastur and
Figotin [4] who prove (3) in the independent case. What we do is to remark that
independence is not crucial-the mixing which arises from toral automorphism is
sufficient.

The extension of these methods to other classes of potentials with weak mix-
ing properties, such as the skew shift, still remains to be analyzed. An interesting
example is given by

Vn = cos L - -aπ + nθγ + θ2

where α is irrational and (#i,$2) belongs to the torus. We expect that in many
instances bounds of the form (3) continue to hold. It would also be very useful to
extend this technique for strips or more generally for cocycles of m by m symplectic
matrices. The main goal would be to get a lower bound on the smallest positive
Lyapunov exponent in the case where Vj are independent and g is small.

The remainder of this paper is organized as follows. In the next section we
present a precise formulation of our results and discuss some basic notions from
symbolic dynamics. The following section is devoted to deriving the Pastur-Figotin
formula which expresses the Lyapunov exponent in terms of correlation between the
phase appearing in a Ricatti equation and the potential. In the final section we show
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how to estimate these correlations for small g and prove Theorem 1. In addition,
we prove that (3) holds for a wide class of uniformly mixing stochastic systems.

2. Formulation of Results

Now we describe the class of operators for which the positivity of the Lyapunov
exponents will be proven. Our aim is not to give the most general formulation of
the result, but rather to keep the main ideas transparent.

Let si be a finite set. Without loss of generality, we can always assume that
si — {0, l,...9N}. Consider the set θ of all possible infinite words ΰ = (ΰn,n G
TL) G s$%. Introduce the minimal σ-algebra & containing all cylinder sets

C(iuai];...;in,an) = {ϋ : #,-, = a\,...9ΰln = an;au...,an G s4} .

We assume the measurable space (Θ,&) to be equipped with a probability measure
v, so that (Θ,^,v) is a probability space. In this paper, we will always assume the
measure v to be invariant and ergodic under the conventional left shift transformation
T : Θ —> Θ, with

{Tϋ)n = ΰn+λ ,

and the expectation with respect to the measure v will be denoted by JE[ ]. We
assume that the measure is Markov.

Introduce a family of functionals Var/, I = [a,b] C Έ on the space of bounded
measurable functions V on the measurable space Θ in the following way. First, for
any interval / C TL, introduce the natural projection πj : si% —> sd1 by setting

Then the functional Var/ is defined as follows:

Var/(Ύ) = sup \V(ύ) - V(ΰ')\ .
ΰ,ΰ/:πJ(ΰ)=πI(ΰ/)

Definition 1. We call a measurable function V : Θ —> IR quasi-local iff for some
constant c = c(V), 0 < q < 1, and for any m,n ^ 1

V a r ^ j C F ) ^ c(V)qmAn, mΛn= mm{m,n} .

The set of all quasi-local functions will be denoted by

Remark. It is easy to see that if V is a quasi-local function and T is an automor-
phism of the probability space Θ, then for any / G 2£, m,n ^ 1 we have

The above definitions can be easily adapted to the case of semi-infinite words
ϋ — (ΰn,n = 1,2,...) G ̂ / N . In order to use unified notations, we shall write X for
both TL and N; the set of words will be denoted by (9(X) or just Θ\ T will denote
the left shift automorphism/endomorphism, respectively.

Now we introduce an important object related to a random process (Vn(ϋ)),
which plays a significant role in the asymptotic analysis of the Lyapunov exponents
in the weak disorder limit: the spectral density



458 V. Chulaevsky, T. Spencer
oo

p(κ)= Σ eIκnΈ[V0Vn] . (4)
n— — oo

The main results of the present paper are given by the following theorems.

Theorem 1. Let V e l(Θ,q) have zero average and let T be a Markov automor-
phism. Consider the difference equation

If gι/1 < \E\ < 2 — g1/2, then for all sufficiently small g the Lyapunov exponents
y(E,g) for the solutions φ of the finite difference equations Hg(x)φ = Eφ is given

9
2(4 -E2)1

where cos(κ) = E/2, and ρ(κ) is the spectral density of the random process

Now we can give some examples of deterministic Schrόdinger operators on
12(Έ) and in / 2(N) whose potentials belong to the classes described above.

Example 1. Hyperbolic Toral Automorphisms (Arnold's Cat Maps). Consider a
matrix M 6 SL(2,Έ). It naturally defines an algebraic automorphism M of the ad-
ditive group ΊΓ2 = R 2 / Z 2 (the 2-torus). Let the matrix M have real eigenvalues
λ+ = l/λ- with |Λ±| + 1. Then it is well-known (see, e.g. [9]) that if we con-
sider the Borel σ-algebra ^Borei of subsets of T 2 and the Lebesgue measure / on
TΓ2, then the dynamical system (TΓ2,^BoreiJ?^b admits a finite Markov partition
and, therefore, there exists a finite set j / and an ergodic Markov measure v on
the set of infinite words Θ = jtfΈ with the cylinder σ-algebra Si of subsets of
Θ such that the system (T2,^Boreh l,M) is isomorphic to the left shift transfor-
mation f : Θ —> Θ. Furthermore, if we consider an isomorphism Φ : T 2 —> Θ,
then the coordinates x\ = xι(Φ~ι(ΰ)), X2 — X2(Φ~ι(ΰ)) on the torus TΓ2 are quasi-
local functions on Θ. This is a direct consequence of the fact that the pre-image
Φ~ι(C(—n,a-n;...;n,an)) of a cylinder set C(—n,a^n;...;n,an) is a parallelo-
gram of diameter O(\λ^\n), |/L| < 1. Thus, if V e Cι(Ί2), then it corresponds to
a quasi-local function V(ΰ) = V(Φ~ι(ΰ)) on the phase space Θ of the symbolic
dynamical system (Θ,B,v,T). These considerations lead to the following result.

Theorem 2. Consider a hyperbolic algebraic automorphism of the torus T : ΊΓ2 —>
TΓ2 and let V e Cι(Έ2). Then the ensemble of discrete Schrodίnger operators on
the space /2(Z),

(Hg(x)φ)(n) = φ(n - 1) + φ{n + 1) + gV(Tnx) φ(n\ n e Z, x G TΓ2 ,

satisfies the assumptions of Theorem 1 and, therefore, the Lyapunov exponents
y(g,E) admit the asymptotic formula (5).

Example 2. Dyadic Circle Endomorphism. Let {x} denote the fractional part of x.
Consider the mapping
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Γ: [0,1) — [ 0 , 1 )

x — • {2x}

of the interval [0,1) onto itself. The binary representation of a real number x e [0,1),

determines an isomoφhism Φ : [0,1) —> {0,1}N of the probability spaces ([0,1),
^BorehO and <9 = {0,1}N with the cylinder σ-algebra and the Bernoulli prob-
ability measure v, i.e. the probability measure such that all the variables ΰn

are i.i.d. with v({ϋn = 0}) = v({ϋn — 1}) = 1/2. Moreover, the mapping Φ de-
fines an isomoφhism of the dyadic mapping T : x ι—> {2x} and the left shift
f : 0?i,tf2>.--)'—> (t?2?^3? . ) on 6). Again, the coordinate JC = x(Φ~ι(ΰ)) is a
quasi-local function on Θ, since not only the probability, but also the diameter
of a cylinder set {β\ — a\,...iίn = αΛ} equals 2~n. So, Theorem 1 implies the fol-
lowing statement.

Theorem 3. Consider the dyadic transformation T : [0,1) —> [0,1) and let V be
a smooth periodic function on ([0,1]). Then the ensemble of discrete Schrδdinger
operators on the space / 2(N),

with a self-adjoint (e.g. Dirίchlet) boundary condition at n — 0 satisfies assump-
tions of Theorem 1 and, therefore, the Lyapunov exponents y(g,E) admit the
asymptotic formula (5).

Remarks.
1. In most cases p(κ) > 0, which yields a quadratic bound from below for the Lya-

punov exponents. For example, all pair correlations JE[vovn],nή=O9 may van-
ish, as it is the case for Vn(ϋ) = cos(2π2"#), n e N. If JE[t?0 vn] = δn0, then
p ( ι c ) = l .

2. It can be seen from our proof that the leading term of the above asymptotic
formulas is valid for all g > 0, E G (—2,2)\{0} satisfying

\E\ ^ φ > 0 ,

for some positive number α < 1. However, in the upper bound for the remainder,
the factor of g ^ l n 2 ^ " 1 should be replaced with gi~CL\v?'g~x.

3. We do not consider the case \E\ > 2, since for any such E there exists
go(E) > 0 so that if \g\ < go(E), then E does not belong to the spectrum of
Hg.

4. The condition of smoothness of the function V : Θ —> IR can be relaxed to the
Holder continuity, \V(ϋ) - V(ϋf)\ ^ A\ϋ - ϋ'\b,^ < i g 1, since this does not
violate the quasi-locality condition, but only affects the exponent of decay of
the tail-dependence of the functionals Var/(K).
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3. The dynamic formalism for the Lyapunov exponents

In this section we derive an expression for the Lyapunov exponent by going to
suitable polar coordinates. Our derivation follows [4]. We use the matrix formulation
of the equation, H(θ) φ = E ψ, which may be written as

Ψn+\ \ _ M ( Ψn \ = (E -gVn -\\ ( ψn

Φn J -^{ψn-J-y 1 0 ) V^_!

For \E\ < 2, set E = 2 cos K and let

= pn(cosφn,sinφn) .

The advantage of the y variables is that for g = 0 they simply rotate by angle
K. For gή=0 we have,

yn+Λ = ΓCOSK: -sinicl / yn

yn J [sinK COSK J \ ^ n _ i

_ 9Vn Γ s m / C cosκl / yn

~ ^ [ 0 0 j \

In polar coordinates we find the relation

p^{ sinφ,

where we have set

Vn — — : — and ψ — φ + K .
SIΏK

By taking the ratio of the upper and lower entries of (7) and the norm of (7) we
see that

cotφ w + 1 = cotφπ + gVn (8a)

and

Pn+i = P»O + gVn sin(2φ) + ^2Fw

2sin2φ) . (8b)

Since the Lyapunov exponent is independent of coordinate frame, we see that
by taking the log of the right-hand side of (8b) that

γ(E) = lim (πNΓιjdφ0 Έ\n[pN]

E(v2λ \ N π
=g2 + 7ΓΣI

n = l 0

3/sin3] + Θ(g3/sin3κ) . (9)

The above representation for the Lyapunov exponent shows that y(E) > 0 for suf-
ficiently small g if all the correlations ΈL[V sin2φ],E[F2 sin2φ],E[K2 cos4φ] are
small enough for small g.
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In order to estimate the " F — φ" correlations, introduce the variable ζn —
Qxp(2ίφn). Then we can rewrite (8) as the evolution equation for ζn driven by
the random process Vn\

with μ = e2ικ. So, our problem can be reduced to estimation of the "V — ζ",
"V2 — ζ", and "V2 — ζ2" correlations, since V is real-valued and 2/ sin2φ = ζ —
ζ*,2i sin4φ = ζ2 — (C*)2, where ζ* stands for the complex conjugate of (. So, in
the rest of this paper we will prove those asymptotic upper bounds for the " K - ζ",
"V — ζ2" correlations for a wide class of potentials Vn including those generated by
chaotic dynamical systems on finite-dimensional manifolds.

Before proceeding to the next section we estimate the average of ζ and ζ2

following [4]. Also, for notational simplicity, we shall denote from now on all
three kinds of averages which appear at the r.h.s. of the key representation (9) as
< >, e.g.

(ζt) = Km (πNΓ^Σjdφo Έ[ζn] .

Note that (ζt) is independent of t; however, averages like (ζtVt+s) depend upon s.

Lemma 1.
(i) For \E\ < 2,

sm K

(ii) For Eή=0,

(C2) = o(-—?—-Λ . (lib)

Proof. From the evolution equation (10) for ζt we get

{it) = e2iκ(ζt-ι) + O(g/smκ) = eliκ{Q + O(g/sinK) ,

so that

(C,)(l - e2iκ) = O(g/sinκ) ,

and similarly
( C 2 > ( l - ^ )

which leads to the required estimates. •

4. Upper Bounds for V — ζ Correlation

Consider a domain D = {\u\ ^ 1,|(| g 1 } C C 2 and define on D the following
function:

where |μ| = 1 and \g\ ̂  1/4, so that the denominator 1 — igu(μζ — 1) does not
vanish in D and F is holomorphic in a neighborhood of the closure of D. The
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latter property of F implies immediately that F is uniformly Lipshitz continuous in
D. The following simple statement gives more precise information about continuity
of F.

Lemma 2. For any (Ci,wi), (ζ2,u2) G D,

\F(ζι,uι)-F(ζ2iu2)\ ύV

Proof. A direct calculation shows that

\dF/dζ\ S \μ\ + 0{g) = 1 + O{g\ \dF/du\ ^ O(g) + O(g2) ,

uniformly in D, yielding the desired inequalities. •

Let V : Θ —> R be a quasi-local function and {ζt} be the solution to the
evolution equation (10), driven by the random process {Vt}. Note that Vn — υn/sinκ,
where v is as in the previous section. As a result, the V defined in the first two
sections differs by a factor of sin/c from the V of this and the previous section.

Lemma 3. For any t ^ 0 and any interval I which contains the points t,t+ 1,

^ (1 + O(gf))Var/(ίf) + O(g)VarI(Vt) .

Proof Apply Lemma 2 and (10). •
Our main lemma can be stated as follows.

Lemma 4. For sufficiently small g, for any T ^ 2 and any t ^ 1,

g O (^£)
\sinfc.

Proof Using Lemma 3, we can write

for some constant C. Therefore,

| | έ( + )
(12)

+ ( l+C| f l f | ) 'Var [ _ 0 0 , l + η(ζo).

Notice that Var[_00?ί+f](ζo) = VaΓ[_00^+7-](const) = 0. Furthermore, since V is
quasi-local,

(13)

After we substitute (13) into the r.h.s. of (12) we have
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Now we shall estimate the " F — φ" correlations that appear in (9). Let ζ — μζ.

Lemma 5. For small g,

Proof. Using the evolution equation (10), we see that

+ iΈμσ+S\QVt+sVt+τ)-igμτ Σ (ίtVt+sVt+τ) + O -f- .(14)

We shall prove that the terms on the right side of (14) containing factors of ζ
approximately factor. Using Lemma 1 and the fact that V has zero average we shall
see these terms are relatively small. More precisely set T = A[\n g/\n q\ where
[ ] stands for the integer part of a real number, and A ^ 4. Define functions
0t = Θt(ϋ) and Θt as follows:

t)n = (Θt(ΰ))n =
10, otherwise.

and
n> if n<t + T/4;

. 0, otherwise.

Then we can represent ζt and Vt+S as

sinκ:

O

by virtue of Lemma 4 and assumption of quasi-locality of Vt. So, the first term on
the r.h.s. of (14) is bounded by the strong mixing of the Markov system

\](vt+τ{Θt+τ{ϋ)) + θ ( \ ]
smκJJ\ \smκJJ

since (V) — 0 and |g/sinκ;| ^ 1. The second term simply gives rise to

inT—\ _. in oo jr, f nT
>2ικn(VnV.) - V-ivh + n -

2 n=\ 4 w =_oo 4 Vsin2κ;
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pv(κ) being the Fourier transform of the correlation function (VoVn). The third and
the fourth terms are quite similar, so we focus on the fourth one given by the sum

τ-\
aΣ(ζtVt+sVt+τ) (15)

Terms in (15) with s ^ T/2 are bounded by

/ qτl2 \

\sin KJ

T/2 \ / QAβ \

\sm KJ

Terms in (15) with T/2 :§ s can be estimated as follows. By ( l l a ) g(ζtVt+sVt+τ)
is bounded by

g(ζtvt+svt+τ)

= g(ζt{Θt)){Vt+s{Θt+s)Vt+τ{Θt+τ)) + O (-2-*-) = O (4j~
\sm KJ \sm K

In a similar fashion, the third term in (14) is bounded by

O
,sin3 K sin2κ;,

Combining all the above estimates, the lemma follows.

Corollary. For small g,

g{Vtsin2φt) = ζ (pv(2κ) - (F0

2)) + O
4 sm K sm2κ

4sin2κ: v } \ήtf K

Lemma 6. For small g

\ sm K sm^fC /

and

(18)
ysm i

The upper bounds for the correlations (17) and (18) can be proven in a similar
way with the help of Lemma 4 combined with Lemma 1.

Proof of Theorem L Combining the representation (9) for the Lyapunov exponents
with the asymptotic formula (16) for the correlation g(Vt sin2(^) and with the upper
bounds for other correlations in (9) given by Lemmas 5-6, we have
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y(E) = ξE[F0

2] + ί{V, sin2φί) + O ( f ^ β ){V, sin2 φ ί) + O ( , f
λ γsin /c sm2κ

8 sin K 8 sin K

Λ ί
p(2κ)+ O

2(4 -E2) \ r y J ' ^sinκsin2κ-j

Since E = 2cos K: and g1/2 ^ |£Ί ^ 2 — #1 / 2 we have

O

This completes the proof. •

As it was mentioned before, Theorems 2 and 3 follow from Theorem 1.

Remark. It is worth mentioning that the present approach, of Pastur and Figotin [4],
allows us to prove in a much simpler way the asymptotic formula for the Lyapunov
exponents for ergodic operators Hg with the stochastic potentials Vt satisfying the
Rosenblatt strong mixing condition. Namely, assume that for n > 0, F_ n(F) is any
random variable determined by the values {F_n_m,m ^ 0} of the random process
Vt9 and Gn(V) is any random variable determined by {Vn+m,m ^ 0}. Suppose we
have

\(F-n[y)Gm(V))-{F-n{V)){Gm{V))\ £ C\n +

with α > 1, then the decoupling of the correlations (Vt+τζt),
for T ~ 0~^, 0 < β < 1/2, follow directly from the above strong mixing condition,
since ζt is completely determined by {Vs,s < t}. So, if β < 1/2, and α > 1, then
we get the required estimates for the "V — C" correlations. Indeed, as in Lemma 5,
(14) implies that for T = g'P β = ( ^ ) ,

lQ

pv(2κ) -
sin3K sin 2 K:

In a similar way, one can show the V2 — ζ and V2 - ζ2 correlations are relatively
small.
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