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Abstract: This paper completes the proof of the necessity of spherical symmetry
in the static general-relativistic stellar models that have equations of state satisfying
certain inequalities. The technical assumption — that there exists a “reference spherical
stellar model” — that was essential in the previous discussions of this problem is
removed. This paper also extends beyond previous discussions the class of equations
of state included in the proof. The analysis of the equations for spherical stellar
models, used here to demonstrate the existence of a “reference spherical model,” may
also be of independent interest.

1. Introduction

It seems almost self evident that spherical symmetry is a necessary feature of any
equilibrium stellar model which is nonrotating, self gravitating, physically isolated,
and composed entirely of fluid. The proof of this “obvious” fact for Newtonian stellar
models — although far from trivial — was given many years ago (Lichtenstein [1] or
for a more modern discussion Lindblom [2]). The proof for general-relativistic stellar
models has been more illusive and is still incomplete. Significant progress has been
made recently, however, toward a proof in the relativistic case by Masood-ul-Alam
[3, 4], Lindblom [5], Beig and Simon [6, 7], and Lindblom and Masood-ul-Alam
[8]. These discussions show (under various assumptions) that the spatial geometry
of static stellar models must be conformally flat as a consequence of the positive
mass theorem. Since spatial conformal flatness is equivalent to spherical symmetry
in static stellar models (Lindblom [9]), these arguments would be complete proofs
of the spherical symmetry conjecture if they did not rely on unphysical assumptions.
The purpose of this paper is to remove one of these “technical” assumptions and to
weaken the unphysical restrictions on the equation of state of the fluid. We present
the first complete proof of the necessity of spherical symmetry for static relativistic
stellar models that are composed of a fluid whose adiabatic index satisfies certain
inequalities.
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A stellar model in general relativity theory is an asymptotically-flat spacetime that
satisfies Einstein’s equation with a perfect-fluid source. A static (i.e., time independent
and non-rotating) stellar model has a time-translation symmetry whose trajectories are
hypersurface orthogonal. Thus, the metric tensor in these spacetimes may always be

represented as
ds* = —V*dt* + g,, de®da® (1)

where V' and the three-dimensional spatial metric g,, are independent of ¢. For
simplicity we assume that V and g,, are C° (except at the surface of the star as
discussed below). This degree of smoothness guarantees that the strong form of the
Bianchi identities may be used everywhere except at the surface of the star. (For
a discussion of static stellar models having weaker differentiability conditions see
Masood-ul-Alam [10].) Einstein’s equation for static stellar models reduces in this
representation to the pair of equations

D*D,V =4rV(o+3p), @
R, =V~'D D,V +4n(o - p)g, - 3)

The density and pressure of the fluid are denoted ¢ and p; and the density is assumed
to be a given function of the pressure, ¢ = o(p), referred to as the equation of state.
This function is assumed to be positive, non-decreasing, and C'! for all p > 0. The
spatial covariant derivative compatible with g,, is denoted D, and its Ricci curvature
is denoted R ;. The Bianchi identity for the three-dimensional spatial geometry may

be reduced to
D,p=-V~ o+pD,V @

with the use of Egs. (2), (3) for these static fluids.

The solutions of Egs. (2) and (3) that represent realistic stellar models are those in
which the fluid is physically isolated, and so the geometry is taken to be asymptotically
flat. The appropriate asymptotic forms for the metric in this case are

V=1—¥+O(r_2), (5)

. 2M
Gay = (1 + 7)% + 0™, (©6)

where M is the mass of the star, 6, is the flat euclidean metric, and r is a spherical
coordinate associated with §,,. These conditions can be deduced from rather weak
assumptions about the asymptotic structure of these spacetimes (see e.g., Beig [11],
and Masood-ul-Alam [12]). For simplicity we merely assume here that the spacetime
of the static stellar model satisfies Eqgs. (5) and (6).

A certain amount of care must be taken to insure that the boundary V = Vg
between the interior fluid region of the star and the exterior vacuum region is non-
singular. If the density g is discontinuous at the surface of the star, o(0) # 0, then
V and the metric g,, will only be C"! across this boundary. The most important
specific consequence of the continuity conditions at the surface of the star (for our
purposes here) is the requirement that the function W defined by

W = D,VD*V )

is continuous across the surface of the star, but its derivative satisfies the discontinuity
condition
lim n®D,W = lim n®D,W + 87 lim VW!/2p, (8)
V1Vg V1iVg ViVg
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where n® is the unit normal to the surface which points out of the interior of the star.
These boundary conditions have been discussed in detail in many places (see, e.g.,
Lindblom [9], or Masood-ul-Alam [4]).

In the following sections we present a proof of the necessity of spherical symmetry
for a large class of static stellar models, i.e., solutions of Egs. (2)—(6). Our proof
follows the general outline introduced by Masood-ul-Alam [3] (see also Bunting and
Masood-ul-Alam [13]): A conformal factor is found which transforms the spatial
metric g,, into a geometry that has vanishing asymptotic mass and non-negative
scalar curvature. The positive mass theorem is then used to conclude that the physical
geometry is conformally flat. It follows from the analysis of Lindblom [9] that the
stellar model must therefore be spherical.

All of the technical difficulties in this method of proof are associated with finding
an appropriate conformal factor and demonstrating that it has the desired properties.
As in the previous studies of this problem [3-8] we choose as our conformal factor
a function which transforms the metric of a “reference spherical model” into the
flat euclidean metric. This “reference spherical model” is a spherically symmetric
solution to Egs. (2)-(6) having the same equation of state and the same value of the
surface potential V' = Vg as the given static stellar model. Most of the analysis in
this paper is concerned with the demonstration that a suitable “reference spherical
model” actually exists. Since solutions to the spherically symmetric equations do not
exist for every value of Vg (see e.g., Lindblom [15]) our analysis is an important
improvement over previous discussions [4, 6, 7] which merely assume the existence
of a suitable “reference spherical model.” In Sects. 2 and 3 of this paper we analyze the
solutions of the spherically symmetric equations. We demonstrate existence, derive a
variety of needed smoothness and monotonicity results, and classify the singularities
that arise in the equations. The critical results in these sections are Lemmas 6-8.
These show that solutions to the spherical equations exist (for appropriate values
of the mass parameter) which can be used as upper and lower estimates for the
physical (not necessarily spherical) static stellar model. In Sect. 4 we introduce the
constraints on the equation of state that we need to complete the proof of spherical
symmetry. These constraints (see Sect. 4 for details) are inequalities which restrict
the adiabatic index of the fluid and its first derivative. These restrictions are fairly
weak in the sense that there is an open set in the space of all equations of state
which satisfy our conditions. Our restrictions are weaker than those introduced by
Beig and Simon [6, 7]. In Sect. 5 we show that an appropriate “reference spherical
model” exists by constructing the particular solution to the spherically symmetric
equations having all the needed properties. The existence of this model follows from
the continuity conditions established in Lemma 4, and the upper and lower estimates
constructed in Lemmas 6-8. In Sect. 6 we construct the appropriate conformal factor
from the “reference spherical model” and derive some of its properties. In Sect. 7
we combine all of the above to show that the chosen conformal factor transforms the
physical metric g,, into one that has vanishing asymptotic mass and non-negative
scalar curvature. Spatial conformal flatness, and hence spherical symmetry, follows
then as a consequence of the positive mass theorem. In Sect. 8 we suggest some
directions that future research on strengthening these results might take.

2. The Functions W, (V') and Their Basic Properties

Consider a static stellar model with finite radius so that the potential V' has the value
Vg < 1 on the surface of the star. Given the equation of state for the fluid in this
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model, the Bianchi identity Eq. (4) can be integrated with the boundary condition

p(Vs)=0
p
_ [ ﬁ)
h(p)_o/g(p’)+p’_log<V ‘ ©

This expression determines ¢ and p as explicit functions of V : p(V) = h~! [log(Vg/V)]
and o(V) = o[p(V)]. Since we have assumed that the equation of state o(p) is C'
for p > 0, it follows that o(V') and p(V) are C! for V < Vs. The functions (V)
and p(V') will not in general be differentiable at V' = V. These functions admit o
extensions to V' > Vg since go(p) is positive and monotonic for p > 0. (The extension
of p(V) can also be Lipshitz.) Given these functions, we define r, = r,(V) and
m, = m#(V) to be the solutions of the equations,

dry _ Turu = 2m,) (10)

dv "~ V(m, +4nrip)’

dm,  4mr(r, —2m

PRI P (11

av V(m + 471'7"3 3p)

which satisfy the boundary conditions

m,(Ve) = 1, (12)
r,(Ve) =R, =2u/(1-V3), (13)

for a given value of the constant p > 0. On the domain where the solutions to Egs.
(10) and (11) exist, we introduce the function
2m dr, 2 VZ%m, + 4nrip)?
W)= (1-=% _ Vm, +dmr,p)
© dV rz(r W= 2m,)

; (14)

which plays an important role in our proof of the necessity of spherical symmetry.
We first determine the domain on which these functions are well defined.

Lemma 1. The solutions to Egs. (10) and (11), r #(V) andm u(V)’ exist on the maximal
interval ( , Vg1, where p(V) is finite and W (V) > 0. On this domain T, > 0,
r, >2m,, andm > 47rr“p, and if hm p=p, <00, then sup (2m, /r )< 1
and hm W 0 Vi, Vs)

Proof. At the surface of the star 7, = R, = 2u/(1 = V§) > 2u = 2m, >
—SFRzp(VS) = 0, and the derivatives dr,/dV = VsRi /p and dm,/dV =
47rg(VS)VSRfL /1 are bounded. Therefore solutions to Egs. (10) and (11) with these
boundary conditions exist locally. The needed local existence theorem (see e.g., [14,
Theorem 1.1, p. 8]) requires only that the right-hand sides of Eqgs. (10) and (11) be
continuous functions of V. Thus, the local existence of the functions Ty and m, is
guaranteed even when o(V) and p(V) are not differentiable at V' = V. Consider the
maximal interval (V/i, Vgl, where the solutions to Egs. (10) and (11) exist, where
p(V) is finite, and where r, > 0, r, > 2m,, and m, > —4xr,p. Using Eq. (14) it
follows that W, > 0 on (V};, Vg]. On this interval dr,/dV > 0 so r, is monotonic

and bounded by R, > r, > 0. Similarly since dm,/dV > 0 it follows that m,,
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is monotonic and bounded by u > m, > —47mr3p. We also note that since T, 1s
monotonic on this domain, we may re-express Eq. (11) in the form
dm

—E —4nrty. 15
dr/J True (15)

If Jll%p = oo then the lemma follows simply by noting that V, = V;:‘
In the following then, we assume that limlp = p, < oo. We next show that
s/up (2m /7“ ) < 1: On the interval (V, “VS] the function Wu is well defined

;3‘; ]5‘,/;.) (14), and from Egs. (10) and (11) it must satisfy the differential equation
aw, 4w, dr,

—L =87V (o+3p). (16)

v v

Equation (16) may be integrated on (Vlj, V] to obtain
Vs
W, (Vyrd(V) = p? — / 87V [o(V) + 3p(V)Irt (V) dV . (17)
v
This demonstrates that W}, is bounded on (V;, Vgl : p* > W, 7, > 0. Using Eq.
(14) we may re-express Wurz in the form
3,32
_ (m,, + 4mr,p) V2

w
wop I—Zmu/ru

(18)

By definition r, > 2m,, on (Vl:, Vg1, so we must have (Vslu‘[; )(Zm /r ) < 1 unless
s

lim (Zmu / r,) = 1. But Wurz is bounded so in this case the numerator in Eq. (18)
VLIV

would necessarily vanish in this limit. This would imply

lim m, = —47 lim > WP - (19)
VLIV, VIV,
If lim ST > 0, then Eq. (19) implies that
ViV,
lim —* = —87 lim r.p <0, (20)
ViV, T, 27
If Vhlr‘r/ll r, = 0 we may use I’'Hospital’s rule and Eq. (15) to conclude that

lim (2m,, / r,) = 0. In either case we conclude that
vivy

2m
lim —£ <0. (29
ViV, T,

But this contradicts our assumption that hm (2m /r ) =1, so we conclude that

sup (2m,,/r,) < L.
(V’ Vs)
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The final step in the proof of Lemma 1 is to show that lim W, = 0, and so

17
conclude that V,, = V. We consider first the case when 11m r, = 0. It is helpful for
this case to re-write Eq. (14) in the form, Vi
2 My ’ 2m,\ ™
W, V)=V —= +4rr,p 1-— . (22)
T "

Using 1’'Hospital’s rule and Eq. (15) we conclude that Vlilrgl(m " / ri) = 0 in this case.
N

Taking the limit of Eq. (22) we conclude then that 11lr3 W,, = 0. This implies that
"
V, =V}, and so the lemma follows for the case lim r, = 0.
27
We turn now to the final case hm r, > 0. The functlons m,, and r,, are absolutely
p,

bounded in this case: sup [m [ < p+4rRp, and sup |r,| = R,. A bound

Vi, Vs) Vs Vs)
on the derivative of 7, may be obtained by re-expressing Eq. (10) in the form:
dr 1 2m \ /2
d—lﬁ =—7 <1 - —£ > . (23)
W, Ty

Since 1 > Zm” / T > —87rrip on the interval (V;:’ V], it follows that the derivative
of 7, is bounded absolutely by

2 1/2
I <——1+47TR”p“> " (24)
v W,

Using Eq. (15) a similar expression may be obtained which bounds the derivative
of my,. It follows then that the derivatives of T, and m, would be bounded at

V = V,i if Vhlr\r/l' Wu > 0. If this were the case the solutions of Egs. (10) and (11)
"

could be extended beyond V = V;i‘ Further, in this final case T, > 0, T, > Zm#,
my, > —47rrip, andp=p, <ocoatV = V‘j. By continuity these inequalities would
be satisfied by the extended r,, and m,, in some neighborhood of V’ But this violates

the assumption that (V’ Vsl 1s the max1mal interval on which such solutions to Eqgs.
(10) and (11) exist. Thus we have a contradiction unless lim W = 0. It follows
then that V’ V,, and the lemma is established. [ ViV

We next prove a useful result about the monotonicity of certain combinations of
these functions:

Lemma 2. The expression m,, — 47rgrft /3 is a non-decreasing function of V on
(V,,, V1. And, if the function dW,,/dV — 87V (¢ + 3p)/3 is non-negative for some
V, >V, then it is non-negative for all V' in the interval (V,,, V1.
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Proof. Using Egs. (10) and (11) it is straightforward to evaluate the derivative

d dr 3\ 4w 5 do
v (mu - ?QT‘M> =3y (25)

The right side of Eq. (25) is non-negative as a consequence of Eq. (4) and the assumed
monotonicity of the equation of state. Thus m,, — 47rgri /3 is non-decreasing on the
domain where it is defined: (V,, Vsl

Next, we may rewrite Eq. (16) using Eqgs. (10) and (11) in the following form:

aw 8 4V 4z
p_ om __4 _ 4T3
i 3 V(o +3p) " (ml1 3 gru> . (26)

The quantity in parenthesis on the right side of Eq. (26) is non-decreasing. If this
quantity is non-positive at a point V., then it is non-positive on the interval (V,,, V. ].
Since r,, and V' are positive, it follows that the right side of (26) is non-negative on
the interval (V,,, V.. O

The solutions to Eqgs. (10) and (11) in which Wu vanishes fall into two classes
depending on whether 7, vanishes at V, or not. We refer to the case where

lim r, = 0 as a regular zero of W, and the case where lim r > 0O as an irregular
viv, # B viv, #

zero. The next lemma establishes additional properties of the zeros of W,.
Lemma 3. Consider a solution to Egs. (10) and (11) in which Jlﬁ Wu = 0 and
W
‘}119#;0 =p, < oo If Vhln‘}u r, = 0 (ie, if V, is a regular zero of W) then
: 3y —
Jllr‘r}ﬂ(mﬂ/ru) = 47rg(Vu)/3 and

lim 8Ty vy 4 3p,] @7)
viv, av 3 el Pul-
. . . . . . 3 —
Ithln‘}u r, >0 (ie, if V, is an irregular zero) then Vhlrg#(m'u/r#) = —4np, and
. dw,
lim = SWVM[Q(V#) +3p,1. (28)

ViV, dV

Proof. For the first case assume that ‘;113 r, = 0. Using I’'Hospital’s rule and Eq.
"
(15) we conclude that Jl& (m, /sz) = 4mo(V,,) /3. Next, we re-write Eq. (26):
i

dw 87 4 m
kE_"V + =4V —p - £
dv 3 (0+3p) =4 ( 3 ¢ 7'2 ) ’ 29

The right side of Eq. (29) vanishes in the limit V' | V,, which implies Eq. (27). For
the second case assume that ‘}ir{lﬂ r, > 0. The vanishing of W, in the limit V' | V,
n
and Eq. (18) imply that 1;?8/ (m/l /TZ) = —47rp# < 0. This may be used in turn to
I

show that the limit of the right side of Eq. (29) is IGWVM[Q(V#) + 3pu] /3. When
combined with the limit of the left side of Eq. (29) this implies Eq. (28). [
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We note that the function W# defined in Eq. (14) also satisfies the second-order
differential equation

d [1dW,
av [VW —8mle+ p>J 0

3 qu 8 qu
= WWZ[ av ?V(Q+ 3p)] [ v 87V (o +3p)|,

on the interval (V,,, V] where W, > 0. This follows by direct computation using
Egs. (10), (11), and (14).

3. How W, Depends on 1

In this section we prove several important results about the dependence of Wu on the

parameter (. First we show that W, is a C" function of ; on the domain where it is
well defined

Lemma 4. The functions r“(V), mu(V), and WH(V), as defined in Eqs. (10)—-(14),
are C' with respect to variations in i (at fixed V') for i > 0 and for V in the interval
V,, Vsl

Proof. 1t is useful to consider the functions rH(V), mH(V), and W#(V) as the
components of a three-dimensional vector:

B (V)
Y (V)= |m,W)| . 31)
W, (V)

This vector satisfies the ordinary differential equation

—

af? FY,V 32
W_ ('u,a )7 ( )

when F(}?“, V) is given by

a1- 2m/t/r/.t)l/2W#_1/2
F(Y,, V)= | dmord(1 - 2m, /r )P | - (33)
87V(p+p) — 4Vm”’r’;3
Equation (32) is equivalent to Eqgs. (10), (11), and (16). We note that Wu > 0, Ty > 0,

and r, > 2m,, on the interval (V,,, V5| as a consequence of Lemma 1. The equation
of state o(p) was assumed to be a C! function for p > 0, which implies that p(V)
and o(V) are also C! for V < Vg. These functions, o(V') and p(V), can also be
extended as C° functions for V > V. Consequently, 15()7#, V) is a C! function of
Y and a C° function of V, for V in an open interval containing (Vw Vsl. Standard
theorems on systems of ordinary differential equations (see e.g., [16, Theorem 7.2,
p. 25]) guarantee then that the solutions of Eq. (32) are C' functions of the initial
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conditions ?”(VS). (We point out that these theorems do not require o(V') and p(V)
to be differentiable at V' = V.) The initial conditions of particular interest to us,

2u/(1 = V3
Y, (V) = 7 : (34)
(1 - V2)*/16p?
are C'! functions of 1 when p > 0. It follows that (V), m (V) and W (V) are C'!
functions of x for V' in the interval (V,, Vsl and for w>0. Th1s contlnulty condition
on these functions may be summarlzed as follows: There exists a & > 0 such that for
every 6 € (—6, 6) the functions )7'” and their derivatives satisfy

dy, dy,
Y, (V) = Y sON)] + | 2 (V) - V)| < Cs, (35)
. av av

where C' = C(V, p) is independent of 6. [

The next lemma demonstrates that IV, is monotonic in addition to being differen-
tiable with respect to the parameter p. Our proof uses the fact that the function X,
defined by
dw, 8 4W, o+p d

o+3p)+ —x2TP %
dv 5V o+3pdp’
is non-negative. We delay until Sect. 4 the proof that 2/, > 0 and merely state this
condition here as an assumption.

Lemma 5. Assume that X, (V) > 0 for V in the interval (V,,, V). If ;1 > v then

W,(V) <W,(V)on (V,, Vgl; and if p < v then W, (V) > W (V) on (V,,, Vsl.

Proof To facilitate comparison between W, and W, we introduce the function
w,—-Ww,

By =~ 37)

X, =

(36)

for V in the interval (V,, V5] N (V,,, Vg]. The function A, is defined by

Vs ~ ~
20172 2 [ VIo(V)+3p(V)] =
A(WVY=W V1/4 {—/—*A——dV}. 38
L) (V) e eXpq 3 W) (38)

From Eq. (38) it follows that A (V) > 0, and that A, satisfies the differential equation

X, A, | dW, &m

= v _ Yy

v aw, [ av 3 et )J ! ©%
with the boundary condition A\, (Vg) = 1. A lengthy but straightforward calculation
using Egs. (30), (36), and (39) shows that A, satisfies the differential equation

A, 207V
Tvg_ = 3wz (e+3pX,A,,
1 2d\,  4nV 3 dA,TdA,
_ _—_V__ v v v 4
[V N, av W, e Ty ] v o @0
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for V in the interval (V#, Vg) N (V,, Vg). Equation (40) is a degenerate special case
of an identity given in Beig and Simon [6,7]. The particular solution of (40) that is
of interest to us, Eq. (37), satisfies the boundary conditions

. A=Vt 1

A= "0 2T ) “v
. dAa,, 16w V2
o, =501 7). “

as a consequence of Egs. (37), (12)—(14), (16), and (38).

The assumption X, > 0 guarantees that the coefficient of A ,, on the right side
of Eq. (40) is non-negative. Therefore the solutions of Eq. (40) satisfy a maximum
principle: A, may have no negative minimum or positive maximum except at the
endpoints of the interval (V Vg)N(V,, Vg), unless it is constant.

Assume first that y > z/ It follows from Egs. (41) and (42) that A ,(Vg) <0
and that dA, (VS)/dV > 0. If o(Vg) > 0 then dA, LVe)/dV > 0 so that A,
is strictly 1ncreas1ng at V = Vg. Thus A , must be negauve on the entire mterval
( , Vo) N (V,, V) unless it has a m1n1mum where its value is negative. Such a
minimum is excluded, however, by the maximum principle. The case o(Vg) = 0 is
more delicate and must be analyzed with the more powerful boundary point maximum
principle: if a negative minimum of A v 18 reached at Vg then dA ,/dV must be
negauve there, or A, must be constant. But this contradicts Eq. (42) and so the
minimum of A, cannot be reached at Vg unless it is a constant everywhere. Thus,
A , must be negatlve everywhere on (V Vg) N (V,, Vg) because the possibility of
a negatlve minimum elsewhere is excluded by the regular maximum principle. We
conclude that Aw < 0 everywhere on the interval (Vw Vo) NV, Vg) for the case
p > v. Therefore W, < W, on the interval (V,,, Vs]. The proof that W, > W, on
the interval (V,, V] for the case u < v is exactly analogous. [

Lemma 1 shows that the solutions to Egs. (10) and (11) exist up to the point
V = Vu, where Wu vanishes or the pressure diverges, and the last lemma shows
how the W, depend on p. An important element of our subsequent analysis will be
a knowledge of the relationship between the functions W, (V) and W' as defined in
Eq. (7). The following lemma derives one important relationship.

Lemma 6. Let V, > 0 denote the minimum value of V' in the spacetime of a static
stellar model of mass M. Assume that W, > 0 and X, > 0 on (Vg, Vgl. Then
W# >Won Vg, Vgland p < M.

Proof. The difference between W [as defined in Eq. (7)] and Wu is conveniently
characterized by the function,
A- W — Wu

" T ) (43)

Il

where A, is defined in Eq. (38). Beig and Simon [6,7] have shown that A; satisfies
the identity,

)\2 a A— 200 W 2 —
Da<7uD AM) - *3—@(9+3P)AME#A/L

V3 abc 3)\6 a A—
= 5077 B Rave + g7 Dan D°A, (44)
©w

VW
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on the domain V; < V' < V. The tensor R, is defined by
Rabc = DcRab - DbRac + %(gacDbR - gachR) : (45)

Equation (44) is an elliptic equation for A, whose right side is non-negative. Since

X, > 0 the maximum principle implies that any positive maximum of A must
occur on the boundary of this domain, and the outward directed normal derivative
must be positive at this maximum point, n*D, A > 0, unless A is constant. We

note that if the maximum of A, occurs at V; or some other critical point of W' then
A, < 0 automatically since W = 0 at any critical point. We also note that when A
is strictly positive at the maximum point, we can use the boundary point maximum
principle (see e.g., [17, Lemma 3.4]) since Eq. (44) implies Da(V—l)\fLD“A;) >0
in this case. It follows that if A; > 0 at its maximum point which occurs at the
surface V = Vg, then

n*D, A‘ =n*D,(W -W, )—4(W W) “ n®D,V >€A_naD V, (46)
at the maximum for some ¢ > 0.

In the exterior of the stellar model, Vg < V' < 1, we define

(1-VvH

67 47)

W, =

This extension of W, is C? across the surface V = Vg, and the quantity W — W, is

C! there. As Eq. (8) illustrates, however, neither W nor W, will be ClatV =Vgif
0(V) # 0. Near spatial infinity the asymptotic behavior of W, can be deduced from
its definition and Eq. (5) to be

W, = -—M +0@r™). (48)
u2r
For comparison, the asymptotic form for W is
MZ

We compare Wu to W in the exterior of the star by making use of the quantity

A-VHA+b-VdH
A1-V3A+b-V?2)’
where b is a positive constant to be determined later. Robinson [18] showed that A:j
satisfies the identity

=W -W,) (50)

A-VHA+b-Vd
AVW(A -V2BA+b-V?2)’
in the exterior vacuum region for any value of b. The quantity X is defined by

X, =D, W+8VW(1-V*~!D, V. Since the right side of Eq. (51) is non-negative,
the maximum principle implies that A+ may have a maximum only at infinity (where

it vanishes) or on the surface of the star V = V. If the maximum of A} occurs at
infinity, then W — W, < 0 everywhere. The alternative is that AZ has a positive

D,(V7'D*Af) = (V R, R™ +3X°X,) (51)
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maximum on the surface V' = Vg. In this case the boundary maximum principle
implies that the outward directed normal derivative is negative there:

n“DaA; <0. (52)
But this condition contradicts Eq. (46) for appropriately chosen values of b. If
2567 /,LZVS,Q(VS) S 2Vg
3 1-VH* T 1-VZ’

then Eq. (52) is inconsistent with (46) for any choice of b > 0. However if € violates
the inequality Eq. (53) then the choice

(53)

E=e+

(54)

makes Eq. (52) inconsistent with (46). Thus, A:; may have no positive maximum on
the surface V' = V. Thus, we have established the first conclusion of the lemma:
Wp > W everywhere. The second conclusion, p < M, follows by imposing the
inequality W, > W in a neighborhood of spatial infinity. The asymptotic expansions
in Eqgs. (48) and (49) imply then that p < M. [O

Next we prove a result which, when combined with the assumptions about the
equation of state to be made in Sect. 4, demonstrates that there exists a value of
the mass parameter u for which W# has a zero inside the star, i.e., in the interval

Lemma 7. There exists a pp > M such that V,, € (Vg, Vgl or X, > 0 on the interval
Ve, V.1 for some V, € (V, Vgl.

Proof. Consider first the case where g(Vg) > 0. Then we choose a u > M such that,

3(1 —V2)3
> (__S) . (55)
32mo(Vyg)
For this choice it follows that

p—4ro(Vg)R, /3 < 0. (56)

From Lemma 2, then m u—47TQT;34 /3 < 0on (Vu’ Vs]. It follows then from Eq. (26) and
the definition of Zu’ Eq. (36), that Eu > 0on (V#, Vgl as well. If Vu & Vg, Vsl
then W, > 0 and X, > 0 on (V, V. But this contradicts Lemma 6 since we
assumed p > M. Thus, we conclude that Vﬂ € Vg, Vgl

Consider next the case where o(Vg) = 0. Let 6 € (0, 1073) and then choose
Vi € (Vg, V) such that

log (7*> < Z(l -V3). (57)
Next choose a p > M such that
3(1-V2)?
—2 58
~ A\ T6rav) 9

p< 2R o(V)/3. (59)

so that
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If V, € (Vg, Vg] the proof would be complete; thus we consider only the case
V & (& Vs]. It follows from Lemma 1 that T, and m,, are defined on [V, Vu] in
this case. Near the surface of the star we must have

m, 4
Ty, (60)
T 3

since o(Vg) = 0. If the left side of Eq. (60) vanishes at any point V, within the
star, then it follows from Lemma 2, Eq. (26), and the definition of X o Eq. (36),
that Eu > 0 on [V, V., ] as claimed. We will now show that the left side of Eq.
(60) always vanishes somewhere. Thus, we suppose to the contrary that Eq. (60) is
satisfied on the entire interval [V, Vg]. Equation (15) may now be used to obtain
the following expression,

3
i <m_3“> = i (47rg — n:“) . (61)
drﬂ T Ty T,

For our case the right side of Eq. (61) is negative and so m,, / Ti is strictly decreasing
as r, increases. Integrating Eq. (61) then we obtain a useful estimate:

i Tagr, 3 R
m m m T m
> T - T, T . T, ™ Ty
7 7
This implies that
m R
%2_;[1_31%(—”)}. 63)
R, — T Tp

Now since m,, / ri is strictly decreasing as r, increases we may also obtain from

Eq. (10) the inequality
dr:  2r? 2, —2m,) . 27“2 _ ZRZ

e
4
av V(m + 47rr3 D) T -V’ ©4)
on [V, Vs]. Integrating this expression we get
r 4 v,
T _V210g<;), (65)
i
and so
(V) > (Vi) > (1 -8R, (66)
for V € [V, Vg). Now using Egs. (63) and (66) we get
m, 3 m
153 > [1 + 3 log(1 - 5)} >0.9—£, 67)
u Ty
for 6 < 1073. Using Egs. (59) and (67) we find that
My 4 m,  dn_2n[o(Vy)
B 3% 0or, 37309  f (©8)

on [V, V). But the right-hand side is negative at V' = V,, which contradicts our
assumption that Eq. (60) is satisfied everywhere. [
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Complementary to the previous results, we now show that if the mass parameter p
is sufficiently small, then the function W, exceeds any given constant. In particular
this lemma shows that Wu >supW > WL on [V, Vg] if p is sufficiently small.

Lemma 8. Let K > 0 be a constant and (V,,,, Vg1 an interval on which p(V) is
bounded. Then there exists a constant pg > 0 such that W, > K on (V,,,, V] for all
ne O, pg).

Proof. Define uj by the condition

Vs
1 16 ~ ~
e A-vY
Vm
Next we rewrite Eq. (17) in the form
Vs
R \* _ U2\ N 7 N4
w, = (= w—sw/waﬁ@ Tu ) gy, (70)
# T, 162 R,
14

From Lemma 1 we know that 0 < r, < Ru on the domain (V”, Vsl, here Wu >0
and p(V) is bounded. Thus, the integral on the right side of Eq. (70) can be estimated
to yield a lower bound on Wu for points in the interval (V#, Veln(v,,, Vgl

R 4 (1 _ V2)4 VSA R

W,(V) > (—“) [—25 —87’&'/V(§+ 3@va >K. (1)
Ty 164

The second inequality in Eq. (71) is satisfied for 4 < pup. Since W, > K > 0 and

p(V) is bounded on the interval (Vw Vel N (V,,, Vg] we know from Lemma 1 that

this must be a subset of (V,, Vg]. Thus W, > K on Vo, Vgl for p < pge. O

4. Conditions on the Equation of State

Up to this point we have assumed only that the equation of state ¢ = g(p) is a positive,
non-decreasing, C! function for p > 0. We know that some additional conditions on
the equation of state are also implicitly required to have existence of static stellar
models with finite mass and radius, see e.g., [8, 19-21]. We presume that spherical
symmetry is a necessary feature of any static stellar model whose equation of state
satisfies the minimal monotonicity and smoothness assumptions that we have used
up to now, plus whatever additional minimal conditions on the equation of state
are required to guarantee the existence of static stellar models. At the present time,
however, additional unphysical restrictions on the equation of state must be used
in order to complete a proof of the necessity of spherical symmetry. An additional
restriction on the equation of state is needed, in particular, to prove that the functions
X’ , defined in Eq. (36), are positive; and a different condition is needed to prove
that the conformal factor w#(V), defined in Sect. 6 below, has non-negative second
derivative. Two alternate conditions on the equation of state have been found which
allow us to prove these results. The first restriction (introduced by Beig and Simon



Spherical Symmetry of Static Stellar Models 137

[6,7]) assumes that the equation of state is a C? function whose second derivative
satisfies the condition,

1
(A) —fe2+2m+(g+p)ﬁEISO, (72)
5 dp
where k is defined by
o+p do
= —. 73
0+ 3pdp 7

We note that the condition / < O implies an upper bound on the value of x. In
particular, Eq. (72) can be integrated,

{ K@)(10 + K(O)] } /p A

K(0)[10 + x(p)] ) dp’ /i(p’)[li(p’) + 10]
< -2 / W on), (74)
- o) +p'

where «(0) = li?(} k(p). This inequality is equivalent to the bound,
P

104(0) . 10
~ [K(0) + 10] exp[2h(p)] — k(0) ~— exp[2h(p)] — 1~

Our alternate condition on the equation of state places upper and lower limits on the
value of x for stars with a given value of Vg,

50° 10v2
— > k> —2 =k (D), 76
6o 3p ~ " explzhp) — V2 0@ (76)

but no limit on its derivative. The two conditions on the equation of state, Eq. (72)
(Assumption A) and Eq. (76) (Assumption B) are complementary: Assumption A
limits the second derivative of the equation of state, while Assumption B does not.
Assumption B places a positive lower bound on «, while assumption A does not. We
also point out that conditions A and B are in effect constraints on the adiabatic index,
= (0 + p)(dlogp/dp), of the fluid and its first derivative.

Before proceeding it is appropriate to point out that each set of equations of state
defined by conditions A or B is not empty. It is easy to verify, for example, that the
one parameter family of equations of state

"(p) = 10~(0) , an
[£(0) + 10] exp[2h(p)] — K(0)

satisfies Condition A. In fact I = O for this family. The parameter x(0) is limited
only by the requirement that it be positive in order to insure that o(p) (obtained by
integrating Egs. (9) and (73)) is an increasing function. It is also easy to verify (using
Lemma 9 below) that the equations of state in Eq. (77) satisfy Condition B if «(0) is
restricted to the range «(0) > IOVS2 /(1 - ng). We note that B is a restriction on the
space of equations of state for stars of given Vg. Our principle result in this paper
eliminates the possibility of non-spherical stars with equations of state that satisfy
one of these restrictions. For some values of Vg (e.g., for Vg < 1/3, see Buchdahl

k(p) < (75)

(B)
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[22]) there exists no spherical stellar model whose equation of state satisfies these

conditions.
The next lemma shows that Assumption A implies the first of the inequalities in

Assumption B:

Lemma 9. Assume that the equation of state o = o(p) is a non-negative, non-
decreasing, C? function which satisfies the inequality I < 0 defined in Eq. (72). Then

50% > 6p(o + 3p)k.
Proof. The proof follows exactly the proof of Lemma 5 of Beig and Simon [7]. O

We next prove that either of these assumptions is sufficient to guarantee that the
quantity 2, defined in Eq. (36) is positive.

Lemma 10. If the equation of state satisfies Condition A, Eq (72), and W, satisfies
1}1ln‘}u W = 0, where ‘}119” p =p, < 00, then the function Eu defined in Eq. (36) is
non-negative on the interval (V,,, V. If the equation of state satisfies Condition A
and ifZ'u > 0 at some V._ such that W# >0on[V,, Vgl then E# >0on[V,, Vgl
And finally, if the equation of state satisfies Condition B, Eq (76), then X, > 0 on
(V/_“ VS]

Proof. Assume first that the equation of state satisfies Condition A: I < 0. The proof
in this case follows almost exactly the proof of Lemma 7 of Beig and Simon [7].
First define the quantity,

t s (78)
maywi/?
which satisfies the differential equation
at, V&  16xV i
e t, E 79
v = qwir 3w, P 5V 79)

In the case where V, is a regular zero, Beig and Simon [7] have shown that

Jllrg t,, = 0, while for an irregular zero it is easy to see that ¢, > 0 for V' slightly
i

larger than V), (although it diverges at V = V). If ¢, were negative, then d¢, /dV >0
as a consequence of Eq. (79). But since ¢ > 0 at V =V, it follows that ¢, (and
hence X' ) must remain non-negative on all of (V# Vo).

Under the second condition Z# > 0, and hence t# > 0at V = V.. The same
argument used in the first case implies then that {, must remain non-negative for
larger values of V. Thus, t, = 0 and hence 2# >0on [V, Vgl

Consider finally the case when the equation of state satisfies Condition B, Eq. (76).

We define the function Z‘M,

5 =W 80
wo dV 3 0
which satisfies the inequality
~ 4w
Y, X, =—=E(k—ry)>0, (81)
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when & is defined as in Eq. (76). Thus, b5 u is a lower bound for Z‘#. The limiting
value of Eu at the surface V' = Vg may be determined with the aid of Eq. (29),
¢!

_ Vsz')4
thg Z‘ = —VSQ(VS) + = 20V [KZO(O) —

_%} ) (82)

1-V2

Since h(0) = 0, it follows that the term in square brackets on the nght side of Eq.

(82) vanishes. Thus, hm 2 > 0. Next, we evaluate the derivative of Z' using Eq.
Vs

(30) and (76). It follows that Z‘M satisfies the differential equation

€, [1 3%, 2k, 4V 167
k= po_ 20 T 7 =__" —
v v, s oW, +3p)] 3 @t WE— k). (8

The right side of Eq. (83) is negative, therefore the derivative ax " /dV is negative
at any point where E‘M vanishes. Since f‘u >0 at V = Vg from Eq. (82), it follows
that 2u > 0 for all V < V. We conclude that E# > 0 from Eq. (81). O

We point out that Lemma 10 strengthens the conclusion of Lemma 7. In particular
when either condition on the equation of state is assumed then Lemma 7 implies that
there exists a > M such that V,, € [V, Vgl or that &) > 0 on [V, Vgl.

5. Choosing the Reference Spherical Model

In this section we prove several results whose purpose is to identify the appropriate
value of the mass parameter p to choose for the “reference spherical model.” Let
M™ > M denote a value of the mass parameter such that W, (V),+) = 0 at some
point Vy,+ € (V, V). Lemmas 7 and 10 guarantee the existence of such an M¥,
or that ;. > 0 on (V, Vg]. In the latter case Lemma 6 guarantees the existence
of such an M. Next choose an M~ > 0 with the property that W,,— > 0 on the
interval [V, Vg]. The existence of such an M~ < M is guaranteed by Lemma 8
by taking K > sup W in that lemma. In fact we can take M~ such that W, >0 on
[Ve, Vgl for all n € [M~, M~ + €] for some £ > 0. Next, we define S to be the
subset of [M~, M™] in which the functions Wu have zeros in (V, Vg):

S={peM, M*]: th# W, =0 for some V, € (V, Vol (84)

This set is clearly non-empty since M+ € S. Further, S is bounded below by M~ +«.
We define
= inf 85
T= ;e LE- (85)
We now derive some important properties of 7. In the following three lemmas we
restrict our attention only to non-spherical models.

Lemma 11. For static non-spherical stellar models composed of fluid whose equation
of state satisfies either Assumption A, Eq. (72), or Assumption B, Eq. (76), it follows
that T & S
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Proof. Suppose on the contrary that 7 € S. Then by definition V. > V. and
Jlln‘}f W_ = 0. By Lemma 10 ¥ > 0 in this case. If V_ is a regular zero of W_,
then the conditions of the Beig and Simon [7] theorem are satisfied and so the stellar
model must be spherical. This lemma, however, is concerned only with non-spherical
stars and so we conclude that V_ must be an irregular zero of W_. From Lemma 3 it

follows then that

. dw_
Jllr‘n/T T 87V_(0+ 3p). (86)

Lemma 4, Eq. (35), shows that for any V' € (V_, V) there exists a §, > 0 such
that for all § € (0, §,),

dw, _g dw,
W, _s(V) = W, (V)] + | —=2(V) = o2 (V)| < C6, 87)

where C = C(V, 1) is independent of §. Without loss of generality we may take
6, < esothat 7—6 € [M~, M*]; however, 7 — 6 ¢ S since 7 = infS. Thus,
W__s>0on (Vg, Vgl. If W__4 vanished at a point V___, then from Lemma 10 we
would know that X' _s > 0 on (V__g, Vg]. The argument is more subtle, however,
if W__, has no zero at all. In this case we may use Eqs. (86) and (87) to compare
W,__s with W_at V =V_+ ¢, (for sufficiently small €,) and so conclude that

dWT—6

8w
v T(VT +e,)0+3p) >0, (83)

for sufficiently small 6. Thus from Lemma 2, we conclude that ~__s > 0 on
Ve, V. +€,]; and using Lemma 10 that 2__; > 0 on the entire interval (V, Vgl.
It follows then from Lemma 6 that W__s5 > W on [V, Vg]. And so in particular
that W__s(V.) > sup W.
V=V,
Consider for a moment the properties of sup W for V, € [V, V]. This function
V=V
must be strictly positive unless V,, = V,. Otherwise, if there were a V, > V, for
which sup W = 0 then we could find an open ball contained entirely in the open
V=V

set V' < V, whose surface intersects and is tangent to the surface V = V, at some
point g. In this open ball the boundary value maximum principle applied to Eq. (2)
implies that the gradient of V' may not vanish at the maximum point ¢, and so W

may not vanish there. Thus, sup W > 0.
V=Vi
Now since W__,(V.) > sup W > 0 we get a contradiction with Eq. (87) if ¢
V=V,
is taken small enough. Thus, we conclude that V_ can not be in (V,, V) and so

r¢gS. O

The next lemma guarantees that functions r,. and m _, solutions to Eqs. (10) and
(11), exist on the interval (V, V] with the important property that Vlﬁ} w,_=0.
C

Lemma 12. For static non-spherical stellar models composed of fluid whose equation
of state satisfies either Assumption A, Eq. (72), or Assumption B, Eq (76), it follows
that W_ > 0 on the interval (Vg, V], and Vlir‘l} wW_. =0.

(e}
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Proof. By Lemma 11, 7 ¢ S and so W_ > 0 on (V,, Vs]. Assume to the contrary
of this lemma that ‘/111‘1/1 W._ # 0. It follows from Lemma 4 then that there exists
c

a & > 0 such that for all § € (0, §) we have W, s > 0 on [V, Vg]. But by
definition 7 = inf S and by Lemma 11 7 ¢ S. Thus there exists a small enough ¢
so that 7 + 6 € S, and hence W__ s vanishes at V_ s € (V, Vg]. Thus we have a
contradiction unless lim W_=0. 0O
ViVe
Next we define S to be the set of mass parameter values for which W, has a
zero at the center of the physical star V = V..

Se={pelM,M*: W, >0 on (Vg, V] and W, (V) = 0}. (89)
This set is not empty because 7 € S as shown by Lemma 12. Now we let

v= ﬂlensfc L. (90)

The following lemma shows that v is also an element of S.

Lemma 13. For static non-spherical stellar models composed of fluid whose equation
of state satisfies either Assumption A, Eq. (72), or Assumption B, Eq. (76), it follows
that v € S and there exists a & > 0 such that for all § € (0, 8) we have W,_s > 0
on [V, Vgl.

Proof. Assume on the contrary that v ¢ S. Then for any 6, > O there exists a
6, € (0, 6,) such that v + 6, € S; thus,

W,,s5(Ve)=0. 1)

However, we also have W, (V;) > 0 since v ¢ S. We now show that this contradicts
the continuity of W, with respect to v guaranteed by Lemma 4. Using the same
argument given in Lemma 11 to prove that __; > 0, it follows that Y/, > 0 on
[Ve, Vg]. Then from Lemma 6 we conclude that W, > W > 0 on [V, Vg]. The
continuity of W, guaranteed by Lemma 4 insures then that there exists a 4; > 0 such
that W, s, > 0 on [V, V] for every &, € (0, 65). This, however, contradicts Eq.
(91) if we take 0; = 6,. Thus we conclude that v € S.

Next let v —§ > M~ and let § € (0, &). Since W, (V) = 0 from the argument
above, it follows from Lemma 10 that Y, > 0 on [V, Vg]. Next, from the
monotonicity of W, derived in Lemma 5, we conclude that W, _s > W, on (V, Vg].
And since v — § < v = inf S, we conclude that W,_,; > 0 on the closed interval
Ve, Vgl as well. O

The solution to Egs. (10)—(14) with parameter ;1 = v, where v is defined as in
Eq. (90), is in effect our “reference spherical model.” We will show in the following
sections that any static stellar model whose equation of state satisfies the assumptions
of Sect. 4 must be identical to this reference model, and in particular must satisfy
W =W, with v = M.
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6. The Conformal Factors v, (V)

We next introduce the function 1, which will be used as a conformal factor to
transform the spatial metric g,,. In the exterior of the star, i.e., for V € [V, 1) we
set

1
Y, = S+ V), (92)

while inside the star, V € (V,,, Vg],

d, ¥, [ 2m, ] , ©93)

av 21"1“/WM

with @bH(Vs) = (1 4+ V)/2. This is a positive CY! function on (V,, 1). Using Eq.
(32) it is straightforward to verify that ¢, also satisfies

Py, o ay,

The following lemma establishes an important property of 1,

Lemma 14. Assume that the equation of state ¢ = o(p) is a non-negative, non-
decreasing, C' function which satisfies the inequality 50> — 6p(o + 3p)s > 0. Then
the function 1, defined in Egs. (92) and (93) satisfies d*+),,/dV?* > 0 on (V,,, 1).

Proof. For the case when V  is a regular zero of W, the proof follows almost exactly
the proof of Lemma 1 of Masood-ul-Alam [4]. The proof when V), is an irregular

zero is very similar as well. Note that wi is called {2 in that reference. To generalize
the proof to include the case when V), is an irregular zero of W, we define

Vb,

voav 95)
©w

[, =8mo —16m(0 + 3p)
Differentiating f,, and using Eq. (94) it follows that

dflt 2 21,2 2 —1
167V (o + 3p)W = f2 — [48m0 + 16m(0 + 3p)k + 647° V(0 + 3p)° W, ]f#
+ 6477 [50% — 6p(0 + 3p)k]. (96)

This equation implies that if fu(V) < 0 forsome V € (V#, VS) we have dfﬂ /dV >0
at that V. But Vhlrgu J,(V) =0if V, is a regular zero and Jllr‘l}# [,(V) = oo if V.
is an irregular zero. The last limit follows from Eq. (93) and Lemma 3 since m,
becomes negative near V, for an irregular zero. So [, is not negative at V' = V.,
and cannot become negative for larger values of V unless df ,/dV is negative there.
But this contradicts Eq. (96), so we conclude that fﬂ(V) > 0, and hence by Eq. (94)
above d21[JN/dV2 >0. O
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7. The Main Theorem

We will now consider the conformal factor v,, with v defined in Eq. (90). In order
to be useful as a conformal factor for the physical metric g,,, ¥, must satisfy certain
minimal smoothness conditions when considered as a function on the physical three-
dimensional constant-t hypersurfaces. From its definition in Egs. (92) and (93) it
follows that 9, is a C!! function of V for V, < V < 1. Thus ¢, will be a Cb!
function of position everywhere, except possibly at V = V,, because V is a Cb!
function of position by virtue of the fact that it is a solution of Eq. (2). Using Eq.
(93) the gradient of 1/)p (for any ) can be expressed in the form

2
D, = ——&——{1— 1 m“]DaV. ©7)

Zru, /Wu T,
The coefficient of D,V is bounded at a regular zero of W, and so D 9, vanishes

there. Thus 1, is a C>! function of position everywhere in this case. Unfortunately
in case V, is an irregular zero, then Eq. (97) and Lemma 3 imply that D%, is not
continuous at the level set V' = V; in the physical three-space. However by virtue
of Lemma 13, W,_4(V;) > 0, where 6 is as in that lemma. Hence from Eq. (97) it

follows trivially that 1, _; will be a C!'! function of position in the physical three-
space. By choosing § small enough we can also ensure that d?i), _s/dV? > 0 on
[V, Vgl This is because we have from Eqgs. (93) and (95) that Vlil;l/l f,(V) = +4o0.
c
That implies there exists a ¢ such that V]ir\l/l f,_s(V) > 0; this is because by Lemma
c

13, W,_s(Vs) > 0, and by Eq. (93) d¢,_s/dV is bounded at V;. Thus Lemma 14
gives f,_s(V) > 0 and so d*¢p,_s/dV?* > 0 on [V, Vs]. In the main theorem that
follows we apply the positive mass theorem to the conformal metric g, = 1/)4gab,
where

(98)

P if V is a regular zero of W ;
p=1"" © v
Y,_s if V- is an irregular zero of W,,.

Our preparations are now complete. We can now combine the results of the previous
sections into a complete proof of our main result

Theorem. Consider a static stellar model as defined in Eqs. (1)—(6) having an
equation of state which satisfies Condition A, Eq (72), or Condition B, Eq. (76).
Then this stellar model must be spherically symmetric.

Proof. We define the conformal metric

Tar =V 90n» (99)

where 1 is defined in Eq. (98). The mass associated with g, is zero as a consequence
of the definition of v in the exterior of the star, Eq. (92), and the asymptotic boundary
conditions on the metric functions, Eqs. (5) and (6). The scalar curvature associated
with g, is easily evaluated, using Eqgs. (2) and (3) with the result,

8 d*y

R=W-W)—-—= 100
~ ( Vv (100)
where W is defined as

- { w, if Vi, is a regular zero of W;

W= W,_s if V is an irregular zero of W,,.

v

(101)
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It follows from Lemmas 12 and 13 that W > 0 on (Vz, Vgl. Then as a consequence of
Lemmas 5 and 6, W, > W when V,, is a regular zero of W, and W,_5; > W, > W
when V,; is an irregular zero of W,,. Next, Conditions A or B on the equation of state
imply via Lemma 9 that 50> — 6p(o + 3p)x > 0. Thus Lemma 14 implies that

d?e

2 >0. (102)
Therefore the scalar curvature R, Eq. (100), is non-negative. As the discussion
following Lemma 14 demonstrated, the conformal factor 3 and hence the metric
G, are C1 functions of position on the three-dimensional constant-t hypersurfaces.
Thus Bartnik’s [23] version of the positive mass theorem (Schoen and Yau [24]) may
be applied. Since R > 0 while g,, has zero mass, the metric §,, must in fact be flat.
Hence the physical metric g, is conformally flat. It follows then from the arguments
given by Lindblom [9] (based on earlier work of Avez [25] and Kiinzle [26]) that the
static stellar model must be spherically symmetric. [

Although the conclusion of spherical symmetry is our primary interest, the
argument given above in fact establishes more. It demonstrates the uniqueness of
the static stellar model having surface potential Vs and satisfying the assumptions on
the equation of state in Sect. 4. In particular the vanishing of R in Eq. (100) implies
that W = W. This equality is impossible for the irregular zero case (see Lemma
13). We conclude that the center of the star must coincide with a regular zero of W,
and that W = W, with v = M. This argument rules out the possibility of multiple
spherical models having the same surface potential Vg for stars whose equation of

state satisfies these conditions.

8. Concluding Remarks

The conditions placed on the equation of state in Sect. 4 are almost certainly too
restrictive, although they do include large open sets in the space of all equations of
state. We found it necessary to use these conditions, however, to show in our proof
that the functions X', were positive and that the conformal functions ¢, had positive
second derivatives. How can our proof be modified to make those conditions on the
equation of state unnecessary? Perhaps there is some more elegant way than Eqgs. (92)
and (93) to choose a conformal factor which makes both scalar curvature nonnegative
and mass zero directly. While some alternate construction might bypass the need to
constrain the signs of Y, and dzz[)u /dV?, at present we do not know of a better
choice. In our proof the nonnegativity of X, is used to prove the monotonicity of
W, (in p) as well as to prove that W, — W is non-negative. Perhaps the need for
the strict non-negativity of X' can be avoided by analyzing the eigenvalues of the
operators on the left sides of Eqs. (40) and (44). These eigenvalues may be related to
the existence of multiple solutions of the spherical equations all having the same value
of V. And, perhaps a more powerful version of the maximum principle can be used
which allows X, to have somewhat negative values; perhaps down to a minimum
which is controlled by the magnitude of the first negative eigenvalue.

The method of proof used up to now establishes that the static spherical stellar
model having a given surface potential Vg is the unique static model having that
Vg. It would be interesting to know what conditions on the equation of state are the
minimal ones needed to guarantee this absolute uniqueness. We do not believe that
the equations of state allowed by Condition A together with with those allowed by B
are the largest such set. We also know that there exist physically reasonable equations
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of state in which more than one spherical model exists for a given value of V. Thus,
in order to extend the proof to include these equations of state it will be necessary to
find a criterion to decide which one of the multiple spherical models should be used
as the reference model for a given static model.

We now have a better understanding of the condition appearing in Lemma 14.
If this condition is violated everywhere, we have shown [8] that the stellar model
cannot have finite size, although it must nevertheless have spherical symmetry. There
exist static stellar models with equations of state that violate this condition locally,
e.g., stars based on “realistic” neutron-star equations of state. We expect that all such
models must be spherically symmetric as well, but the question of how to extend the
proof in these cases is presently unresolved.
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