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Abstract: This paper completes the proof of the necessity of spherical symmetry
in the static general-relativistic stellar models that have equations of state satisfying
certain inequalities. The technical assumption - that there exists a "reference spherical
stellar model" - that was essential in the previous discussions of this problem is
removed. This paper also extends beyond previous discussions the class of equations
of state included in the proof. The analysis of the equations for spherical stellar
models, used here to demonstrate the existence of a "reference spherical model," may
also be of independent interest.

1. Introduction

It seems almost self evident that spherical symmetry is a necessary feature of any
equilibrium stellar model which is nonrotating, self gravitating, physically isolated,
and composed entirely of fluid. The proof of this "obvious" fact for Newtonian stellar
models - although far from trivial - was given many years ago (Lichtenstein [1] or
for a more modern discussion Lindblom [2]). The proof for general-relativistic stellar
models has been more illusive and is still incomplete. Significant progress has been
made recently, however, toward a proof in the relativistic case by Masood-ul-Alam
[3,4], Lindblom [5], Beig and Simon [6,7], and Lindblom and Masood-ul-Alam
[8]. These discussions show (under various assumptions) that the spatial geometry
of static stellar models must be conformally flat as a consequence of the positive
mass theorem. Since spatial conformal flatness is equivalent to spherical symmetry
in static stellar models (Lindblom [9]), these arguments would be complete proofs
of the spherical symmetry conjecture if they did not rely on unphysical assumptions.
The purpose of this paper is to remove one of these "technical" assumptions and to
weaken the unphysical restrictions on the equation of state of the fluid. We present
the first complete proof of the necessity of spherical symmetry for static relativistic
stellar models that are composed of a fluid whose adiabatic index satisfies certain
inequalities.
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A stellar model in general relativity theory is an asymptotically-flat spacetime that
satisfies Einstein's equation with a perfect-fluid source. A static (i.e., time independent
and non-rotating) stellar model has a time-translation symmetry whose trajectories are
hypersurface orthogonal. Thus, the metric tensor in these spacetimes may always be
represented as

ds2 = -V2dt2 + gab dxadxb, (1)

where V and the three-dimensional spatial metric gab are independent of t. For
simplicity we assume that V and gab are C 3 (except at the surface of the star as
discussed below). This degree of smoothness guarantees that the strong form of the
Bianchi identities may be used everywhere except at the surface of the star. (For
a discussion of static stellar models having weaker differentiability conditions see
Masood-ul-Alam [10].) Einstein's equation for static stellar models reduces in this
representation to the pair of equations

(2)

Kb = V~lDaDbV + 4π(ρ - p)gab . (3)

The density and pressure of the fluid are denoted ρ and p\ and the density is assumed
to be a given function of the pressure, ρ = ρ(p), referred to as the equation of state.
This function is assumed to be positive, non-decreasing, and C 1 for all p > 0. The
spatial covariant derivative compatible with gab is denoted Da, and its Ricci curvature
is denoted Rab. The Bianchi identity for the three-dimensional spatial geometry may
be reduced to

r (4)

with the use of Eqs. (2), (3) for these static fluids.
The solutions of Eqs. (2) and (3) that represent realistic stellar models are those in

which the fluid is physically isolated, and so the geometry is taken to be asymptotically
flat. The appropriate asymptotic forms for the metric in this case are

V = l - — + O(r~2), (5)
r

+ OCr-2), (6)

where M is the mass of the star, δab is the flat euclidean metric, and r is a spherical
coordinate associated with δab. These conditions can be deduced from rather weak
assumptions about the asymptotic structure of these spacetimes (see e.g., Beig [11],
and Masood-ul-Alam [12]). For simplicity we merely assume here that the spacetime
of the static stellar model satisfies Eqs. (5) and (6).

A certain amount of care must be taken to insure that the boundary V = Vs

between the interior fluid region of the star and the exterior vacuum region is non-
singular. If the density ρ is discontinuous at the surface of the star, ρ(0) ^ 0, then
V and the metric gab will only be C 1 ' 1 across this boundary. The most important
specific consequence of the continuity conditions at the surface of the star (for our
purposes here) is the requirement that the function W defined by

W = DaVDaV (7)

is continuous across the surface of the star, but its derivative satisfies the discontinuity
condition

lim naDaW= lim naDaW + 8π lim VWι/2ρ, (8)
vw viv vW



Spherical Symmetry of Static Stellar Models 125

where na is the unit normal to the surface which points out of the interior of the star.
These boundary conditions have been discussed in detail in many places (see, e.g.,
Lindblom [9], or Masood-ul-Alam [4]).

In the following sections we present a proof of the necessity of spherical symmetry
for a large class of static stellar models, i.e., solutions of Eqs. (2)-(6). Our proof
follows the general outline introduced by Masood-ul-Alam [3] (see also Bunting and
Masood-ul-Alam [13]): A conformal factor is found which transforms the spatial
metric gab into a geometry that has vanishing asymptotic mass and non-negative
scalar curvature. The positive mass theorem is then used to conclude that the physical
geometry is conformally flat. It follows from the analysis of Lindblom [9] that the
stellar model must therefore be spherical.

All of the technical difficulties in this method of proof are associated with finding
an appropriate conformal factor and demonstrating that it has the desired properties.
As in the previous studies of this problem [3-8] we choose as our conformal factor
a function which transforms the metric of a "reference spherical model" into the
flat euclidean metric. This "reference spherical model" is a spherically symmetric
solution to Eqs. (2)-(6) having the same equation of state and the same value of the
surface potential V = Vs as the given static stellar model. Most of the analysis in
this paper is concerned with the demonstration that a suitable "reference spherical
model" actually exists. Since solutions to the spherically symmetric equations do not
exist for every value of Vs (see e.g., Lindblom [15]) our analysis is an important
improvement over previous discussions [4, 6, 7] which merely assume the existence
of a suitable "reference spherical model." In Sects. 2 and 3 of this paper we analyze the
solutions of the spherically symmetric equations. We demonstrate existence, derive a
variety of needed smoothness and monotonicity results, and classify the singularities
that arise in the equations. The critical results in these sections are Lemmas 6-8.
These show that solutions to the spherical equations exist (for appropriate values
of the mass parameter) which can be used as upper and lower estimates for the
physical (not necessarily spherical) static stellar model. In Sect. 4 we introduce the
constraints on the equation of state that we need to complete the proof of spherical
symmetry. These constraints (see Sect. 4 for details) are inequalities which restrict
the adiabatic index of the fluid and its first derivative. These restrictions are fairly
weak in the sense that there is an open set in the space of all equations of state
which satisfy our conditions. Our restrictions are weaker than those introduced by
Beig and Simon [6, 7]. In Sect. 5 we show that an appropriate "reference spherical
model" exists by constructing the particular solution to the spherically symmetric
equations having all the needed properties. The existence of this model follows from
the continuity conditions established in Lemma 4, and the upper and lower estimates
constructed in Lemmas 6-8. In Sect. 6 we construct the appropriate conformal factor
from the "reference spherical model" and derive some of its properties. In Sect. 7
we combine all of the above to show that the chosen conformal factor transforms the
physical metric gab into one that has vanishing asymptotic mass and non-negative
scalar curvature. Spatial conformal flatness, and hence spherical symmetry, follows
then as a consequence of the positive mass theorem. In Sect. 8 we suggest some
directions that future research on strengthening these results might take.

2. The Functions Wμ(V) and Their Basic Properties

Consider a static stellar model with finite radius so that the potential V has the value
Vs < 1 on the surface of the star. Given the equation of state for the fluid in this
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model, the Bianchi identity Eq. (4) can be integrated with the boundary condition
P(VS) = 0:

This expression determines ρ and p as explicit functions of V: p(V) = hΓι[log(Vs/V)]
and ρ(V) = ρ[p(V)]. Since we have assumed that the equation of state ρ(p) is Cι

for p > 0, it follows that ρ(V) and p(V) are C 1 for V < Vs. The functions ρ(V)
and p(V) will not in general be differentiable at V = Vs. These functions admit C°
extensions to V > Vs since ρ(p) is positive and monotonic for p > 0. (The extension
of p(V) can also be Lipshitz.) Given these functions, we define rμ = rμ(V) and
mμ — mμ(V) to be the solutions of the equations,

drμ

dV

dmμ

dV

V(mμ +

_ 4πr3

μ(rμ

V(mμΛ

which satisfy the boundary conditions

mμ(Vs) =

2mμ)
4πrμp) '

- 2mμ)ρ

- 4πr3 p)

μ,

( }

(12)

μ μ (13)

for a given value of the constant μ > 0. On the domain where the solutions to Eqs.
(10) and (11) exist, we introduce the function

dv
which plays an important role in our proof of the necessity of spherical symmetry.
We first determine the domain on which these functions are well defined.

Lemma 1. The solutions to Eqs. (10) and (11), r (V) and mμ(V), exist on the maximal
interval (Vμ, Vs], where p(V) is finite and Wμ(V) > 0. On this domain rμ > 0,
r > 2m y and m > —4πr3p; and if lim p = p < oo, then sup (2m / r ) < 1

and\imW=0 viv»
vιvμ

 μ

Proof. At the surface of the star rμ = Rμ = 2μ/(l - Vg) > 2μ = 2mμ >
-SπR3

μp(Vs) = 0, and the derivatives drμ/dV = VsR
2

μ/μ and dmμ/dV =
4πρ(Vs)VsR

2

μ/μ are bounded. Therefore solutions to Eqs. (10) and (11) with these
boundary conditions exist locally. The needed local existence theorem (see e.g., [14,
Theorem 1.1, p. 8]) requires only that the right-hand sides of Eqs. (10) and (11) be
continuous functions of V. Thus, the local existence of the functions rμ and mμ is
guaranteed even when ρ(V) and p(V) are not differentiable at V = Vs. Consider the
maximal interval (V' V^], where the solutions to Eqs. (10) and (11) exist, where
p(V) is finite, and where rμ > 0, rμ > 2mμ and mμ > -4πr3

μp. Using Eq. (14) it
follows that Wμ > 0 on (Vμ, Vs]. On this interval drμ/dV > 0 so rμ is monotonic
and bounded by R > rμ > 0. Similarly since dmμ/dV > 0 it follows that m
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is monotonic and bounded by μ > mμ > —4-πrμp. We also note that since rμ is
monotonic on this domain, we may re-express Eq. (11) in the form

dm,
= 4πrz

μρ. (15)

If lim p = oo then the lemma follows simply by noting that Vμ — Vμ.

In the following then, we assume that lim p = p,, < oo. We next show that
vivμ

 μ

sup (2mμ/rμ) < 1: On the interval (Vμ, Vs] the function Wμ is well defined

by Eq. (14), and from Eqs. (10) and (11) it must satisfy the differential equation

dW,, 4W,, dr.,

Equation (16) may be integrated on (Vμ, Vs] to obtain

Vs

Wμ(V)r4

μ(V) = μ2 - ί ZπV[ρ(V) + 3p(V)]rμ(V) dV . (17)

v

This demonstrates that Wμrμ is bounded on (Vμ1 Vs] : μ2 > Wμr
4

μ > 0. Using Eq.

(14) we may re-express Wμr^ in the form

Λ (mn

B y definit ion r > 2m o n (V' Vs], so w e m u s t h a v e sup (2m /r) < 1 unless
(V',VS)

lim (2mll/rll) = 1. But W,,rA, is bounded so in this case the numerator in Eq. (18)

w o u l d necessar i ly v a n i s h in this l imit . T h i s w o u l d i m p l y

lim mn = —4π lim rip. (19)
viv£ μ viv^ ^

If lim rn > 0, then Eq. (19) implies that
VΪV'μ

 μ

2mnmn o

lim ^ = - 8 π lim τ2p < 0, (20)
/1 \/i r \λ i λ/i r

If lim r,, — 0 we may use ΓHospital's rule and Eq. (15) to conclude that
V[Vμ

 μ

lim (2m,, Ir,,) = 0. In either case we conclude that

vivf μ μ

2m..
lim ^ <0 . (21)

vϊVμ rμ

B u t t h i s c o n t r a d i c t s o u r a s s u m p t i o n t h a t l i m ( 2 m / r ) = 1 , s o w e c o n c l u d e t h a t
sup (2mJrJ < 1. ViV

(V4V)
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The final step in the proof of Lemma 1 is to show that lim W,, = 0, and so

conclude that Vμ = Vμ. We consider first the case when lim^ rμ = 0. It is helpful for
this case to re-write Eq. (14) in the form, viyί

Ίfmn \ 2 ί 2m,Λ~ι

= v2[yr + 4^P) {ι-^fj ' (22)

Using ΓHospitaΓs rule and Eq. (15) we conclude that lim (mμ/r2

μ) = 0 in this case.
ViVμ

Taking the limit of Eq. (22) we conclude then that lim Wn = 0. This implies that
vιvμ

 μ

V —V' and so the lemma follows for the case lim r,, = 0.
μ μ V[V^ μWe turn now to the final case lim rπ > 0. The functions m,. and rn are absolutely

y^yr M μ μ J

bounded in this case: sup \mμ\ < μ + 4πR3

μpμ and sup \rμ\ = Rμ. A bound

on the derivative of rμ may be obtained by re-expressing Eq. (10) in the form:

drn 1 / 2m\ι/2

μ_ — I i μ_ \ /OOΛ

Since 1 > 2mμ/rμ > —$πr2

μp on the interval (Vμ, Vs], it follows that the derivative
of rμ is bounded absolutely by

dV

+ 4πi?2p \ 1/2
" " * . (24)

W,μ

Using Eq. (15) a similar expression may be obtained which bounds the derivative
of mμ. It follows then that the derivatives of rμ and mμ would be bounded at

V = V' if lim Wn > 0. If this were the case the solutions of Eqs. (10) and (11)
μ V i V μ

could be extended beyond V = Vμ. Further, in this final case rμ > 0, rμ > 2m ,
mμ > —4πr3

μp, and p = pμ < oo at V = Vμ. By continuity these inequalities would
be satisfied by the extended rμ and mμ in some neighborhood of Vμ. But this violates
the assumption that (Vμ, Vs] is the maximal interval on which such solutions to Eqs.
(10) and (11) exist. Thus, we have a contradiction unless lim Wμ = 0. It follows
then that Vμ = Vμ and the lemma is established. D v^vμ

We next prove a useful result about the monotonicity of certain combinations of
these functions:

Lemma 2. The expression mμ — 4πρr3

μ/3 is a non-decreasing function of V on
(Vμ1 Vs]. And, if the function dWμ/dV — 8πV(ρ + 3p)/3 is non-negative for some
V+ > V , then it is non-negative for all V in the interval (Vμ, V+].
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Proof. Using Eqs. (10) and (11) it is straightforward to evaluate the derivative

4 π * dβ (25)

The right side of Eq. (25) is non-negative as a consequence of Eq. (4) and the assumed
monotonicity of the equation of state. Thus mμ — 4πρr3

μ/3 is non-decreasing on the
domain where it is defined: (Vμ, Vs].

Next, we may rewrite Eq. (16) using Eqs. (10) and (11) in the following form:

dWμ 8π 4V ί 4π 3 λ

The quantity in parenthesis on the right side of Eq. (26) is non-decreasing. If this
quantity is non-positive at a point V+9 then it is non-positive on the interval (Vμ, V+].
Since rμ and V are positive, it follows that the right side of (26) is non-negative on
the interval (Vμ, V+]. D

The solutions to Eqs. (10) and (11) in which Wμ vanishes fall into two classes
depending on whether rμ vanishes at Vμ or not. We refer to the case where
lim rμ = 0 as a regular zero of Wμ and the case where lim rμ > 0 as an irregular

zero. The next lemma establishes additional properties of the zeros of Wμ.

Lemma 3. Consider a solution to Eqs. (10) and (11) in which lim W, = 0 and
vιvμ

 μ

lim p = pμ < oo. If lim rμ = 0 (i.e., if Vμ is a regular zero of Wμ) then

ϋm(mμ/rμ) = 4πρ(Vμ)/3 and

dWu 8π

If lim r > 0 (i.e., ifV is an irregular zero) then lim (rn /r3) = —4πp and

d W u
+ 3p»]- ( 2 8 )

Proof. For the first case assume that lim r = 0. Using ΓHospitaΓs rule and Eq.

(15) we conclude that lim (mμ/r3

μ) = 4πρ(Vμ)/3. Next, we re-write Eq. (26):

The right side of Eq. (29) vanishes in the limit V j Vμi which implies Eq. (27). For
the second case assume that lim rμ > 0. The vanishing of Wμ in the limit V I Vμ

and Eq. (18) imply that lim (mμ/r3

μ) = — 4πpμ < 0. This may be used in turn to
i v μ

show that the limit of the right side of Eq. (29) is 16πVμ[ρ(Vμ) + 3pμ]/3. When
combined with the limit of the left side of Eq. (29) this implies Eq. (28). D
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We note that the function Wμ defined in Eq. (14) also satisfies the second-order
differential equation

(30)

on the interval (Vμ, Vs] where Wμ > 0. This follows by direct computation using
Eqs. (10), (11), and (14).

3. How Wμ Depends on μ

In this section we prove several important results about the dependence of W on the
parameter μ. First we show that Wμ is a C 1 function of μ on the domain where it is
well defined

Lemma 4. The functions rμ(V), mμ(V), and Wμ(V), as defined in Eqs. (10)-(14),

are Cι with respect to variations in μ (at fixed V) for μ > 0 and for V in the interval

(vμ, vsι
Proof It is useful to consider the functions rμ(V), mμ(V), and Wμ(V) as the
components of a three-dimensional vector:

(31)

lwμ(V)j

This vector satisfies the ordinary differential equation

dΫ,,
(32)

when F(Ϋ , V) is given by

F(Yμ, V) =

- 2mμ/rμ)
ι'2Wt

-1/2

SπV(ρ + p) - 4Vmμr~:

(33)

Equation (32) is equivalent to Eqs. (10), (11), and (16). We note that Wμ > 0, rμ > 0,
and rμ > 2mμ on the interval (Vμ, Vs] as a consequence of Lemma 1. The equation
of state ρ(p) was assumed to be a C 1 function for p > 0, which implies that p(V)
and ρ(V) are also C 1 for V < Vs. These functions, ρ(V) and p(V), can also be
extended as C° functions for V > Vs. Consequently, F(Ϋ , V) is a C 1 function of

Y and a C° function of V, for V in an open interval containing (Vμ, Vs], Standard
theorems on systems of ordinary differential equations (see e.g., [16, Theorem 7.2,
p. 25]) guarantee then that the solutions of Eq. (32) are Cι functions of the initial
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conditions Yμ(Vs). (We point out that these theorems do not require ρ(V) and p(V)
to be differentiable at V = V .̂) The initial conditions of particular interest to us,

2μ/(l - Vg)
(34)

are C 1 functions of μ when μ > 0. It follows that rμ(V), m (V), and W (V) are C 1

functions of μ for V in the interval (V , Vs] and for μ > 0. This continuity condition

on these functions may be summarized as follows: There exists a δ > 0 such that for

every δ G (—<5, δ) the functions F μ and their derivatives satisfy

dV
<Cδ, (35)

where C = CίV, μ) is independent of <5. D

The next lemma demonstrates that Wμ is monotonic in addition to being differen-
tiable with respect to the parameter μ. Our proof uses the fact that the function Σv,
defined by

dWv 8π 4WU ρ + pdρ

dV 3 5 \/ >̂ + 3p dp

is non-negative. We delay until Sect. 4 the proof that Σv > 0 and merely state this
condition here as an assumption.

Lemma 5. Assume that ΣU(V) > 0 for V in the interval {Vv, Vs). If μ > v then
Wμ(V) < WU(V) on (Vμi Vs]; and if μ < v then Wμ{V) > WV{V) on {Vv, Vsl

Proof To facilitate comparison between Wμ and Wv we introduce the function

Wu - Wv

for V in the interval (Vμ, Vs] Π (VuJ Vs]. The function \ v is defined by

From Eq. (38) it follows that \U(V) > 0, and that λ^ satisfies the differential equation

~dV = 4W~, ~dV :
(39)

with the boundary condition Xu(ys) = 1. A lengthy but straightforward calculation
using Eqs. (30), (36), and (39) shows that Δ satisfies the differential equation

d2Δ

\vdV AWμ dV dV
(40)
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for V in the interval (Vμ, Vs) Π (Vu, Vs). Equation (40) is a degenerate special case
of an identity given in Beig and Simon [6,7]. The particular solution of (40) that is
of interest to us, Eq. (37), satisfies the boundary conditions

)
as a consequence of Eqs. (37), (12)-(14), (16), and (38).

The assumption Σv > 0 guarantees that the coefficient of Aμυ on the right side
of Eq. (40) is non-negative. Therefore the solutions of Eq. (40) satisfy a maximum
principle: Δμι/ may have no negative minimum or positive maximum except at the
endpoints of the interval (Vμ1 Vs) Π {Vv, Vs), unless it is constant.

Assume first that μ > v. It follows from Eqs. (41) and (42) that Δμt/(VS) < 0
and that dΔμj/(Vs)/dV > 0. If ρ(Vs) > 0 then dΔμι/(Vs)/dV > 0 so that Δμu

is strictly increasing at V = Vs. Thus Δ must be negative on the entire interval
(Vμ, Vs) Π (Vy, Vs) unless it has a minimum where its value is negative. Such a
minimum is excluded, however, by the maximum principle. The case ^(V^) = 0 is
more delicate and must be analyzed with the more powerful boundary point maximum
principle: if a negative minimum of Aμv is reached at Vs then dΔμj//dV must be
negative there, or Δ must be constant. But this contradicts Eq. (42) and so the
minimum of Δ cannot be reached at V^ unless it is a constant everywhere. Thus,
Aμv must be negative everywhere on (Vμ, Vs) Π {Vu, Vs) because the possibility of
a negative minimum elsewhere is excluded by the regular maximum principle. We
conclude that Aμv < 0 everywhere on the interval (Vμ, Vs) Π (Vu, Vs) for the case
μ > v. Therefore Wμ < Wv on the interval (V ,̂ V^]. The proof that Wμ > Wv on
the interval (V ,̂ V^] for the case μ < v is exactly analogous. D

Lemma 1 shows that the solutions to Eqs. (10) and (11) exist up to the point
V = Vμ, where W vanishes or the pressure diverges, and the last lemma shows
how the Wμ depend on μ. An important element of our subsequent analysis will be
a knowledge of the relationship between the functions Wμ(V) and W as defined in
Eq. (7). The following lemma derives one important relationship.

Lemma 6. Let Vc > 0 denote the minimum value of V in the spacetime of a static
stellar model of mass M. Assume that Wμ > 0 and Σ > 0 on (Vc, Vs]. Then
Wμ>W on (Vc, Vs] and μ<M.

Proof The difference between W [as defined in Eq. (7)] and Wμ is conveniently
characterized by the function,

W-Wu
Δ- EE — ^ , (43)

where λ^ is defined in Eq. (38). Beig and Simon [6,7] have shown that Δ~ satisfies
the identity,

D'Δ»D°Δ» ( 4 4 )
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on the domain Vc < V < Vs. The tensor Rabc is defined by

Rabc = DcRab - DbRac + \(gacDbR - gabDcR). (45)

Equation (44) is an elliptic equation for Δ~ whose right side is non-negative. Since
Σμ > 0 the maximum principle implies that any positive maximum of Δ~ must
occur on the boundary of this domain, and the outward directed normal derivative
must be positive at this maximum point, naDaΔ~ > 0, unless Δ~ is constant. We
note that if the maximum of Δ~ occurs at Vc or some other critical point of W then
Δ~ < 0 automatically since W = 0 at any critical point. We also note that when Δ~
is strictly positive at the maximum point, we can use the boundary point maximum
principle (see e.g., [17, Lemma 3.4]) since Eq. (44) implies Djy-χ\2

μD
aΔ~) > 0

in this case. It follows that if Δ~ > 0 at its maximum point which occurs at the
surface V = Vs, then

d\u
naDaΔ- = naDa(W - Wμ) - A(W - Wμ)^naDaV > εΔμn

aDaV, (46)

at the maximum for some ε > 0.
In the exterior of the stellar model, Vs < V < 1, we define

( 4 7 >

This extension of Wμ is C° across the surface V = Vs, and the quantity W - Wμ is
Cι there. As Eq. (8) illustrates, however, neither W nor Wμ will be C 1 at V = Vs if
ρ(Vs) 7̂  0. Near spatial infinity the asymptotic behavior of W can be deduced from
its definition and Eq. (5) to be

For comparison, the asymptotic form for W is

W=^- + 0(r~5). (49)

We compare Wμ to W in the exterior of the star by making use of the quantity

where b is a positive constant to be determined later. Robinson [18] showed that Δ+
satisfies the identity

Da(V D Δμ) - (V RabcR + 3X Xa)4VW(1 _y2)3(l+ b _γ2) ' ^51)

in the exterior vacuum region for any value of b. The quantity Xa is defined by
Xa = DaW + %VW(\ - V2)-ιDaV. Since the right side of Eq. (51) is non-negative,
the maximum principle implies that Δ+ may have a maximum only at infinity (where
it vanishes) or on the surface of the star V = Vs. If the maximum of Δ+ occurs at
infinity, then W — Wμ < 0 everywhere. The alternative is that Δ+ has a positive
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maximum on the surface V = Vs. In this case the boundary maximum principle
implies that the outward directed normal derivative is negative there:

naDaΔ+<0. (52)
aΔ

But this condition contradicts Eq. (46) for appropriately chosen values of b. If

256π μ2Vsρ(Vs) 2VS
ε ε + " \Vf ( 5 3 )

then Eq. (52) is inconsistent with (46) for any choice of b > 0. However if ε" violates
the inequality Eq. (53) then the choice

(54)

makes Eq. (52) inconsistent with (46). Thus, Z\+ may have no positive maximum on
the surface V = Vs. Thus, we have established the first conclusion of the lemma:
Wμ > W everywhere. The second conclusion, μ < M, follows by imposing the
inequality W > W in a neighborhood of spatial infinity. The asymptotic expansions
in Eqs. (48) and (49) imply then that μ < M. D

Next we prove a result which, when combined with the assumptions about the
equation of state to be made in Sect. 4, demonstrates that there exists a value of
the mass parameter μ for which W has a zero inside the star, i.e., in the interval
(Vc, Vsl.

Lemma 7. There exists a μ > M such that Vμ G (Vc, Vs] or Σμ > 0 on the interval
[Vc, V+]for some V+ e (Vc, Vs].

Proof. Consider first the case where ρ(Vs) > 0. Then we choose a μ > M such that,

(55)
y jΔπgyvs)

For this choice it follows that

μ-4πρ(Vs)R3

μ/3<0. (56)

From Lemma 2, then mμ—4πρrμ/3 < 0 on (V , Vs]. It follows then from Eq. (26) and
the definition of Σμ, Eq. (36), that Σμ > 0 on (Vμ, Vs] as well. If Vμ 0 (Vc, Vs]
then Wμ > 0 and Σμ > 0 on (Vc, Vs]. But this contradicts Lemma 6 since we
assumed μ > M. Thus, we conclude that Vμ e (Vc, Vs].

Consider next the case where ρ(Vs) = 0. Let δ G (0, 10~3) and then choose
V* e (Vc, Vs) such that

( ^ ) 5 ( 1 - ^ 2 ) ( 5 7 )

Next choose a μ > M such that

(58)

so that
μ < 2τri^β(Vς)/3 . (59)



Spherical Symmetry of Static Stellar Models 135

If V e (Vc, Vs] the proof would be complete; thus we consider only the case
Vμ $. (Ϋc> Xsl ^ follows from Lemma 1 that rμ and mμ are defined on [Vc, V ] in
this case. Near the surface of the star we must have

-f-?0>O, (60)

since ρ(Vs) = 0. If the left side of Eq. (60) vanishes at any point V+ within the
star, then it follows from Lemma 2, Eq. (26), and the definition of Σμ9 Eq. (36),
that Σμ > 0 on Wc > ^+] as claimed. We will now show that the left side of Eq.
(60) always vanishes somewhere. Thus, we suppose to the contrary that Eq. (60) is
satisfied on the entire interval [Vc, Vs]. Equation (15) may now be used to obtain
the following expression,

d ί u \ 1 / a\
f 4 ^ (61)drμ V Tμ ) rμ\ Tl

For our case the right side of Eq. (61) is negative and so τnμ/r3

μ is strictly decreasing
as rμ increases. Integrating Eq. (61) then we obtain a useful estimate:

3dr 3ra f Rμ\
— = r~ 1°S — (62)

' μ J ' μ ' μ J μ μ \ ' μ /
rμ rμ

This implies that

(63)

Now since τnμ/r3

μ is strictly decreasing as rμ increases we may also obtain from
Eq. (10) the inequality

- 2mμ) 2ή_ ^
~ Vm ~ V ' V '=

dV V(mμ + 4πrlp) ~ Vmμ ~ Vμ '
on [Vc, Vs]. Integrating this expression we get

^.-Ϊ4*(£),
and so

r2

μ(V) > r2

μ(V*) > (1 - δ)R2

μ , (66)

for V € [V*, V5). Now using Eqs. (63) and (66) we get

for δ < 10~3. Using Eqs. (59) and (67) we find that

on [V ,̂ Vs). But the right-hand side is negative at V = V* which contradicts our
assumption that Eq. (60) is satisfied everywhere. D
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Complementary to the previous results, we now show that if the mass parameter μ
is sufficiently small, then the function Wμ exceeds any given constant. In particular
this lemma shows that Wμ > sup W > W on [VCi Vs] if μ is sufficiently small.

Lemma 8. Let K > 0 be a constant and (Vm, Vs] an interval on which p(V) is
bounded. Then there exists a constant μκ > 0 such that Wμ > K on (Vm, Vs]for all
μ E (0, μκ).

Proof. Define μκ by the condition

1 16
( 1 -

VS

1κ + 8π ί V(ρ + 3p)dv\ . (69)

Next we rewrite Eq. (17) in the form

' Λ Λ 4 Γ α - ^ λ dv\ . (70)
16μ2

v

From Lemma 1 we know that 0 < rμ < Rμ on the domain (Vμ, Vs], here W > 0
and p(V) is bounded. Thus, the integral on the right side of Eq. (70) can be estimated
to yield a lower bound on Wμ for points in the interval (Vμ, Vs] Π (Vm, Vs]:

Wμ(V) > [ -^

The second inequality in Eq. (71) is satisfied for μ < μκ. Since Wμ > K > 0 and
p(V) is bounded on the interval (Vμ, Vs] Π (Vrn, Vs] we know from Lemma 1 that
this must be a subset of (Vμ, Vs]. Thus Wμ > K on (Vm, Vs] for μ < μκ. D

4. Conditions on the Equation of State

Up to this point we have assumed only that the equation of state Q = ρ(p) is a positive,
non-decreasing, C 1 function for p > 0. We know that some additional conditions on
the equation of state are also implicitly required to have existence of static stellar
models with finite mass and radius, see e.g., [8, 19-21]. We presume that spherical
symmetry is a necessary feature of any static stellar model whose equation of state
satisfies the minimal monotonicity and smoothness assumptions that we have used
up to now, plus whatever additional minimal conditions on the equation of state
are required to guarantee the existence of static stellar models. At the present time,
however, additional unphysical restrictions on the equation of state must be used
in order to complete a proof of the necessity of spherical symmetry. An additional
restriction on the equation of state is needed, in particular, to prove that the functions
Σμ, defined in Eq. (36), are positive; and a different condition is needed to prove
that the conformal factor ψμ(V), defined in Sect. 6 below, has non-negative second
derivative. Two alternate conditions on the equation of state have been found which
allow us to prove these results. The first restriction (introduced by Beig and Simon
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[6,7]) assumes that the equation of state is a C2 function whose second derivative
satisfies the condition,

1 diϊ
(A) -κ2 + 2κ + (ρ + p ) — = I < 0 , (72)

5 dp

where K is defined by
Q + P dρ

£ + 3p dp

We note that the condition / < 0 implies an upper bound on the value of K. In
particular, Eq. (72) can be integrated,

I = 10 / — —

o

where κ(0) = lim κ(p). This inequality is equivalent to the bound,
p|0

10*(0) 10

- [«(0) + 10] exp[2ft(p)] - «(0) ~ exp[2Λ(p)] - Γ l j

Our alternate condition on the equation of state places upper and lower limits on the
value of n for stars with a given value of V ,̂

, > « > i τ / 2 =
3p) exp[2ft(p)] - V |

but no limit on its derivative. The two conditions on the equation of state, Eq. (72)
(Assumption A) and Eq. (76) (Assumption B) are complementary: Assumption A
limits the second derivative of the equation of state, while Assumption B does not.
Assumption B places a positive lower bound on K, while assumption A does not. We
also point out that conditions A and B are in effect constraints on the adiabatic index,
7 = (ρ + p)(d\ogp/dρ), of the fluid and its first derivative.

Before proceeding it is appropriate to point out that each set of equations of state
defined by conditions A or B is not empty. It is easy to verify, for example, that the
one parameter family of equations of state

0tt(0)
K{P) [«(0)+10]exp[2ft(p)]-«(0)'

satisfies Condition A. In fact 7 = 0 for this family. The parameter /ς(0) is limited
only by the requirement that it be positive in order to insure that ρ(p) (obtained by
integrating Eqs. (9) and (73)) is an increasing function. It is also easy to verify (using
Lemma 9 below) that the equations of state in Eq. (77) satisfy Condition B if κ(0) is
restricted to the range κ(0) > 10V|/(l — Vj). We note that B is a restriction on the
space of equations of state for stars of given Vs. Our principle result in this paper
eliminates the possibility of non-spherical stars with equations of state that satisfy
one of these restrictions. For some values of Vs (e.g., for Vs < 1/3, see Buchdahl
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[22]) there exists no spherical stellar model whose equation of state satisfies these
conditions.

The next lemma shows that Assumption A implies the first of the inequalities in
Assumption B:

Lemma 9. Assume that the equation of state ρ = ρ(p) is a non-negative, non-
decreasing, C2 function which satisfies the inequality I < 0 defined in Eq. (72). Then
5ρ2 > 6p(ρ + 3p)κ.

Proof The proof follows exactly the proof of Lemma 5 of Beig and Simon [7]. D

We next prove that either of these assumptions is sufficient to guarantee that the
quantity Σμ defined in Eq. (36) is positive.

Lemma 10. If the equation of state satisfies Condition A, Eq (72), and Wμ satisfies
lim Wn = 0, where lim p = pπ < oo, then the function Σn defined in Eq. (36) is

VϊVμ β VIV F μ J μ J *
non-negative on the interval (Vμ, Vs]. If the equation of state satisfies Condition A
and ifΣμ>0 at some V+ such that Wμ > 0 on [V+1 Vs], then Σμ>0on [V+, Vsl
And finally, if the equation of state satisfies Condition B, Eq (76), then Σ > 0 on

<vμ, vsι
Proof Assume first that the equation of state satisfies Condition A: / < 0. The proof
in this case follows almost exactly the proof of Lemma 7 of Beig and Simon [7].
First define the quantity,

tμ = ^ , (78)
μ 2VWμ/2

which satisfies the differential equation

dt,, Vt2,
( 7 9 )

In the case where V is a regular zero, Beig and Simon [7] have shown that
lim tμ = 0, while for an irregular zero it is easy to see that tμ > 0 for V slightly

larger than Vμ (although it diverges at V = V ). If t were negative, then dtμ/dV > 0
as a consequence of Eq. (79). But since tμ>0atV = Vμit follows that tμ (and
hence Σμ) must remain non-negative on all of (V , Vs).

Under the second condition Σμ > 0, and hence tμ > 0 at V = V+. The same
argument used in the first case implies then that tμ must remain non-negative for
larger values of V. Thus, tμ > 0 and hence Σμ > 0 on [V+, Vs].

Consider finally the case when the equation of state satisfies Condition B, Eq. (76).

We define the function Σμ,

dWu 8π ΛWU

Ίv^~ ΎV(Q + 3p) + T^* o ( p ) ' ( 8 0 )

which satisfies the inequality

(81)
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when κ0 is defined as in Eq. (76). Thus, Σ is a lower bound for Σμ. The limiting

value of Σμ at the surface V = Vs may be determined with the aid of Eq. (29),

Since h(0) = 0, it follows that the term in square brackets on the right side of Eq.

(82) vanishes. Thus, lim Σμ > 0. Next, we evaluate the derivative of Σμ using Eq.

(30) and (76). It follows that Σμ satisfies the differential equation

dV

The right side of Eq. (83) is negative, therefore the derivative dΣ /dV is negative

at any point where Σμ vanishes. Since Σ > 0 at V = Vs from Eq. (82), it follows

that Σμ > 0 for all V < Vs. We conclude that Σμ > 0 from Eq. (81). D

We point out that Lemma 10 strengthens the conclusion of Lemma 7. In particular
when either condition on the equation of state is assumed then Lemma 7 implies that
there exists a μ > M such that Vμ G [Vc, Vs] or that Σμ > 0 on [Vc, Vs].

5. Choosing the Reference Spherical Model

In this section we prove several results whose purpose is to identify the appropriate
value of the mass parameter μ to choose for the "reference spherical model." Let
M + > M denote a value of the mass parameter such that WM+(VM+) = 0 at some
point VM+ G (Vc, Vs). Lemmas 7 and 10 guarantee the existence of such an M + ,
or that ΣM+ > 0 on (Vc, Vs]. In the latter case Lemma 6 guarantees the existence
of such an M + . Next choose an M~ > 0 with the property that WM— > 0 on the
interval [Vc, Vs]. The existence of such an M~ < M is guaranteed by Lemma 8
by taking K > sup W in that lemma. In fact we can take M~ such that Wη > 0 on
[Vc, Vs] for all η G [M~, M~ + ε] for some ε > 0. Next, we define S to be the
subset of [M~, M + ] in which the functions Wμ have zeros in (Vc, Vs):

S = {μ G [M~, M + ] : lim Wμ = 0 for some Vμ G (Vc, Vs)} . (84)

This set is clearly non-empty since M+ G S. Further, S is bounded below by M~ + ε .
We define

r = inf μ . (85)

We now derive some important properties of r. In the following three lemmas we
restrict our attention only to non-spherical models.

Lemma 11. For static non-spherical stellar models composed of fluid whose equation
of state satisfies either Assumption A, Eq. (72), or Assumption B, Eq. (76), it follows
that r 0 S
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Proof. Suppose on the contrary that τ e S. Then by definition Vτ > Vc and
lim Wl = 0. By Lemma 10 ΣL > 0 in this case. If VI is a regular zero of WL,

then the conditions of the Beig and Simon [7] theorem are satisfied and so the stellar
model must be spherical. This lemma, however, is concerned only with non-spherical
stars and so we conclude that Vr must be an irregular zero of Wτ. From Lemma 3 it
follows then that

dW

Lemma 4, Eq. (35), shows that for any V e (Vτ, Vs) there exists a ί I / > 0 such
that for all δ e (0, δu\

\Wτ_δ(V) - Wr(V)\ (V) -
dV v ' dV

< CS, (87)

where C = C{V, r) is independent of δ. Without loss of generality we may take
δv < ε so that r — δ e [M~, M + ] ; however, r — δ ^ S since r = inf S. Thus,
Wτ_δ > 0 on (V^, V^]. If Wτ_δ vanished at a point Vτ_δ, then from Lemma 10 we
would know that Στ_δ > 0 on (Vτ_δ1 Vs]. The argument is more subtle, however,
if Wτ_δ has no zero at all. In this case we may use Eqs. (86) and (87) to compare
Wτ_δ with Wr atV = Vr+ει, (for sufficiently small εu) and so conclude that

^ - γ(Vr + εv)(Q + 3p) > 0, (88)

for sufficiently small δ. Thus from Lemma 2, we conclude that Στ_δ > 0 on
(Vc, Vr + ε^]; and using Lemma 10 that Στ_δ > 0 on the entire interval (Vc, Vs].
It follows then from Lemma 6 that Wτ_δ > W on [Vc, Vs]. And so in particular
that Wr_δ(Vτ) > sup W.

v=vτ

Consider for a moment the properties of sup W for V* € [Vc, Vs]. This function
v=v*

must be strictly positive unless V* = Vc. Otherwise, if there were a V* > Vc for
which sup W = 0 then we could find an open ball contained entirely in the open

v=v*
set V < V* whose surface intersects and is tangent to the surface V = V* at some
point q. In this open ball the boundary value maximum principle applied to Eq. (2)
implies that the gradient of V may not vanish at the maximum point q, and so W
may not vanish there. Thus, sup W > 0.

v=v*
Now since Wτ_δ(Vr) > sup W > 0 we get a contradiction with Eq. (87) if δ

v=vτ

is taken small enough. Thus, we conclude that Vτ can not be in (Vc, Vs) and so
τ^S. D

The next lemma guarantees that functions r r and rar, solutions to Eqs. (10) and
(11), exist on the interval (Vc, Vs] with the important property that lim Wr = 0.

Lemma 12. For static non-spherical stellar models composed of fluid whose equation
of state satisfies either Assumption A, Eq. (72), or Assumption B, Eq (76), it follows
that Wτ > 0 on the interval (Vr, V*], and lim Wτ = 0.

r c b vιvc

 τ
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Proof. By Lemma 11, τ 0 5 and so Wr > 0 on (Vc, Vs]. Assume to the contrary
of this lemma that lim W_ Φ 0. It follows from Lemma 4 then that there exists

vivc

 τ

a δ > 0 such that for all δ G (0, δ) we have Wτ+δ > 0 on [Vc, Vs]. But by
definition r = infS and by Lemma 11 r 0 S. Thus there exists a small enough δ
so that τ + δ e S, and hence Wτ+δ vanishes at Vτ+δ G (Vc, Vs], Thus we have a
contradiction unless lim W_ = 0 . D

Next we define Sc to be the set of mass parameter values for which W has a
zero at the center of the physical star V = VC:

Sc = {μe [AT, M + ] : Wμ > 0 on ( F c , V5] and Wμ(Vc) = 0} . (89)

This set is not empty because r E S c as shown by Lemma 12. Now we let

v= inf μ. (90)

The following lemma shows that v is also an element of Sc.

Lemma 13. For static non-spherical stellar models composed of fluid whose equation
of state satisfies either Assumption A, Eq. (72), or Assumption B, Eq. (76), it follows
that v G Sc and there exists a δ > 0 such that for all δ G (0, δ) we have Wu_δ > 0
on [Vc, Vs].

Proof. Assume on the contrary that v ^ Sc. Then for any δλ > 0 there exists a
δ2 G (0, δx) such that z/ + δ2 G 5 C ; thus,

Wu+δ2(Vc) = 0. (91)

However, we also have WU(VC) > 0 since v £ Sc. We now show that this contradicts
the continuity of Wv with respect to v guaranteed by Lemma 4. Using the same
argument given in Lemma 11 to prove that Στ_δ > 0, it follows that Σv > 0 on
[Vc, Vs], Then from Lemma 6 we conclude that Wv > W > 0 on [Vc, Vs]. The
continuity of Wv guaranteed by Lemma 4 insures then that there exists a δ3 > 0 such
that WU+6A > 0 on [Vc, Vs] for every δ4 G (0, δ3). This, however, contradicts Eq.
(91) if we take δ3 = δx. Thus we conclude that v G Sc.

Next let v - δ > M~ and let δ G (0, δ). Since WU(VC) = 0 from the argument
above, it follows from Lemma 10 that Σv > 0 on [Vc, Vs]. Next, from the
monotonicity of Wy derived in Lemma 5, we conclude that Wu_δ > Wv on (Vc, Vs].
And since v — δ < v = inf Sc we conclude that Wu_δ > 0 on the closed interval
[Vc, Vs] as well. D

The solution to Eqs. (10)-(14) with parameter μ — v, where v is defined as in
Eq. (90), is in effect our "reference spherical model." We will show in the following
sections that any static stellar model whose equation of state satisfies the assumptions
of Sect. 4 must be identical to this reference model, and in particular must satisfy
W = WΊI with v = M.
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6. The Conformal Factors tφμ(V)

We next introduce the function ψμ which will be used as a conformal factor to
transform the spatial metric gab. In the exterior of the star, i.e., for V G [V ,̂ 1) we
set

Ψμ = \u + V), (92)

while inside the star, V £ (V , Vs],

2rμλ/W-μl
(93)

with ψμ(Vs) = (1 + Vs)/2. This is a positive C 1 ' 1 function on (F μ , 1). Using Eq.
(32) it is straightforward to verify that ψ also satisfies

d2ψn 2π Γ dψn 1
-777T + 777- 2y(̂ > + 3p)—£- - ρψu = 0. (94)

The following lemma establishes an important property of ψμ:

Lemma 14. Assume that the equation of state ρ = ρ(p) w α non-negative, non-
decreasing, Cι function which satisfies the inequality 5ρ2 — 6p(ρ + 3p)κ > 0. Then
the function ψμ defined in Eqs. (92) and (93) satisfies d2ψμ/dV2 > 0 on (Vμ, 1).

Proof For the case when Vμ is a regular zero of W the proof follows almost exactly
the proof of Lemma 1 of Masood-ul-Alam [4]. The proof when Vμ is an irregular
zero is very similar as well. Note that ψ2

μ is called Ω in that reference. To generalize
the proof to include the case when V is an irregular zero of W we define

V dφ
fμ — Sπρ — 16τr(£> + 3p)-——y . (95)

Ψμ

Differentiating / and using Eq. (94) it follows that

+ lβτr(ρ + 3p)κ + 6 4 π V 2 ^ + 3p)2W~ι]fμ

^2 - 6p(ρ + 3p)«]. (96)

This equation implies that if fμ(V) < 0 for some V G (Vμ, Vs) we have dfμ/dV > 0
at that V. But lim f (F) = 0 if V", is a regular zero and lim f(V) = +oo if V"

ViV μ μ ViV μ μ

is an irregular zero. The last limit follows from Eq. (93) and Lemma 3 since mμ

becomes negative near V for an irregular zero. So / is not negative at V = V
and cannot become negative for larger values of V unless dfμ/dV is negative there.
But this contradicts Eq. (96), so we conclude that fμ(V) > 0, and hence by Eq. (94)
above d2φ JdV2 > 0. D
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7. The Main Theorem

We will now consider the conformal factor φv with v defined in Eq. (90). In order
to be useful as a conformal factor for the physical metric gab, φv must satisfy certain
minimal smoothness conditions when considered as a function on the physical three-
dimensional constant-^ hypersurfaces. From its definition in Eqs. (92) and (93) it
follows that ^ i s a C 1 ' 1 function of V for Vc < V < 1. Thus φv will b e a C 1 ' 1

function of position everywhere, except possibly at V = Vc, because V is a C 1 ' 1

function of position by virtue of the fact that it is a solution of Eq. (2). Using Eq.
(93) the gradient of φμ (for any μ) can be expressed in the form

The coefficient of DaV is bounded at a regular zero of Wμ and so Daφμ vanishes
there. Thus φv is a C 1 ' ι function of position everywhere in this case. Unfortunately
in case Vv is an irregular zero, then Eq. (97) and Lemma 3 imply that Daφu is not
continuous at the level set V = Vc in the physical three-space. However by virtue
of Lemma 13, Wu_δ(Vc) > 0, where δ is as in that lemma. Hence from Eq. (97) it
follows trivially that φv_δ will be a C 1 ' 1 function of position in the physical three-
space. By choosing δ small enough we can also ensure that d2φu_δ/dV2 > 0 on
[7 C , Vs]. This is because we have from Eqs. (93) and (95) that lim fu(V) = +oo.

vivc

That implies there exists a δ such that lim fu_δ(V) > 0; this is because by Lemma

13, Wu_δ(Vc) > 0, and by Eq. (93) dφι/_δ/dV is bounded at Vc. Thus Lemma 14

gives fv_δ(V) > 0 and so d2φv_δ/dV2 > 0 on [Vc, Vs]. In the main theorem that

follows we apply the positive mass theorem to the conformal metric gab = φ4gab,
where

( φΊJ if VΓ is a regular zero of W..\
\ Φu-β if Vc is an irregular zero of VF .̂

Our preparations are now complete. We can now combine the results of the previous
sections into a complete proof of our main result

Theorem. Consider a static stellar model as defined in Eqs. (l)-(6) having an
equation of state which satisfies Condition A, Eq (72), or Condition B, Eq. (76).
Then this stellar model must be spherically symmetric.

Proof We define the conformal metric

gab = φ4gab , (99)

where φ is defined in Eq. (98). The mass associated with gab is zero as a consequence
of the definition of φ in the exterior of the star, Eq. (92), and the asymptotic boundary
conditions on the metric functions, Eqs. (5) and (6). The scalar curvature associated
with gab is easily evaluated, using Eqs. (2) and (3) with the result,

R = (W - W)—^ —j^ , (100)

where W is defined as

( W1β if Vn is a regular zero of W,,;
W = I " .f c . . . / ' (101)

[ Wy_δ if Vc is an irregular zero of Wv.
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It follows from Lemmas 12 and 13 that W > 0 on (Vc, Vs]. Then as a consequence of
Lemmas 5 and 6, Wu > W when Vc is a regular zero of Wv and Wu_δ > Wv > W
when Vc is an irregular zero of Wv. Next, Conditions A or B on the equation of state
imply via Lemma 9 that 5ρ2 — βp(ρ + 3p)κ > 0. Thus Lemma 14 implies that

0. (102)

Therefore the scalar curvature R, Eq. (100), is non-negative. As the discussion
following Lemma 14 demonstrated, the conformal factor φ and hence the metric
gab are C 1 ' 1 functions of position on the three-dimensional constant-ί hypersurfaces.
Thus Bartnik's [23] version of the positive mass theorem (Schoen and Yau [24]) may
be applied. Since R>0 while gab has zero mass, the metric gab must in fact be flat.
Hence the physical metric gab is conformally flat. It follows then from the arguments
given by Lindblom [9] (based on earlier work of Avez [25] and Kΐinzle [26]) that the
static stellar model must be spherically symmetric. D

Although the conclusion of spherical symmetry is our primary interest, the
argument given above in fact establishes more. It demonstrates the uniqueness of
the static stellar model having surface potential Vs and satisfying the assumptions on
the equation of state in Sect. 4. In particular the vanishing of R in Eq. (100) implies
that W = W. This equality is impossible for the irregular zero case (see Lemma
13). We conclude that the center of the star must coincide with a regular zero of Wu,
and that W — Wv with v — M. This argument rules out the possibility of multiple
spherical models having the same surface potential Vs for stars whose equation of
state satisfies these conditions.

8. Concluding Remarks

The conditions placed on the equation of state in Sect. 4 are almost certainly too
restrictive, although they do include large open sets in the space of all equations of
state. We found it necessary to use these conditions, however, to show in our proof
that the functions Σμ were positive and that the conformal functions ψμ had positive
second derivatives. How can our proof be modified to make those conditions on the
equation of state unnecessary? Perhaps there is some more elegant way than Eqs. (92)
and (93) to choose a conformal factor which makes both scalar curvature nonnegative
and mass zero directly. While some alternate construction might bypass the need to
constrain the signs of Σμ and d2ψμ/dV2, at present we do not know of a better
choice. In our proof the nonnegativity of Σμ is used to prove the monotonicity of
Wμ (in μ) as well as to prove that Wμ — W is non-negative. Perhaps the need for
the strict non-negativity of Σ can be avoided by analyzing the eigenvalues of the
operators on the left sides of Eqs. (40) and (44). These eigenvalues may be related to
the existence of multiple solutions of the spherical equations all having the same value
of Vs. And, perhaps a more powerful version of the maximum principle can be used
which allows Σ to have somewhat negative values; perhaps down to a minimum
which is controlled by the magnitude of the first negative eigenvalue.

The method of proof used up to now establishes that the static spherical stellar
model having a given surface potential Vs is the unique static model having that
Vs. It would be interesting to know what conditions on the equation of state are the
minimal ones needed to guarantee this absolute uniqueness. We do not believe that
the equations of state allowed by Condition A together with with those allowed by B
are the largest such set. We also know that there exist physically reasonable equations
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of state in which more than one spherical model exists for a given value of V .̂ Thus,
in order to extend the proof to include these equations of state it will be necessary to
find a criterion to decide which one of the multiple spherical models should be used
as the reference model for a given static model.

We now have a better understanding of the condition appearing in Lemma 14.
If this condition is violated everywhere, we have shown [8] that the stellar model
cannot have finite size, although it must nevertheless have spherical symmetry. There
exist static stellar models with equations of state that violate this condition locally,
e.g., stars based on "realistic" neutron-star equations of state. We expect that all such
models must be spherically symmetric as well, but the question of how to extend the
proof in these cases is presently unresolved.
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