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Abstract. The work presents a short proof of localization under the conditions of
either strong disorder (λ > λ0) or extreme energies for a wide class of self adjoint
operators with random matrix elements, acting in *f2 spaces. A prototypical
example is the discrete Schrόdinger operator H = — A + U0(x) + λVx on Zd,
d ^ 1, with U0(x) a specified background potential and {Vx} generated as random
variables. The general results apply to operators with — A replaced by a non-local
self adjoint operator T whose matrix elements satisfy: Σ y | 7 i , y | s ύ Const, uni-
formly in x, for some 5 < 1. Localization means here that within a specified energy
range the spectrum of H is of the pure-point type, or equivalently - the wave
functions do not spread indefinitely under the unitary time evolution generated by
H. The effect is produced by strong disorder in either the potential or in the
off-diagonal matrix elements Txy. Under rapid decay of Txy, the corresponding
eigenfunctions are also proven to decay exponentially. The method is based on
resolvent techniques. The central technical ideas include the use of low moments of
the resolvent kernel, i.e., (\GE(x9 y)\s} with 5 small enough (<1) to avoid the
divergence caused by the distribution's Cauchy tails, and an effective use of the
simple form of the dependence of GE(x, y) on the individual matrix elements of H in
elucidating the implications of the fundamental equation (H — E)GE(x, x0) = δXfXo.
This approach simplifies previous derivations of localization results, avoiding the
small denominator difficulties which have been hitherto encountered in the subject.
It also yields some new results which include localization under the following sets
of conditions: i) potentials with an inhomogeneous non-random part U0(x), ii) the
Bethe lattice, iii) operators with very slow decay in the off-diagonal terms (TXtV «
1/1 x — y\(d+ε)), and iv) localization produced by disordered boundary conditions.
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1. Introduction

In a variety of situations one encounters linear operators whose matrix elements
have a random component, for which it is of interest to know whether the
generalized eigenfunctions are extended or localized. We discuss this question here
for a broad class of operators, which includes the following examples.

1) The discrete Schrόdinger operator with random potential, acting in /2(Zd),

H= -A + U(x), (1.1)

where A is the difference operator (the discrete Laplacian)

4fl*)= Σ [/(* + ")-/(*)] , (1-2)
| π | = l

and U(') consists of some specified background U0(x) and a random potential λVx:

U(x)=U0(x) + λVx. (1.3)

{Vx} is a collection of random variables (independent or correlated), and λ is
a parameter expressing the strength of the disorder.
2) More general matrix operators, acting in / 2(Γ) — Γ a countable set, of the form

H=T+U(x) (1.4)

with T & Hermitian matrix Txy = fyx not necessarily real (but satisfying decay
conditions stated in Sect. 3), and U as above.
3) Operators with randomness in the off-diagonal terms, such as the linear oper-
ator associated with the quadratic form

Q(ψ) = (ψ, Hφ) = Σ KxJψx - ψy\
2 (1.5)

x,y

with {KX9y} random variables. E.g., Q may be an elasticity tensor, with Kx y ^ 0.

Example 1) appears in elementary discussions of solids, in the approximation in
which the system of the valance electrons is treated as a Fermi gas with an effective
one-body potential. For an ordered material t/0(") is periodic, and {Vx} may
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represent the effect of impurities. At λ = 0 the spectrum is described by the
Bloch/Floquet theory: the spectrum shows zone structure (with gaps in d = 1), but
the eigenfunctions are all extended (Bloch states). For λ + 0, the conductivity
properties depend both on the spectral gaps and on the nature of the spectrum in
the vicinity of the Fermi level.

Example 3) appears in the vibrational problem described by the (hyperbolic)
equation:

^=-Hu, (1.6)

whose normal modes (i.e., solutions of w(ί, x) = eiωtφ(x)) are given by the eigenfun-
ctions of H.

The spectral aspect of localization, within a specified energy range, is the
existence of a complete system of square integrable (versus extended) eigenfun-
ctions, in which case the spectrum is said to be there of the pure-point type. The
direct dynamical manifestation of this feature is the non-spreading of the wave-
packet. I.e., pp. spectrum for the energy range (a, b) means equivalently (by the
RAGE theorem based on the Wiener criterion [RS]) that for any function φ in the
range of the spectral projection P ( α b ) there is Aψ such that Aψ(R) -• 0, as R -• oo,
and

f \e-ίtHφ(x)\2dx^Aφ(R) (1.7)

uniformly in time t. With few exceptions (such as operators with only power-law
decay in the off-diagonal terms) when we prove localization the analysis also shows
that the eigenfunctions decay exponentially fast. For the case 1) that is more than
enough for the vanishing of the electrical conductance - as given by the Kubo
formula.

The localizing effect of disorder was pointed out in the context of the first
example by Anderson [A], Mott and Twose [MT] and Landauer [L]. These
works and related developments [T, AALR] have triggered a large body of
theoretical physics and mathematical studies.

One can identify different circumstances under which localization may occur: i)
localization at high disorder, ii) at the edges of the spectrum, and iii) in low
dimensions, e.g., d = 1 where complete localization (i.e., at all energies) is known to
be produced by systematic disorder of any non-zero strength.

For one dimension (first analyzed rigorously by Goldsheid, Molchanov, and
Pastur [GMP]) there is now an extensive theory, based on rather direct methods
(transfer operators, phase formalism, Lyapunov exponents). Description of the
main results, historical reviews, and extensive bibliographies can be found in the
recent monographs [CFKS, CL, FP]. In the multidimensional case there exist
various open problems. Among them are questions concerning the possible coexist-
ence of pure point spectrum and continuous spectrum above a lower critical
dimension. Of particular interest is also the apparently critical case of d = 2
dimensions (see, e.g., [T, AALR]).

A central role for the mathematical results concerning localization in d > 1
dimensions has been played by the analysis of Frόhlich and Spencer [FS], which
presents cluster resolvent expansion and a "multiscale method" for the dealing with
the small denominators which appear in the resolvent kernels. The multiscale
analysis has been somewhat simplified in the work of Spencer [Sp] and von Dreifus
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[D], though it is still not quite elementary. One of the features of this important
method - which is not covered by this work - is a finite volume criterion for
localization.

The main results we present are elementary proofs of localization in regimes of
high disorder, and/or extreme (high and low) energies, in arbitrary dimension. The
argument does not require the multiscale analysis, and extends easily to i) poten-
tials with an inhomogeneous non-random part, U0(x)9 ii) the Bethe lattice (which
purportedly presented some difficulties to the formerly available methods), iii)
operators with very slow decay in the off-diagonal terms ( « l/|x - y\(d+ε)), and
iv) — A with random boundary conditions.

The random potential may be correlated. Our analysis focuses on the deriva-

tion of exponential decay for Green's function, <0| |x>, at specified energies.

H — E
For that, the regularity conditions required of the probability distribution of the
potential are quite mild. However, in order to deduce localization, we invoke the
Simon-Wolff criterion, and this step requires the absolute continuity of the
measure (a more restrictive assumption than that of refs. [CKM, DKlj). These
regularity conditions are discussed in Sect. 3. An application of the method to
off-diagonal disorder is discussed in Sect. 5.

2. Demonstration: Localization in the Anderson Tight Binding Model

We introduce the basic ideas of our approach in the context of a classical example,
formulated by P.W. Anderson [1]. It is a prototype of more general constructions
and results which are discussed in the following sections.

Let H be the discrete Schrόdinger operator with random potential, acting in
/2(Zd) and described by (1.1)—(1.3), with {Vx} a collection of independent random
variables uniformly distributed in the interval [ — 1, 1]. The background term Uo( )
can at this point be arbitrary. Examples of particular interest include:

i) l/0( ) = 0.
ii) U0(x) periodic in x. (For λ = 0 the spectrum is then given by the Floquet/Bloch

theory, which plays a basic role in discussions of condensed matter.)
iii) U0(x) also generated by a random process (independent of {Vx}).

The latter case shows that the discussion of this chapter actually covers a broad
range of random potentials (£/(•))•

Among the preliminary observations one may note that the operator H is
essentially self adjoint on the domain of functions of compact support, and if Uo( )
is sufficiently homogeneous (e.g.: periodic, quasi-periodic, or random but generated
by an ergodic process) the spectrum of H is non-random: σ(H) = σ( — A + Uo) +
[— 1,1] - for almost every realization of {Vx} (and, when appropriate, for a.e. Uo)9

[CL, FP].
The following proposition presents the two localization statements for which

our analysis is geared, in the context described above.

Theorem 2.1. For each 0 < s < 1 there is a constant κs > 0, and a non-decreasing
function ζs( ) on R such that

Γ > 0 for z > κs
ζs(z)is\ J (2.1a)

(. = — oo jor z ^κs
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and lim — = 1 (2.1b)
Z->00 Z

with which the following holds in any dimension d:

i. (High disorder) If for some se(0, 1)

μ,>^\ (2.2,
κs

then for any Uo('), the operator H has, for almost every realization of {Vx} = ω,
a complete set of orthonormal eigenfunctions, {φn(x)}. These eigenfunctions are
exponentially localized, satisfying bounds of the form:

\φn(x)\ ^ An(ω)expl-m\x - xn(ω)|] (2.3)

with a non-random m (= \og\_(\λ\κs)
s/2d']) > 0, and a varying collection of

An(ω) < oo and xn(ω)eZd.
ii. (Extreme energies) With no restriction on λ, in the energy range

lEe^:\E-2d\>\\U0\\^ + \λ\ζsr-^n, (2.4)

the operator H has, for almost every realization, only point spectrum with exponenti-
ally localized eigenf unctions (with m = m(E, λ)).

Remark. The second statement adds information only if there is a value of λ at
which

ls\
ΐorB=l. (2.5)

That is based on the observation that over the spectrum of H: \E — 2d\
^ 2d + || Uo || oo + \λ\B, with B a uniform bound on Vx. We present the statement

without clarifying the question of the existence of such λ, since the boundedness of
Vx is not essential for the proof. A similar result is proven below for unbounded
potentials, where B = oo.

As in the previous derivations of such results ([FS, DLS, FMSS, SW]), our
analysis focuses on the resolvent kernel GE(x, y) = (H — E)~1(x, y). Two alterna-
tive regularizing cutoffs for these quantities are: an imaginary component for the
energy (GE(x, y) being analytic in E outside of any strip | I m £ | > ε (>0)), and,
alternatively, the replacement of H by its natural restriction to a finite-volume
A a Zd. In the latter approach one deals with

^ (2.6)G i ( x , y ) ( x \ \ y )
HΛ- E

which are rational function of E (with poles at EnelR.9 n = 1, ... 9 \Λ\).
The quantities G£(X, y) are random variables. Though their dependence on the

potential U is somewhat complicated, it is possible to gain some insight into the
distribution of each such term by considering its dependence on the potential at x -
at fixed values of the potential elsewhere. A suitable tool for this purpose is
provided by the finite rank perturbation formulae. E.g., for a diagonal term we
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regard H as a rank-one perturbation of the operator H which is obtained from it by
changing Vx to 0. By a rank-one perturbation formula:

GE(x, x) = ^ - - — , (2.7)
Gi1(x,x) + λVx

where GE(x9 x) is the resolvent of H, and as such it has no dependence on Vx.
The relation (2.7) shows that the event that G£(x, x) is large can be viewed

as a resonance of Vx with a value determined by the potential elsewhere.
With the natural estimate for the conditional probability, conditioned on V{x}c =
{Vy\yeZd, y Φ x}, one obtains:

P r o b ( | G £ ( x , x ) | ^ ί ) ^ (2.8)

For the off-diagonal term G£(x, y) an argument based on the rank-two perturba-
tion formula which is given below in Lemma 2.2, yields a similar bound (proven
here in Appendix I, Theorem II. 1):

2 h
•m.)sψ. (2.9)

The study of rank-one perturbations plays a central role in Wegner's estimate
of the density of states [W], which has played a fundamental role in the subject,
and in the analysis of Simon and Wolff [SW]. In fact, Wegner's estimate can be
derived from (2.8) and the argument given above was already employed for that
purpose in [CKM], where Wegner's like estimate is derived for a large class of
probability distributions which need not be absolutely continuous. (We have,
however, no previous reference for the off-diagonal bound (2.9).)

The main new contribution of this work is a simple proof of the following
statement, which provides a key step towards Theorem 2.1.

Lemma 2.1. For 0 < s < 1, there are κs > 0 and ζs( ) as described in the statement of
Theorem 2.1, such that under any of the two conditions presented there, i.e., (2.2) or
(2.4):

(\G£{x, y)\s} S D e x p ( - m | x - y\) (2.10)

with D < oo, m > 0, uniformly in the finite volume A a Zd. Furthermore, such
a bound holds also for the fractional moments of the infinite-volume quantity
GE+i0(x, y), at Lebesgues-almost every E in the indicated range.

Exponential bounds on the resolvent were first derived for the multidimen-
sional case in the work of Frόhlich and Spencer [FS]. The transition from such
a bound to the exponential localization was not automatic, and was proposed
simultaneously in the three papers [FMSS, DLS, SW]. Ref. [FMSS] (and, based
on it, [DK1]) give a direct construction of the eigenstates with exponential decay,
for which, strictly speaking, the bound (2.10) is not essential. Refs. [DLS, SW]
discuss a simple but very effective argument of Kotani and contain general
functional - analytic arguments which guarantee exponential localization if (2.10)
is satisfied, assuming some additional restrictions on the inter-dependence of the
potential values. An explicit statement of this nature is provided by the work of
Simon and Wolff [SW], which reduces the problem of localization to that of the
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square summability of the kernel GE+ί0(x,y). Following is a version of their
generally applicable criterion. (An even more versatile version is found in Sect. 3.)

The Simon-Wolff Criterion (I). Let H = Ho + Vx be a self adjoint operator in 12{Γ)
(Γ a countable set of sites) with Ho a bounded operator and {Vx}xeΓ a collection of
random variables, having the property that for each site x the conditional probabil-
ity distribution of Vx -conditioned on the values of the potential at all other sites, is
absolutely continuous with respect to the Lebesgue measure (dV).

If for all x e Γ , and Lebesgue-a.e. £ e [ α , ft]:

lim Σ \GE+iε{x,y)\2<π , (2.11)
ε->0 yeΓ

for almost every realization of {Vx}> then almost surely the operator H has only
pure point spectrum in the interval [α, b~\.

Furthermore, if under the conditions stated above, GE + i0(x, y) (which exists for
^-a.e. E) decays exponentially, in some metric on Γ, then so do the eigenfunctions
φE(y), for £ e [ α , 6].

Remarks. 1) The sum in (2.11) always has a limit (possibly oo) since the expression

equals <x| -̂  ^ l χ ) which is monotone in ε.

2) One should appreciate that there is a fine point in the above statements,
without which the condition would be of no use. And that is that the bounds on the
resolvent are only required to hold separately at each energy. In fact, if the criterion
applies, then for each typical potential there would be a countable set of energies at
which the resolvent diverges, and (3.1) fails. The reason that this observation does
not empty the stated criterion is seen in the eigenfunction expansion, which shows
that (2.11) may hold if the eigenfunctions are sufficiently localized, and the eigen-
states with energies increasingly resonant with any a-priori chosen energy E have
rapidly decreasing weights at any given site.

We shall use the SW criterion in deducing Theorem 2.1 from the exponential
bound of Lemma 2.1, to whose proof we turn now.

It may be worth pointing out that the first simplifying idea presented in this
paper is to consider the moments seen in (2.10). A glance at the formula (2.15) shows
that one should expect <|G£(x,y)\} to diverge for E in the spectrum of H
(the distribution of G£(x, y) has long tails, similar to that of the Cauchy distribu-
tion). However, as (2.9) and (2.8) show, \GE(x9 y)\s is integrable for any power
s < 1, with

<\G£(x,y)\s} = J Prob(|G#(x,j;)| s ^ t)dt

where the factor 2^/2 can be replaced by 1 when x = y. The fractional moments
provide a convenient hold on the probability distribution, and, as we shall see, are
particularly well suited for our purpose.

In the derivation of Lemma 2.1 we fix x0, and denote simply G(x) = GE(x0, x).
Our discussion can also be applied directly to GE + i0(x0, x) though in that case one
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has to acknowledge that lim ε_0 GE+iε(x0, x) is initially guaranteed to exist only for
j£?-a.e. E. In either case, G( ) is a solution of the equation:

= δX0tX (2.13a)

which for x + x0 means

[λVx + U0(x) + 2ά - E~\G(x) = Σ G(x + n ) . (2.13b)
zeZ, |n| = l

Since for s < 1: \a1 + + ak\
s ^ |α! | s + + |α f c |

s for any collection of com-
plex numbers {αj cz (C, Eq. (2.13b) yields:

Σ n)\s (for x * χ0). (2.14)
M = i

Our argument proceeds by taking the expectation value of the inequality (2.14).
The goal is to obtain a statement for <| G(x)|s> as a function of x. However one first
encounters the difficulty that on the left side we obtain the expectation value of
a product of |G(x)| s with another quantity. This could be a serious problem. We
resolve it by focusing on the conditional expectation of (2.14) - conditioned on
V{xY, and bringing up the fact that at fixed V{x}c, G(x) is a simple function on Vx,
namely it is of the form

( 2 1 5 )

with α and β some functions of V{x}c. The representation is implied by the following
finite-rank perturbation formula.

Lemma 2.2 (Krein formula). Let H be the operator obtained from H by changing Vx

and Vy to 0, and let Rxy be the orthogonal projection on the two dimensional space
(assuming x =¥ y) spanned by the vectors |x> and \y} (i.e., δ>x and δ>y). With some
abuse of notation, we denote by Λ2x2 the 2x2 matrix which gives the restriction of
the resolvent ofH to the range of Rxy:

A2x2=Rχ,y ~ Rχ,y (2-16)

H — E

Then,

where [ ] ~x is interpreted as the inverse of a 2 x 2 matrix. In case x = y, the one
dimensional analog holds, and takes the form of Eq. (2.7).

The proof of the formula (2.17) is given in the appendix. A somewhat striking
aspect of it is that the complete information on the conditional dependence of
GE(x, y)on Vx is contained in not more than four real numbers (three in case of real
operators like our H). Applying Kramer's rule for the inverse of a matrix

Gέ(χ.y) = A

Since the determinant is linear in Vx, (2.18) yields the representation (2.15).
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The following decoupling lemma plays now a key role. (In Sect. 3 and Appendix
III we present its extensions to other measures and other collections of functions
with controllable singularities.)

Lemma 2.3 (A decoupling principle). For each 0 < s < 1, there is an increasing,
positive, function θs( )onR+ such that

lim — = 1 (2.19)
f/-»oo tf

with which

I T " - F| w=w = mηiπ ί T h ^ τ (120)

for allη,βe<C.

Remark. The quantities mentioned in Theorem 2.1 are defined as follows:

κs = min{0sfa): ηeΊR] , (2.21a)

and ζ s(.) = 0 - 1 ( . ) , (2.21b)

where the inverse is in the function theoretic sense.

Proof. The bound (2.20) is obviously satisfied in the region | η \ ̂  2, with the
tentative choice θs(η) = \η\ — 1. The following argument covers the regime \η\ g 2.

Let ^ < 1. Outside the disc {V a C | | V — η\ < δ} the first factor is bounded
below: \η — V\s ^ 5s. Thus it suffices to show that

} *κIϋv_ηl<δW_vr,
min ^ ^ =-— > 0 . (2.22)

-i z

For s < 1, the quantity which is minimized is:

i) a jointly continuous function of β and 77, which in all C x C is strictly positive,

ii) for \β\ > 2 it is bounded below by (1 - δ)(l jjj ~ ^ ^ ^ .

These two imply that the minimum over C x {^eC: \η\ ^ 2} is indeed strictly
positive. (For an explicit value of the constant, let us mention that the minimum
occurs at (β, η) = (0, 0).)

The desired function θs{ ) is constructed by taking the monotone increasing
minorant of the function obtained by the combination of the bounds covering the
two regimes. •

Proof of Lemma 2.1. i. Let us return to (2.14), and average it over the randomness
by first taking the conditional expectation - conditioned on V{x}c. Using the
representation (2.15), the expected value of the expression on the left side can be
cast in the following form:

(\λVx + U0(x) + 2d- E\'\G(x)n = μv{x}c )^γ\η- Wx\° | / ? _a

χy^ ( 1 2 3 )
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with {α, β, η] determined by V{x)c, Uθ9 E, and λ. The decoupling principle (Lemma
2.3) yields the lower bound:

( 2 2 4 )

Combining (2.24) with (2.14), we find that

<|G(x)|s> ^ ~- £ <|G(x + n)|s>, for all x φ x 0 ) (2.25)
2 " neZ, |«| = 1

with

(2.26)

The condition (2.2) on A means that γ < 1. In that case, we write

= £Γ with m > 0 . (2.27)

For each x the inequality (2.25) can be safely iterated |x — x o | times without
generating terms which violate the condition x + nλ + n2 + * φ *o) Summing
the resulting terms, and using the uniform bound (2.12), we obtain

= Dexp(-m\x0 - x\) , (2.28)

which is (2.10).
ii. The high energy statement is derived by the same route. The difference is

that instead of passing from (2.23) to (2.24) we pick the best factor provided by
(2.20), and not just κs. For uniformly bounded Uo the result is:

QλVx
Id - E\s\G(x)\s} £ μ| inf

(2.29)

where last step is by the monotonicity of θ( ) and the inequality \E — Id — U0(x)\
^ \E — 2d\ - || Uo ||. Thus (2.25) holds and the rest of the above argument applies,

with y modified to:

Id

E-2d\-

\λ\

(2.30)

The energy condition (2.4) is equivalent to the requirement that γ < 1.
iii. Let us consider now the resolvent of the infinite-volume operator H, under

the stated conditions. All the arguments used above are valid also when G(x) refers
to the quantity GE+iε(x0, x), with E replaced by E + iε, ε φ 0, and Im(£) = 0.
By general arguments (see [SW]), the limit ε->0 + exists at given {Vx} for <£
(Lebesgue)-almost every E. Reversing this statement (with the aid of Fubini's
theorem): for JSf-a.e. E the limit defining GE+i0(x0,x) exists for almost every
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potential {Vx}. For such energies E:

m\x0- x\) . (2.31)

[Let us comment that one could also derive the above result without the
restriction to J f̂-a.e. E, by constructing GE+i0(x0, x) by means of weak limits, in the
sence of/2(Zd), of GE(x0, x) with A -• Zd. Part of the argument is seen in the proof
of Lemma 3.2 below.]

Proof of Theorem 2.L Assume that one of the two conditions stated in Theorem 2.1
is satisfied, with some s < 1. Lemma 2.1 implies then the exponential decay of

O> X)IS> with some m > 0 (for if-a.e. E). For any a < m:

/ 2a
Σ \GE+i0(x0,x)\2Qxp\ + — | x o -

xeZ \ S

Σ \GE+i0(x0,x)\s

Qχp( + a\x0 - x\)\ < oo , (2.32)
xeZ I

where the last statement is by (2.10). It follows that the sum in the bracket [•] is
finite for j£? x p(dV) almost every {£, V}9 which means that the Simon Wolff
criterion for localization, in fact exponential localization, is satisfied. That proves
the claim made in Theorem 2.1. •

Let us add some words to clarify the phenomenon discussed here. Writing Eq.
(2.13b) in the form

* n), (2.33)
U0(x) + Id - £ ] n e Z > ι =

one sees that for large A, and at large E, G(x) is strictly subharmonic in x - except at
the rare sites (which however occur with positive density) where the denominator is
close to zero. Intuitively, away from such sites the local spectrum of H does not
include E. The existence of the exceptional sites poses what is referred to as the
small denominator problem, which in ref. [FS] is addressed by means of the
multiscale analysis (of which a simplified form is found in [Sp, D, DK1]). As that
analysis and/or the one presented here prove, under suitable conditions the
exceptional sites do not affect the picture that much.

It is easy to see from the example presented in this section that our new
approach to localization is applicable more generally. The basic elements of this
approach are:

1) Estimation of low moments of the resolvent kernel GE(x0, x). (That bypasses
the difficulty caused by the Cauchy tails of the distribution of this quantity.)

2) Study the dependence of GE(x, y) on any single potential by means of the
suitable finite rank perturbation formula. This basic tool was employed in the
analysis of Wegner [W] and Simon and Wolff [SW]. For us, such formulae yield
uniform bounds on the fractional moments, and imply that GE(xf y) is a simple
rational function of any single potential.

3) The use of the conditional expectation, in which one averages the equation
characterizing G£( , ) over a local potential at fixed values of the potential
elsewhere.
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4) The decoupling lemma, which shows that terms like | Vx — η\ and GE(x, y)
"are not too dependent". The key to it is control of the possible singularities, and
zeros, of these quantities as functions of the single variable Vx.

5) Derivation of exponential decay from the strict subharmonicity of GE(x0, ).

One may note that in Step 4 (which of course is enabled only by the other ideas)
we in effect resolve the small denominator problem mentioned below (2.33).
Somewhat similar difficulties appear in a variety of other situations, e.g. statistical
mechanical models with random couplings, and it is quite possible that the ideas
presented here may be of even broader use.

3. Generalizations: Operators with Diagonal Disorder

We now turn to various extensions and generalizations of the localization results
discussed in the previous section.

a. The Regularity Assumptions on the Distribution of{ Vx}. The variables { Vx} need
not be independent. All that is required of their joint distribution, ρ(dV\ is
a certain regularity of p(dVx | V[x}c) - the conditional distributions of Vx conditioned
on the values of the potential elsewhere. (In Sect. 5 we further relax the condition
presented below by allowing the values of the potential to be rigidly correlated
within finite size blocks.)

In order to apply the Simon-Wolff criterion (see Sect. 2) the probability
measure is required to be conditionally absolutely continuous with respect to the
corresponding Lebesgue measure, i.e.: p(dVx\ V{x}c) <ζ dVx. However, the exponen-
tial decay of the resolvent, which is a key partial result, is derived here under just
the regularity condition which is seen in the following definition.

Definition. 1) A probability measure p(du)9 on the real line, is said (here) to be
τ-regular (with 0 < τ ^ 1) if with some v > 0 and C < oo,

p(\_z - a, z + 5]) ^ C\δ\τp(lz - v, z + v]) (3.1)

for all 0 < δ < 1 and zeR.
2) A joint probability measure p(dV) of a collection of variables {Vx} is condi-

tionally τ-regular if the conditional distributions p(dVx\ V{x)c) satisfy the regularity
conditions (3.1) with uniform values for all the constants.

3) // - in addition: for some ε > 0, the conditional expectations of \ Vx\
ε are

uniformly bounded:

p(\Vx\'\Vw)£B (3.2)

then the joint probability measure p(dV) is said to be conditionally (τ, ε)-regular.

Remarks. The regularity condition (3.1) allows p( ) to be supported on Cantor sets
of any non-zero dimension (τ), though it requires slightly more than Holder
continuity of the measure. We note that an even weaker condition is required in
references [CKM, DK1], where p( ) need only have a Holder continuous compon-
ent, given some estimates on the density of states. Extension of our method in this
direction are not to be ruled out, but are not discussed here.

For absolutely continuous measures, with p(dx) = p(x)dx, a sufficient condition
is that p(x) is a piecewise-continuous density function (allowed only isolated
discontinuities) which for |x | large enough is monotone decreasing as |x | -» oo.
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Following is a generalization of the decoupling principle expressed by
Lemma 2.3.

Lemma 3.1. Let p(du) be a τ-regular measure on R. Then for each s < τ and a pair of
integers (n, fc), with s k < τ, there is /c"'k > 0 such that

J \u - η\s\@{u)\sp{du) ^ (κs" * ) s ί \®{u)fp{du). (3.3)

for all rational functions:

W) (3 4)

with

deg 0> ̂  n, and deg 2, ^ k (< τ/s), (3.5)

απί/ all η.

If furthermore, for some ε > s

\\u\εp{du)< oo (3.6)

then the inequality (3.3) can be strengthened as follows:

j |ιι - η\'\»(u)\'p(du) ^ ίξnΛ\n\)Ύ\ \®{u)\sp(du), (3.7)

with ξ"'k{') an increasing positive function on R + , satisfying

lim i£_W = ! ( 3 8 )

The proof is given at the end of Appendix III. With no loss of generality we can
assume that inf{ξ"'fe( )} = κ"'k, and for consistency with Lemma 2.3 we denote

ξ^1(') = θs('\ κn

s>
k = inϊ{ξϊk(')} = κs. (3.9)

All these quantities depend on the measure p(du) - though only through the few
quantities which appear explicitly in the regularity conditions (3.1), (3.2) and (3.6).

b. The General Setup. The results of Sect. 2 for the Schrόdinger operator are
included in a more general statement, which is formulated for operators of the form

H=T+ U0{x) + λVx (3.10)

on / 2 (Γ) , with: i) Γ a countable set, ii) the potential as in (1.3), and iii) Γ a bounded
self adjoint operator whose matrix elements (in the natural basis of / 2 ( Γ ) are
denoted as

Tx,y = Ty,x. (3.11)

With no loss we assume Txx = 0. (When they cannot be absorbed by an energy
shift, the diagonal terms can be viewed as incorporated in U.)

Following are two general results. Their derivation is given after the demon-
stration of some of their implications.

Theorem 3.1 (High disorder). //:

i) ρ(dV) is conditionally absolutely continuous and conditionally τ-regular, with
some (1 ^ ) τ > 0, and
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ii) T is a bounded self-adjoint operator which for some s < τ satisfies

£ \TxJ
sexp( + aδ(x,y))^Bs,a (uniformly in xeΓ) (3.12)

yer

with some pseudo-metric (5( , ) on Γ and a ^ 0, then for each m^a there is some
λo(m) < oo such that, with any U0( ),for λ > λ0 the operator H has almost surely
a complete set of orthonormal eigenfunctions, which decay exponentially in δ:

\<Pn(x)\ ^ An(ω)exp[-mδ(x, xΛ(ω))] . (3.13)

We note that the value a = 0 is admissible here. I.e., the basic requirement of
T for localization (p.p. spectrum) at high disorder is that for some 5 < τ,

Σ \TxJ
s^Bs,0<<χ), (3.14)

yeΓ

uniformly in x e Γ.

Theorem 3.2 (Extreme energies). If

i) p(dV) is conditionally absolutely continuous and conditionally (τ, ε)-regular
and

ii) T is a bounded self adjoint operator satisfying (3.12) with s < min{τ, ε),

then there is function E0(λ), with sup{£0 ' λeΊR] = Eo < oo, such that for each
bounded Uo( ) the operator H has almost surely only pure point spectrum in the
energy range \E\ > E0(λ) + || Co IIoo» an^ the corresponding eigenfunctions obey
(3.13).

The above results obviously apply to Schrόdinger operators on graphs for
which the number of neighbors of x e Γ is uniformly bounded - such as the lattices
Zd, and Bethe lattices. Other interesting examples on these lattices/graphs are
operators with T not necessarily real (i.e., without the time-reflection invariance)
having {TXty} uniformly bounded and of finite range. The natural choice for the
metric δ(x, y) is the Euclidean distance on Z d , or the length of a minimal connect-
ing path. However, as we describe next, the general results can also be applied with
some less obvious choices of the metric δ( , •).

c. Operators with Long Range Hopping Terms. The condition (3.14) allows the
operator Γto have slowly decaying off diagonal terms. In case of the ^-dimensional
lattice Γ = Z d , it suffices for T to have the power-law decay:

. (3-15)

with some ε' > 0. We note that for translation invariant Txy ( =Tx-y\ the last
condition assures also the boundedness of the operator T (as is easily seen in the
Fourier-transform representation).

For T with slowly decaying off-diagonal elements the eigenfunctions discussed
in Theorems 3.1 and 3.2 do not decay exponentially, and indeed the condition (3.12)
fails for the standard choice: δ(x, y) = \x — y\ (| | - the Euclidean norm). However,
(3.12) does hold (with some a > 0) for another choice of the metric, namely:

| x-3>l) , (3.16)
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with which the condition becomes:

X \TxJ
s\x-y\a^Bs,a, (3.17)

yer

With this choice for <5(v), our analysis yields power-law upper bounds on the
decay of the Green function and of the eigenfunctions.

The use of the norm (3.16) for an automatic extension of results on exponential
decay to power-law decay was pointed out, in a different context, in an earlier work
of L. Gross [G]. The statement we obtain goes beyond the previously proven
results for operators with long-range off diagonal terms. These include the proof of
singular spectrum under the condition

^ ^ (3.18)
x-yΓ + ε

([SiSp]), and of pure point spectrum if TXty ̂  C/\x ~ y\6+ε' ([MS]). Although in
these works, which refer only to d = 1, λ can be arbitrary.

d. Derivation of the General Statement. As in the proof of Theorem 2.1, our
analysis focuses on the fractional moments of the resolvent. First, in lieu of (2.9) we
have the following estimate, which follows from (II.3) of Appendix II and the
conditional τ-regularity of the measure:

P r o b ( | G # ( x , y)^t\£ ^ ^ . (3.19)

Hence (2.10) can be extended as follows

<\G£(x,y)\s}^Ds, (3.20)

with Ds < oo for s < τ.

As in the discussion of Sect. 2, our main new contribution is the elementary
derivation of the following extension of Lemma 2.1.

Lemma 3.2. Under the conditions described in Theorem 3.1 and Theorem 3.2, the
resolvents of the finite volume restrictions HΛ ( = RΛHRΛ acting in £2{Λ)) satisfy:

Σ )] = β , (3.21)
ysΛ

with a finite constant D which is uniform in xeΛ, and in A c f . Furthermore,
the same bound applies to the moments of the infinite-volume resolvent GE+iε(x, y\
with ε > 0, and at j£?-a.e. energy E, within the indicated range, it also holds for
GE+io(x,y)>

Lemma 3.2 is derived by following the steps taken in the proof of Lemma 2.1,
with only few significant differences.

Proof \) ΛaΓ finite. With E fixed, we denote:

l > ( 3 2 2 )G(x) = G£(x0, x) = <xo|
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For x Φ x0 it satisfies the equation:

[λVx + U0(x) - £]G(x) = Σ TXtyG{y), (3.23)

which is a generalization of (2.13b).
From (3.24) we deduce (as in (2.14)), that for 0 < s < 1, and x φ x o ;

, (3.24)
yer

where the bracket represents the average over {Vx}.
The Krein formula, and the implied representation (2.15) do apply in the more

general setup. Decoupling the expectation of the product by means of Lemma 3.1,
which is used in the same fashion as Lemma 2.3 in the derivation of (2.24) and
(2.29), we obtain

i\λVx + U0(x) - E\s\G(x)\s} ^ UMβsΎ<\G(x)\s> (3.25)

with two possible choices for βs:

i. For p(dV) which is only known to be conditionally τ-regular, at τ > s, we have

β s = κ s . (3.26)

ii. Under the additional assumption that p(dV) is conditionally (τ, ε)-regular, and
s < min{τ, ε}, we also have (3.25) with

\λ\
(3.27)

The two relations (3.24) and (3.25) yield:

" S Σ \TxJ
s<\G(y)\s), xΦx0. (3.28)

Notice that under the stated conditions (λβs) -* oo when either λ -• oo or, in case ii,
£-» oo.

In the general case (with Txy possibly of unbounded range) we cannot derive
the exponential decay by just iteration of (3.28), the way (2.24) was handled.
A convenient method to bypass this difficulty employs the weighted sum:

Ξ(s, m) = Σ <|G(x)r>exp( + m5(x0, x)), (3.29)
xeΛ

which for s < τ is finite, by (3.20). Let us apply (3.29) to the terms with x + x0.
Making a judicious use of the triangle inequality, in the form:

9 x)) g Qxp( + mδ(x0, j;))exp( + m<5(:x, x)) (3.30)

one finds that

^ S ( 5 , m ) . (3.31)

We now let s (<τ) take a value with which (3.12) is assumed to be satisfied for
some α > 0. By the dominated convergence theorem, Bsm is continuous in m, for



Localization at Large Disorder and at Extreme Energies 261

0 ^ m ^ a. Letting either λ or E to infinity, under the conditions spelled above one
reaches the region of values for which (\λ\βsf > Bs>0, e.g., (see (3.27)) where

\E\-\\Uol ^ „ ( 3 3 2 )

By continuity, for each such value of (λ, E\ there is some m > 0 for which also:

( 3 3 3 )

If (3.12) holds only with a = 0, then we still have (3.33), but with m = 0.
Under the condition (3.33), the inequality (3.31) yields

The resulting uniform bound on Ξ(s, m) directly implies the claim made in (3.21) for
the resolvents of the finite volume operators.

2) The Infinite Volume Case. The extension of the above analysis to the resolvents
of the full (infinite volume) operator requires an additional argument, since our
deduction of (3.34) by way of (3.32) and (3.33) hinges on the finiteness of Ξ(s9 m). For
the full operator that condition is not initially obvious, even for energies off the real
axis.

In the infinite volume there are typically many solutions to the equation

Σ (H - E)Xtyg(y) = δz>x , (3.35)
yεΓ

though there is not always a square summable one. If there is such a solution, then
either the solution is non-unique in / 2 (Γ), in which case £ is a proper eigenvalue, or
(when unique) (H — E)~1\x} is well defined and given by #(•), and then

g(y) = GE+i0(x, y) = GE-i0(x, y) . (3.36)

Since the probability that a given energy is a proper eigenvalue can be non-zero for
only a countable collection of values of £, we find that for jSf -a.e. E the former case
may be discounted. Thus, our claim will follow if it is proven that under the
assumptions of Lemma 3.1, for every E within the relevant range, Eq. (3.35) admits,
p-almost surely, a square summable solution, and these solutions (which are unique
for <£ x p(dV) a.e. (£, {V})) satisfy

, x))) S 1 R \ n R Y (3-37)
xeΓ I l ~~ Ds,m/\\A\Ps)

We construct the above solutions of (3.35) from the finite volume resolvents. Let
Λn -• Γ be a sequence of finite subsets. For convenience we regard G£n(xOi •) as
functions on Γ, which vanish outside of An. Using Fatou's lemma, and the just
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derived (3.34):

/ liminf £ \
\ n-κχ) xeΓ
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) x))

xeΓ

( 1 3 8 )

Hence for p almost every realization of {Vx}9 the "liminf^oo" of the above sum is
finite. For such {Vx} one may pick a subsequence for which the above liminf^oo is
attained as a limit. Along this subsequence, the functions G£n(xo,')are of uniform-
ly bounded / 2 (Γ) norms (by the Holder inequality, seen in (2.32)). By the weak
compactness of the unit ball, there is then a further subsequence for which
G£n(xo,') converge weakly in / 2 ( Γ ) (and hence also pointwise on Γ):

Gt(xo,m) (weakly in /2(Γ)). (3.39)

It is easy to see that the limit obeys Eq. (3.35), is in (2{Γ\ and satisfies the bound

Σ |G(x)|sexp( + m<5(x0, *)) ύ liminf Σ \Gi"(x0, x)|sexp( + m<5(x0, x)) • (3.40)
xeΓ n-*oo xeΓ

By our previous discussion, that proves the last part of Lemma 3.2. •

Proofs of Theorems 3.1 and 3.2. The last statement in Lemma 3.2 directly implies
that the Simon-Wolff criterion for localization is satisfied under the assumptions
made in either of the two theorems. •

4. Some Further Examples

In this section we mention examples indicating other situations in which the
method presented above can be applied. We abstain here from stating the most
general theorems, and abbreviate the proofs, which are based on the arguments
seen above.

a. A with Random Boundary Conditions. Consider the Laplace operator, H = —A,
in the upper half space Z d - 1 x [ —1, oo) with the boundary conditions

φ(x,-l)=-λV(x,ω)φ(x,O) (4.1)

The corresponding spectral problem can alternatively be described in terms of the
operator H acting on functions defined over the half space Z+ = {(x,z)eZd:
xeZd~\z^0} as:

Hψ(x, z) = -Aψ(x9 z) for points (x, z), with xeZd~x

9 z > 0 ,

and Hψ(x9O)=-\ψ(x9l)+ Σ Ψ&> 0)1 + \M + λV(x9 ω)lφ(x9 0) . (4.2)
L |JC'-JC| = 1 J
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Our discussion of the effect of the random boundary conditions can be easily
generalized to operators of the form

-A + U0(x, z) + λξ(x, ω)δΣ,0 , (x, z)eZd

+ , (4.3)

with Ho = — A + U0(x,z) bounded. Such models appear naturally in consider-
ations of the effects of surface disorder in somewhat idealized models on solid state
physics, and were studied in ref. [KP] (concerning the density of states and some
problems connected with Lifshitz tails).

In the following we focus on the prototypical case (4.2). Regardless of V(x9 ω):

σ(H) ^ σ e s s(iί) ^ σ(-A) = [0, 4d] . (4.4)

By standard arguments (analogous to those found in [CL, FP]): if V(x, ω) is
a homogeneous ergodic process on Zd~x then the spectrum σ(H) is non-random,
and if V(x, ω) are ΠD random variables then almost surely:

σ(H) = σess(H) = ([1, Ad - 1] + suppdist V) u [0,4d] . (4.5)

In particular, if V(x, ω) are ΠD with distribution which is supported on all R then
σ(H) = ΊBL (a.s.).

Theorem 4.1. If the joint distribution of{V(x): x e Zd~1} is conditionally absolutely
continuous and conditionally (τ, ε)-regular then there exists a function δ(λ) (< oo)
such that within the energy range

{E: dist{£, σ(-A)} > δ(λ)} = {E: \E - 2d\ > Id + δ(λ)} (4.6)

the Laplacian —A with the random boundary conditions (4.1) has only pure point
spectrum, with exponentially localized eigenfunctions. Furthermore, lim^-^ δ(λ) = 0.

The proof can be presented in two ways, and it is interesting to see it from both
perspectives. We employ in it the original, local, version of the Simon-Wolff [SW]
criterion which is more general than the one needed in Sect. 2. This version is used
also in other extensions presented below, in Sects. 4.b and 5.

The Simon-Wolff Criterion (II). Let H be a self adjoint in / 2 (Γ), Γ a countable
set of sites, which includes a rank-one term with a random coefficient, i.e.:
H = Ho + w|α><α| with u a random variable, whose probability distribution is
absolutely continuous (ρ{du)) <ζ £f(du)). If for if-a.e. Ee[a, b~\\

Σ
1 2

< oo , (4.7)

for p-a.e. u, then p-almost surely the spectral measure of H associated with |α>
includes only pure point spectrum in the interval [a, £>]. I.e., within the subspace for
which |α> is a cyclic vector - σ{H) n [α, b] = σp p(iϊ).

Furthermore, if for some metric <5( , ) on Γ:

£ C(u, E)expt-m(E)δ(x0, y)] (4.8)

with C(u, E) < oo for S£ x ^-a.e. pair (£, u), and m(E) which is strictly positive on
[α, b~\, then the spectral projections associated with the eigenvalues ({£„}) of
H satisfy

l<α|P { £ n } | j;>| g A(u,En)Qχp[-m(E)δ(x0,yn (4.9)

with a function A(-,-) which is finite at p x t£-almost every (w, E).
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Proof of Theorem 4.1. One way to derive the statement is to note that in the bulk
(i.e., z > 0) and on the boundary (z = 0) a suitable version of inequality (2.25) is
satisfied, though for different reasons:

i) for (x, z) with z > 0, (2.25) holds with

ii) at (x, z) with z = 0, the relevant version of (2.25) is with Id replaced by (2d — 1)
and

'-πii^ <4 " )

The argument seen in the proof of Lemma 2.1 yields therefore exponential decay of
the resolvent in the energy range {E: \E — 2d\ > 2ά + <5}, provided (δ, λ) satisfy

1 -
Thus we have an analog of Lemma 2.1, with the conditions described in Theorem
4.1.

Since the potential fluctuates only along the boundary of the half space,
Z a - 1 x {0}, we can use only the local version of the SW criterion (i.e., the above
version II). The conclusion it yields directly is that within the specified energy range
the spectral measures of if associated with functions supported on the boundary of
the half space (i.e. on Z d - 1 x {0}) are of the pure point type, with exponentially
localized eigenfunctions. That leaves room for other spectral behavior of H within
the specified range, but only within the subspace of functions φ with the property
that for all k ^ 0: Hhψ(x, 0) = 0, i.e., A kψ(x, 0) = 0. It is not difficult to see that this
subspace consists of only the null function 0, however it is even easier to see that the
spectrum of H within this subspace does not leave σ( — A). Either way, we have
a proof of the claim. •

An alternative derivation of Theorem 4.1 can be based on the reduction of the
d-dimensional spectral problem to a (d — l)-dimensional spectral problem with
a non-local operator. More specifically, for energies Eφσ(—A\ the resolvent
G(x, z) = GE((x, z), (0,0)) can be determined from its boundary values as the
suitable solution of the Dirichlet problem

-Aψ(x9z) = EΨ(x9z)9 (x,z)eZd

+9 z > 0 ,

and Ψ(x90) = GE((x,0),(0,0)). (4.13)

For Eφσ(-A), the problem is well posed, and in particular one can express:

G(x,l)= Σ DE((x,l)Λy,0))G(y,0), (4.14)

where DE((x, z), (x\ z')) is the resolvent kernel of — A in the half space (z > 0),
which in the specified range of energies decays exponentially. Equation (4.14)
permits to reduce the d-dimensional resolvent equation to a (d — 1) dimensional
problem concerning an operator of the form

ff=-Vi) + X+Ii (4 1 5 )
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with T given by

TE(x,y) = DE((x,l)ΛyA)). (4.16)

For E in the energy range (4.6), TE(x, y) ̂  Const. exp( — m\x — y\% and hence the
discussion of operators with long range hopping terms (Sect. 3) applies, and yields
an alternative proof of Theorem 4.1. One may note that the projected spectral
problem has a double dependence on E. That however does not affect our analysis,
since the results of Sect. 3 are sufficiently uniform.

Remark. When d = 2, the above reduction yields a random potential problem in
one dimension. The known ID results suggest that in this case for each λ + 0 the
spectrum is localized at all energies Eφσ(-A) (i.e., Eφ[0, 8]). Unfortunately, we
cannot use for this purpose the results of [MS], since its estimates are not
sufficiently uniform. (The problem is related to the above mentioned double
dependence on E)

b. Strongly Inhomogeneous Randomness. The following result concerns another
situation with inhomogeneous randomness.

Theorem 4.2. Let H be a discrete Schrδdinger operator of the form

H= -A + U0(x) + D(x)ξ{x) (4.17)

on / 2 (Z d ) , with D( ) a fixed function on Zd and {ξ{x}} I.I.D. random variables whose
distribtion is τ-regular, with τ > 0. If

lim D(x) = oo , (4.18)
|x| -> oo

then σ(H) = σp p(H) almost surely, and the eigenfunctions of H decrease exponenti-
ally (in fact, super-exponentially).

Proof. The proof requires only minor adjustments in the analysis which led to
Theorem 2.1. The key difference is that the inequality (2.25) [which corresponds to
(3.29)] is valid with γ< 1 only where D(x) > λ0. That condition however is
satisfied in the complement of a finite set, i.e., in {xeZd: \x\ ^ R] with R a finite
distance beyond which D(x) > λ0.

Even with the above proviso, for each pair of sites {x,y}, the bound on
<|G(x, y)\s) can be iterated, from either one end or the other, the total of at least
(jx — x o | — 2JR) times. Hence, the following modified form of (2.28) holds:

<\G(x,y)\s)^Dγlχ-y\-2R . (4.19)

The rest of the analysis presented in Sect. 2, with the Simon-Wolff criterion (I)
replaced by the local version (II), implies that H has the spectral properties claimed
in Theorem 4.2 within the subspace spanned by the functions obtained by
repeatedly applying H to functions with support in {xeZ d : |xj ^ R}. The
orthogonal complement of this subspace includes only functions supported in
{xeZd: \x\ g R}, and hence any spectrum left out by the above analysis consists of
only eigenfunctions of compact support. (In fact, by a separate argument, that
orthogonal complement consists of only the 0 element). •
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This example can be somewhat generalized: {ξ(x)} need not be identically
distributed, e.g., it suffices for their distributions to be uniformly regular, and D( )
may just satisfy

UmmϊD(x)>λ0 , (4.20)
|x|-oo

with λ0 of Theorem 3.1. A more complete analysis of the spectral problem for the
potential

V(x) = \x\«ξ(x) (4.21)

(which shows spectral bifurcations with respect to the exponent α) with ξ(x) I.I.D.
random variables uniformly distributed on [0,1] or on [—1,1] was done in
[GJMS], using a quite different method.

Continuing with the setup described in (4.17), if Uo = 0, and

liminfD(x)>0, (4.22)
|x|->oo

then in the energy range |E| > Eo (with Eo as in Theorem 3.2) H has only p.p.
spectrum, with exponentially localized eigenfunctions.

c. Correlated Randomness. The property of a measure being conditionally regular
is closely related to the decomposability of the potential as a sum:

Vx = V?\ω) + Vx

2\ω) (4.23)

(ω representing the randomness) where V$ and V$ are independent, and
Vx

2) form I.I.D. random variables whose distribution satisfies the suitable regular-
ity condition. In particular, if Vx

2) is (τ, ε)-regular then so is VX9 and the results of
Sect. 3 apply.

For example, such a decomposition is easily evident for a broad class of
homogeneous gaussian fields on Zd. Such fields admit the spectral representation:

V{x,ω)= J ei{k'x)μ{dk,ω) (4.24)

with μ(dk, ω) a random (gaussian) measure with uncorrelated values, and

(\μ(dKω)\2} = F(dk). (4.25)

F(dk) is a measure on [ —π, π]d, in terms of which:

Bx = <VyVy+x>= J e^FWhω). (4.26)
[-π,π]<*

If F(dk) dominates the Lebesgue measure dk, on [— π, π]d, i.e.,

F(dk) ^ const, dk (as measures on [-π, π]d), (4.27)

then Vx admits the decomposition (4.23) with Vx forming ΠD gaussian random
variables.

Consequently, our analysis applies to a wide class of stochastically homogene-
ous potentials (not necessarily gaussian) for which the correlations, or mixing
coefficients (Bx\ can exhibit arbitrarily slow decay. Interestingly, even in such cases
the method proves exponential decay for the Green's function, and thus for the
eigenfunctions (in the appropriate regimes).
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The role of the indeterminacy, or the lack of deterministic interpolation, of the
joint distribution has been emphasized and elucidated in the ID case by Kotani
[K] (with other previous results found in [Si, P]). Beyond one dimension, localiza-
tion for correlated potentials was derived in [DK2] (using the multiscale analysis),
though the results found there yield only power-law decay.

d. Potentials with Block Structure. We can also consider random Schrόdinger
operators for which the values of the potential Vx in some regions are strongly
dependent, even restricted to be equal. For example, let <& = {Qa} be a partition of
Zd into non-intersecting cubes, of side lengty L, and let

Vx = ra, i f x e β α , (4.24)

with {^} independent identically distributed random variables.
We will omit here the adaptation, or the bypass, of the Simon-Wolff analysis

suitable for this case. However, well within the scope of the methods discussed here
explicitly is the following result.

Theorem 4.3. Let {i^} be conditionally absolutely continuous (among the block
variables) and conditionally (τ, ε) regular, for some τ, ε > 0, and let

H = -A + U0(x) + λVx (4.25)

on £2(Zd), with {Vx} given by (4.24). Then there is a range of values of(λ, E) in which
the resolvents of the finite volume restrictions satisfy

<\G£(x9 y)\s) £ Dexp(-m\x - y\) (4.26)

with some s, m(λ, E) > 0 and D < oo, uniformly in xeZd and in Λ a Zd. Further-
more, for some λ0 and Eo which are defined independently ofU0, the range of values of
(λ, E) for which (4.26) holds includes the two regimes:

i) λ>λ0 (and all E) and (4.27)

ii) | E | ^ E o + l | ϊ / o | | o o (andallλ)- ( 4 1 4 )

The main difference between this case, and the one discussed in Lemma 3.2, is in
the dependence of GE(xθ9 x) on the potential at x. The representation (2.15) is not
useful since Vx is determined by the values of V{x}c. However, Vx has a conditionally
regular distribution when conditioned on the values of the other block variables.
Let α be the index of the block containing x. In lieu of (2.15) we have the following
representation:

W (4l5)

where Pn(') and Pn(') are polynomials of degree ^ Ld = | β α | , with coefficient
determined by £, λ, and the other Ψ" variables (other than Ψ"a).

The representation (4.14) reflects the fact that Ψ"a appears in H as the coupling
coefficient for an operator of only the finite rank Ld, and is a direct consequence of
the formula (1.4) (in Appendix I).

Despite the difference between (4.14) and (2.15), our decoupling Lemma 3.2 does
apply, provided 5 is chosen so that

s-Ld <min{τ, ε} . (4.16)

Thus, with only minimal adjustments the derivation of Lemma 2.1 yields Theorem 4.3.
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5. Localization Due to Off-Diagonal Disorder

The method presented above can be easily adapted to handle also operators as H in
Eq. (1.4)/(3.10) with randomness in the off-diagonal terms {TXty}. Off-diagonal
disorder has previously been studied by Faris [F], using the multiscale analysis.

We note that our method does not apply to the large off-diagonal disorder in
the way it does to the diagonal disorder. For example, for operators H with dual
disorder, H = λxT + λ2V, with V the diagonal part (as in (1.4)), our previous
analysis on localization at high disorder can be extended to the regime where the
ratio λ2/λί is large. Nevertheless, the analysis of localization at high energies is
similar for the two types of disorder.

Of special interest is the case of non-negative quadratic forms:

Q(f) = (fiHf) = \ Σ KXty\f(x) -f(y)\2 (5.1)

with random Kxy ^ 0, indexed by the unordered pairs <x, y}. Such forms appear,
for example, as elasticity tensors of various structures.

In a prototypical example, Γ = Zd, and the sum in (5.1) is over only the nearest
neighbor pairs, for which the coefficients Kxy are independent and identically
distributed, with probability measure whose density px,y(K) decays at infinity by at
least some power law. For such cases, we prove that above certain energies (with
a calculable bound) the spectrum can only be of the pure point type, with
exponentially localized eigenstates. It follows that when the support of px>y(K) is
unbounded the p.p. spectrum is not empty. (It would be of interest to elucidate the
nature of the low energy states, which in sufficiently high dimensions may be
continuous.)

Somewhat more generally:

Theorem 5.1. Let H be an operator on t2(Γ) of the form (5.1) with

KXfy = tXfyζXίy , (5.2)

where tx,y are non-random coefficients and ζx,y random variables (not necessarily of
definite sign), which satisfy the following three conditions.

i) ζχ,y are conditionally absolutely continuous and uniformly conditionally (τ, ε)-
regular (i.e., with conditional distributions satisfying (3.1) and (3.2) with uniform value
for the constants).
ii) The graph defined over Γ by the set of bonds {<x, y): tx>y Φ 0} has only infinite

connected components (possibly only one).
iii) For some metric <5( , •) on Γ, a > 0 and s < min{τ, ε/2}, {tx,y} satisfy

Σ | τ x > y | s e x p ( + α<5(x, y)) ^ Bsa (< oo) (uniformly in xeΓ) . (5.3)
yer

Then, there is Eo < oo such that for almost every realization of the couplings {ζx,y}9

H has only pure point spectrum in the energy range E > Eo and the corresponding
eigenfunctions obey (3.13), i.e., are exponentially localized.

Remark. A comparison of (5.3) with (3.12) shows a similarity in the required decay
of the off-diagonal coefficients. In particular, by the discussion found in Sect. 3.c,
Theorem 5.1 applies to operators with tx,y decaying by only a power law. For
Γ = Zd, and ζx>y having an optimally regular distribution (i.e., τ = 1, and ε = oo
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[or just ε ̂  2]), the relevant condition is the exact analog of (3.15), with
TXty replaced by tx,y.

Proof. First let us note that each coefficient Kxy multiplies a rank one term, which
can be written as |α> <α| with |α> = |x> - \y}. Condition ii) assures that the linear
span of the collection of vectors {(|x> — \y))e/2(Γ): x,yeΓ tx>y =t= 0} is dense in
/ 2 (Γ). Hence the Simon-Wolff criterion (II), in the version stated in Sect. 4, applies
and shows that a sufficient condition for p.p. spectrum and exponential localiza-
tion, in some energy range, is the almost sure exponential decay of the resolvent.
This is of course what our method is geared for, although the setup is now
somewhat different from what is seen above.

By arguments spelled out in the proof of Theorem 2.1, it suffices to handle the
finite volume problem, provided that is done with uniform estimates. That is what
we shall now look at, suppressing the finite volume cutoff in our notation.

For the operator H defined by (5.1), the equation satisfied by the resolvent,
G{x) = GE(x0,x)9 is

EG(x)= Σ Kx,y[G(x) - G(yK - δxo,x . (5.4)
yeΓ\{x}

One way to proceed is to break the sum and estimate the contribution of each term
to <|G(x)|s>. However, one gets better estimates by paying attention to the
structure present here.

As we noted above, Kx y is the coefficient of a rank one term, |α><α|, in the
operator H. The difference G(x) - G(y) can be written as a matrix element
involving this vector:

! | x o > ( 5 5 )<α|
ΓL — EJ

with |α> = |x> — \y}. This representation carries the implication that
[G(x) — G(j )] as a function of Kx>y takes the simple form which we have encoun-
tered in (2.15):

G(x) - G(y) = α (5.6)
Kχ,y~ P

with α and β determined by the other parameters. (The proof is by the argu-
ment used for (2.15). For an alternative derivation, one can look at
dLG(x)-G(y)ydKXty).)

We now proceed by following our basic stratagem. From (5.4) we get:

|E|*<|G(x)|*>£ Σ QKxJ
s\G(x)-G(y)\s} (5.7)

yeΓ\{x)

for any x + x0, and 5 < 1. By (5.6), the product seen in the expectation on the right
side involves only explicitly controllable singularities. The relevant decoupling
principle, which is slightly different from those encountered in earlier sections, is
stated below as Lemma 5.1. Using it, in much the same way (though in a different
direction) as Lemma 2.3 was used in the derivation of (2.24), we obtain the
following inequality,

Σ \txJ
s<\G(x)-G(y)\s), (5.8)

yeΓ\{x}



270 M. Aizenman and S. Molchanov

with μ < oo provided s < min{τ, 2ε}. Since s < 1:

<|G(x) - G(j;)|s> ^ [<|G(x)f> + <|G(y)|β>] . (5.9)

Gathering the terms, we obtain

\E\s-μs X |ί*,/)<|G(x)r>^μ s £ |ί*.,ls<|G()0ls> . (5.10)
yeΓ\{x} / yeΓ\{x}

That inequality is very similar to (3.29). Following the argument given there, one
easily obtains exponential decay of <|G(x)|s> for each E > Eθ9 with

Σ ,y (5.11)
yeΓ\{x} J

The decoupling tool used in the above derivation is:

Lemma 5.1. Let ρ(du) be a (τ, ε)-regular measure on R. Then for any
0 < s < min{τ, ε/2} there is μs > 0 such that

^ h (5 12)

for all αeC.

This lemma is an immediate corollary of Theorem III.2, of Appendix III, and is
explained there.

Appendix I. A Finite-Rank Perturbation Formula

Following is the proof of Lemma 2.2 (the Krein formula), which states that

where Λ2X2 is the restriction of — to the two dimensional space spanned by
H -E

δXt. and δy>., H being the operator obtained from H by setting Vx = Vy = 0.
Equation (I.I) is a special case of the following statement.

Theorem LI. Let H be a self adjoint operator H, acting in some Hilbert space Jf. //

H = H + W (1.2)

with W (a finite rank term) satisfying

W=RWR (1.3)

for some finite dimensional orthogonal projection R, then, for E with lm(E) Φ 0:

(I 4)

where [•] denotes a finite dimensional matrix (rank(Λ)xrank(i^)) describing the
restriction of an operator to the range ofR, and [ ] " 1 represents the matrix inverse.
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This formula is of use in analyzing the dependence of the resolvent GE(x, y) on
any finite collection of parameters of H. The restriction to energies off the real axis
may be dropped for finite dimensional Jf, in which case the above are meromor-
phic functions of E.

Proof. The resolvent formula (for E is off the real axis, where all our algebraic
manipulations are fully justified)

' ' ^ ' ,1.5,
H-E H-E H-E H-E'

and Eq. (1.3) imply the matrix relation:

H~E J L H~E J

[R ΊΠTϊ R] ίR wR2[R H=E R l (L6)

Multiplying Eq. (1.6) from left and right by the corresponding inverses, one gets

IR(H - Ey'RY1 = IR(H - Ey'RY1 + \_W~\ , (1.7)

from which the claim (1.4) readily follows. •

Appendix II. A Bound on GE(x, y)

In this appendix we derive general "a-priori" bounds on the probability distribu-
tion of the resolvent kernel. These bounds are closely related to Wegner's estimate
of the density of states.

Let H = T+ U0(x) + λVx, as in Eq. (3.10), and assume that the conditional
probability p(dVx\ V{x}c) is uniformly bounded for intervals of length t by some
function g(t). I.e.:

Theorem ILL Assuming (II A), for any finite volume A and any pair of sites x9yeA,

Prob(|G#(x,j;)| ^ ί) ^

Proo/ For simplicity let us denote G(x, y) = Gi (x, y).

i) By the rank one case of Eq. (1.4),

G(x9x) = \λVx+
 1

 i I . (Π.4)
G ( , x)



272 M. Aizenman and S. Molchanov

Thus in order for G(x, x) to be large, λVx has to be within the distance 1/ί from
a value which is determined by the potential elsewhere. By our regularity assump-

[2\
tion, the conditional probability for that is bounded above by g I — j .

ii) For the off-diagonal terms, we deduce from (I.I) that

λ V *ΓQ I T / / ' " ^ λ ^ I :~ f ι _ i !„ n U ^ ^/

with || || denoting the matrix operator-norm, and {//*},•= 1,2 the two eigenvalues of
the (total) matrix. Let S be the subset of R x R consisting of the joint values of
iVxi Vy) f° r which the above matrix has a zero eigenvalue (i.e., det[ ] = 0). Then
(II.5) easily implies that:

a. S is a hyperbola:

S = {(VX9 F , ) e R x R : (VX - ux)(Vy - uy) = α2} (II.6)

with the parameters {ux, uy, α = \A~ \ \lyf\λ\} determined by E, λ, and the values
of V{x,y]c = {Vz:{x,y}cz*x,y}.

b | G ( * , 3 θ l < „ * , „., (Π.7)

^Λ(vX9 vy\s)

The subset of R x 1R on which rfi((ί^, Vy\ S) ^ — consists of a pair of strips of

where di((F x, Ky), S) is the distance of (VX9 Vy)eWί x R from the set 5, along the
diagonal of slope 1.

1

It'
2

width —, in the (1,1) direction, centered on the two branches of S. Elementary
At

geometric considerations show that there is a choice of functions SΊ( )> * = U X
with which this set is covered by the union B1\JB2, with

and B2 = { ( x j ) e R x R : |x - S2(y)\ ^ ^> . (IL8)

Instead of presenting the algebraic expression for £*(•)> l e t u s describe these
functions by sketching their graphs. Let a be the symmetry axis of S which
intersects the two branches of its graph. As x varies from — 00 to + 00, the graph
of SΊ(x) follows the "lower branch" of S until it meets the symmetry line ^, it then
crosses along a to the upper branch of S, and then continues along it as x -> 00.
The graph of S2(y) is obtained by switching the roles of the two coordinates.

With the above choice,

(VX9 F , ) G R X R : dx{{VX9 Vy),S) ^ j

(The detailed demonstration is based on elementary arguments which will be
omitted here.) The conditional probability of J51? conditioned on V{Xfy}c, can be
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estimated by first integrating Vy at fixed Vx. For B2 the order is reversed. The net
result is

Prob ({^((K,, Vy), S) ί j^j g 2g (^j , (11.10)

where Prob( ) refers to the conditional probability p(dV\V{Xfy}c). Together, (II.7)
and (11.10) imply the stated bound (II.3). •

Remark. The inequality (II.2) is closely related with Wegner's bound [W] on the
density of states (which can also be derived by this route). We have no prior
reference for the off-diagonal bound (II.3).

Appendix III. Decoupling Estimates

In this appendix we present the analytical tool which we have used for decoupling
the expectations of products of random variables. The measures referred to here are
all on the real line, and the considerations involved are simple real-analysis
arguments. Our main goal is to derive the decoupling lemmas whose proofs appear
at the end.

First, let us repeat the definition given in Sect. 3.
Definition. A measure p(du), on the real line, is said to be τ-regular (with 0 < τ rg 1)
if, with some v ^ 1 and CΊ < oo,

p&z - δ9z + <5]) ^ C\δ\τp(lz - v,z + v]) (IΠ.l)

for all 0 < δ < 1 and zeR.

This naturally leads to a natural of uniform regularity.

Definition. A collection of probability measures on the real line, is said to be
uniformly τ-regular if the measure satisfies the regularity condition (III.l) with
common values for the constants appearing there.

Following is a fundamental result concerning this notion.

Theorem III.l. Let p(dx) be a τ-regular measure on R. Then for each pair of integers
(n, k), with

k<τ/s, (III.2)

the family of measures of the form

ρ{du) = Const. p(du) . (III.3)

With &*(•) and J ( ) polynomials of bounded degrees:

det&^n, and d e g ^ ^ / c , (III.4)

is uniformly (τ — sk)-regular.

Remark. We shall later normalize β(du) to be probability measures. However, the
regularity condition (III.l) is homogeneous in p( ), and thus the normalization is
irrelevant for this condition.
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By the factorization of polynomials, this theorem is immediately implied by the
following two lemmas.

Lemma III.1. Let p{du) be a τ-regular measure on IR. Then for any s < τ, the
measures

β(du) = Const, ^ - ^ p p(du) (III.5)

with α e C are uniformly (τ — s)-regular, satisfying (III.l) with the modified constants
v and C:

1, C = C 1 + ^ -v = v + 1, C = C 1 + -^—s (3v + l ) s . (III.6)

Lemma III.2. Let p(du) be a τ-regular measure on R. Then for any s > 0 the
measures

p(du) = Const. \u - β\sp(du) (III.7)

are also τ-regular, satisfying (III.l) wiί/z constants which can be chosen uniformly in
βe€.

Proof of Lemma III.l. For given z, (5eR, we split the discussion into two cases,
according to whether \z — α| ^ 2v, or not.

i) If I z — α I ̂  2v, then within the interval [z — v, z + v] (which contains

[z - δ, z + (S]), does not vary by a factor exceeding 3s. Hence (III.l) implies
IX 0ί\

p(\z -δ,z + δ])/β(lz - v, z + v]) g 3sCδτ (III.8)

for all 0 < δ :g 1, which is a stronger bound than the claimed one.
ii) For the other case, when the singularity is close to z, we express

p([z - δ, z + <$]) as:

β{ίz-δ,z + δl)= J P ( ^ ) - 1 - ^

= J Λ Jp(Aι)J[|iί - z| ^ 5]/ Γp-ί-η; ^ ί ] (IΠ.9)
o Uu ~ αl J

Splitting the first integral at the point t = l/δ\ and applying (III.l) we get the
following estimate, which holds irrespectively of the condition \z — α| ^ 2v,

p([z - δ, z + 5]) ^ C^"V([z - v, z + v])

+ C f dtΓτlap&z - (v + 1), z + (v 4- 1)])

l ^ ( [ z - (v + lλ z + (v + 1)]) (IΠ IO)
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This is to be compared to the measure p of the interval on the right. Since
| z - α | ^ 2 v ,

p([z - (v + l),z + (v + 1)]) ^ pflz - (v + l),z + (v + l ) ] ) ( 3 v | 1 ) 5 ? (ΠLH)

and the claimed inequality readily follows. •

Proof of Lemma III.2. As in the first part of the above proof, if \z — β\ ^ 2v then
the analog of (III.8) holds, with the constants seen there.

In case \z — β\ ^ 2v, then (for <5 ̂  v)

p([z - <S, z + <5]) ^ (3v)sp([z - <S, z + <5]) ^ (3v)s<SτCp([z - v, z + v]) . (111.12)

To estimate p( ) of the surrounding interval we note that the regularity condition
(III. 1) implies that an interval of length b = 2 (3C)~τ has no more than 1/3 of the
p( ) measure of the concentric interval of length 2 v. Since \z — β\ ^ 2v, the
interval of length 2v centered at β is included in [z — 3v, z + 3v]. Hence

pilz - 3v, z + 3v]) = J p(du)\u ~β\s^b J p(A*)/[|u - jϊ| £ ft]
|

^ I ft«p(|> - 3v, z + 3v]) £ 16»p([z - v, z + v]). (III. 13)

T h e c o m p a r i s o n of ( H I . 12) w i t h (111.13) s h o w s t h a t β( ) is τ-regular , u n i f o r m l y in

β. m
Taken together, the last two lemmas are equivalent to Theorem III.l, with some

specific information on the constants (III.6)). In addition, the estimates seen in the
proofs imply the following useful statement.

Corollary III.l. Under the conditions of Theorem III.l, for any interval B,

with B' = B + [ — 2v, 2v] and the constant independent of {och βj}. Furthermore,
with B and B' exchanged and a different value for the constant, the reversed
inequality also holds.

Theorem III.l plays a key role in the decoupling estimates needed for the high
disorder regime. For results concerning the regimes of extreme energies, indepen-
dent of the strength of the coupling, we use

Theorem III.2. Let p(du) be a τ-regular probability meausure on R with a finite
fractional moment:

\ κ , (111.15)

at some K > 0. Then for any pair of integers (n, k) satisfying:

s (n + k) < ε, and s-k <τ (III. 16)

the collection of probability measures given by (III. 3), suitably normalized, and (III.4)
is tight, in the sense that the measures satisfy uniform decay conditions. More
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specifically, these measures obey

p ( | u Γ s ( π + ( t ) ) ^ Const.p( |κ | ε ), (111.17)

with a uniform constant (depending on (π, k) and the constants with which p obeys
(III.1)).

Proof. Let the polynomials & and Ά have the factorization seen in (III. 14). Then,
using (III. 14), in its two forms, the corresponding measure is seen to satisfy:

Const.

with a constant uniform in {αi5 βj}, and any w0. (We use now the symbol Const, to
represent such quantities, which are not necessarily all equal.)

The following is a helpful inequality for polynomials (easily seen to be true in its
logarithmic version):

ψa + iu^ u_ ^ψa + w-a^^
~ i L (i w β\r

ψ ψ
ΓL-i a +1« - βj\r ~ iL-i (i + w - βj\r

Choosing u0 so that p({u: \u\ ̂  u0}) > 0, and applying (III. 19) in (III. 18), we obtain
a bound of the form

P ( { M G R : \U\ > ή) ^ Const. J (1 + \u\)s{k+n)p{du) . (111.20)
| M | > ί - 2 v

The claim follows now by the Tchebychev inequality. •

We shall now apply these results for the derivation of the decoupling lemmas
used in this work.

Proof of Lemma 5.1. Lemma 5.1 is an immediate corollary of Theorem III.2. To see
that, all one has to do is rewrite the condition (5.12) in terms of the probability
measures β(du) = \u — a\~sp(du)fNorm. The corresponding values of (n, k) are
(0,1) and the claimed bound takes the form:

β(\u\s) <. μs (uniformly in α) . (111.21)

The boundedness of μs follows from (III. 17), provided s < ε — s, i.e.: s < ε/2. •

Next we turn to the proof of Lemma 3.1. For convenience, we restate it here.

Lemma 3.1. Let p(du) be a τ-regular measure on R. Then:

i) for each s < τ and a pair of integers (n, k\ with s * k < τ, there is κn

s

y k > 0 such
that for all rational functions, &(u) = 0>(u)/Ά(u) with:

deg & ^ n, and deg 1 ^ k ( < τ/s), (111.22)

and all η:

J |iι - η\smu)\sp(du) ^ (κn

s>
kγ J mu)\'p(du) . (ΠL23)
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ii) If furthermore,

\\u\εp{du)<oo , (111.24)

then the inequality (33b) can be strengthened as follows:

J \u - η\smu)\sp(du) ̂  lξϊk(\η\)YSmu)\*p(du) , (ΠL25)

with ξn

s

Λ{ ) an increasing positive function on 1R+, satisfying

lim ^ - ^ = 1 . (111.26)
u-*oo ^

Pr<?o/ i) With p(du) defined by (IΠ.3), normalized so as to form a probability

measure,

J \u - η\'\Λ(u)Mdu)/i\Λ(u)\'p(du) = J \u - η\sp(du) ^ \a\sp({u: \u-η\> a}) .

(111.27)

According to Theorem IΠ. l , p ( ' ) belongs to a class of uniformly (τ — s/c)-regular

measures. Denoting by C the constant with which (III.1) is satisfied within this

class, we have

β(ΊR) 1- (111.28)

with a = 2 (2C)-\ Hence (111.23).

ii) The second part of the assertion is implied by the bound:

f \u - η\sβ(du) ^ \η\s(l - β)*[l - β({u: \u\ ̂  e |ι j |})] , (ΠL29)

and the tightness statement expressed in Theorem III.2, by which the probability

seen on the right side tends uniformly to zero, as \η\ -• oo. •

The above results demonstrate the general utility and versatility of the simple

analytic tools presented in this appendix, which play a key role in our discussion of

localization.
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