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Abstract. We prove that the Haar state associated to the compact matrix quantum
group SUμ(N) is faithful for μ e ] - 1,1[, μ φ 0, and any N ̂  2.

In [Wo2] the theory of Compact Matrix Pseudogroups was initiated and it was
shown that many of the fundamental notions of Harmonic Analysis have natural
extensions in this context. Among them, probably the most important achievement
is the notion oϊHaar measure and the Peter-Weyl type theorem for compact matrix
pseudogroups. The next step in this direction was the Tannaka-Krein Duality
theorem proved in [Wo3], which made the connection between the objects of
Woronowicz and Quantum Groups (Drinfeld and Jimbo, see [Dr]) more clear. In
fact, a compact matrix pseudogroup, or, more precisely, its algebra of "continuous
functions," can be viewed as a completion of the Hopf *-algebra of "coefficients" of
representations of a quantum group, cf. [Ro, Sol, So2]. Apart from Woronowicz's
approach this characterization allowed further investigations on the structure of
the corresponding C*-algebras (see [Sol, VS2]).

In this paper we shall apply such a philosophy in order to obtain that the
"support of the Haar measure on SUμ(N) is the entire space SUμ(N). The appropri-
ate sense of this statement should be the faithfulness of the Haar state on the
C*-algebra C(SUμ(NJ). Recall that a positive functional φ on a C*-algebra is called
faithful if for any element a Φ 0 one has φ(a*a) Φ 0. This problem was left open in
[Wo2], where the faithfulness is shown only on a dense subalgebra. In particular,
from our result it follows that the enveloping C*-norm on C(SUμ(N)) can simply
be given as the GNS norm associated to the Haar state.

This paper constitutes a part of the author's dissertation. The author wishes to
express his deep gratitude to his advisor, Professor Marc A. Rieffel, for the warm
support given during the elaboration of this project, and to thank Marc Rosso for
useful discussions.
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1. Preliminaries and Statement of Main Result

We begin by fixing throughout the entire paper a parameter μ e] - 1, 1[, μ φ O .
One defines the "algebra of continuous functions on the quantum group

SUμ(N)9" denoted by C(SUμ(N)) to be the universal unital C*-algebra generated by
AT2 elements uiJ9 ij = 1, N, subject to the following relations

N N

Σ u*JuJk = Σ uiJuϊk = <V 1 , (1)
7=1 7=1

X ( ~~ /*) σ w i(l)<τ(l) Ui(N)σ(N) = Eί(1) . . . ̂ jv) ' 1 , (2)

σeSN

for all n-tuples (i(l), . . . , i(N)) e {1, . . . , N}N, where £ί(1) . . . j (N) = 0, if there exist
fc, / such that ί(k) = *(/), and Ei(1^_i(N) = ( — μ)/([l]) otherwise. Here by [i] we
denote the permutation given by (z(l) . . . i(N))9 and, for a permutation σ e SN9 1(σ)
stands for the number of inversions of σ.

The term "universal unital C*-algebra" has the following sense. We take
¥un(SUμ(N)) to be simply the *-algebra given by the above generators and
relations, and then let C(SUμ(N)) be the completion of F\m(SUμ(N)) with respect
to the norm

l l / l l e n v = sup{||π(/)| |: π is a ^-representation of ¥un(SUμ(N)} .

One can easily see that ||/|| < oo for all/6 Fun(SUμ(N)).
Furthermore, Fun(SUμ(N)) (resp. C(SUμ(N))) becomes a Hopf*-algebra (resp.

a Hopf C*-algebra) if one defines the comultίplίcation

A: ¥un(SUμ(N)) -* F\m(SUμ

resp.
A: C(SUμ(N)) -, C(SUμ(N)) ® C(SUμ(N)) ,

to be the *-homomorphisms given by

N

Λ(t*j fc)= Σ uij®ujk (3)
7=1

Throughout this paper we use the minimal (spatial) tensor product of C* -algebras.
Let τ = τsuβ(N) be the "Haar measure ofSUμ(N)." Its meaning is that of a state

τ : C(SUμ(N)) -> (C. Its in variance with respect to both left and right translations is
given, in this setting, by

(τ ® Id)(Af) = (Id ® τ)(Af) = τ(f) 1 ,

for all /e C(SUμ(N)). The existence and uniqueness of τ is proven in [Wo2;
Thm. 4.2]; it is also shown there that τ°κ = τ on ¥un(SUμ(N)), where
K: ¥un(SUμ(N)) -> Fun(5(7μ(N)) is the antipode, given as a linear antimultiplicative
(unbounded in general) isomorphism satisfying

*(*(/*)*)=/, for aΠ/6



Haar Measure 219

All the above data say that C(SUμ(N)) is a compact matrix pseudogroup
(quantum group). For N = 2 the corresponding algebra C(SUμ(2)) was indepen-
dently found by Woronowicz ([Wol]) and Vaksman and Soibelman ([VS1]). For
arbitrary N see [Wo3, Sol, VS2]. We recall now the notion of a representation of
SUμ(N). By this we mean a pair (v, V] with Fa finite dimensional vector space and
v e L(V) ® C(SUμ(N)) an invertible element which satisfies the relation

(Id® A)v = v® v ,

where, in order not to complicate the notation, if we take v = (vpq)pfq=ι,dimv to be
the matrix of v in some basis of F, then v ®veL(V)® (C(SUμ(N)) ® C(SUμ(N)))
is the element having, in the same basis, the matrix CxM)p f β=ι,dim v> with

dimv

Xpq = Σ Vpr ® ϋr« -
r = l

It is shown in [Wo2; Thms. 5.2 and 5.8] that all these representations are
"smooth," that is, reL(K)® Fun(Sl/μ(JV)). For any representation v, we shall
denote the vector space Span{vpq: p, q = 1, dimF} by Coeff(t ).

The results from [Ji, Wo3] give that the theory of representations for SUμ(N) is
the same as that oϊSU(N). A way of saying this (see also [Ro, Sol]) is the existence
of a bijection

Iττ(SU(N))BΌ <-> υμ e Iττ(Suμ(N)),

such that

(A) it is dimension-preserving,
(B) it is self conjugate,
(C) it preserves decompositions of tensor products,
(D) the fundamental representations correspond one to the other.

A word of explanation. Let Irr( ) be the notation for the set of equivalence
classes of irreducible representations. (A) says dim^ = dimκ; (B) reads (vc)μ = (vμ)

c,
where ( )c stands for the contragradient; (C) says that if v' ® v" = £w, then
v'μ ® v'μ = £wμ; finally, (D) means that the fundamental representation ofSUμ(N)9

i.e. the one on <EN given by the matrix ( U i j ) i t j = l ί N 9 has the "usual" properties of the
fundamental representation of SU(N) (see [Wo2]). We shall simply denote this
representation by u.

After these preparations, we can state our main result:

Theorem 1.1. For any N ^2 and μ as before, τ : C(SUμ(N)) -+ C is a faithful state.

Since the proof will be done by induction, we begin with a discussion, which
essentially gives the framework for the induction step.

2. (Double) Coset Spaces of Compact Matrix Pseudogroups

Let G be a compact matrix pseudogroup and H a compact matrix "sub"-pseudo-
group of G. This means we are given Φ: C(G) -> C(H) a surjective smooth
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*-homomorphism of unital Hopf C*-algebras, that is

(i) (Φ ® Φ) ° ΔG — AH ° Φ ,

(ii) Φ(Fun(G)) = Fun(#) ,

(iii) Φ ° KG = KH ° Φ on Fun(G) ,

(iv) 8H ° Φ = 8G on Fun(G) .

Here &G (resp. ε#) is the counit of G (resp. H).
Then one has two actions of H on G by "translations." To give them a meaning,

they will be written in terms ofcoactions of the algebra Fun(/f) on Fun(G) (see, for
example [BS]). We can form the "homogeneous spaces" G/H and H\G. Again,
their formal definitions will involve the algebras of "continuous functions" on these
"spaces," so we put

C(G/H) = {/e C(G): (Id ® Φ)(ΛG/) = /® 1} , (4)

C(H\G) = {/e C(G): (Φ ® Id)(JG/) = 1 ®/} . (5)

(These are nothing but the identifications

C(H\G) = HC(G),

of our algebras with the fixed points for the actions of H on C(G).)
One can also define

C(H\G/H) = {/G C(G): (Φ ® Id ® Φ)(zlG ® Id)(zlG/) = 1 ®/® 1} , (6)

and gets the "double coset space" H\G/H. The "canonical surjections"

G -> G/H , (4a)

G-»#\G, (5a)

G-+H\G/H (6a)

have to be understood as given by the inclusions

C(G/H)*C(G), (4b)

C(H\G)c;C(G), (5b)

C(H\G/H)c;C(G). (6b)

Although there are no "sections" for the "maps" (4a) (5a) (6a) (not even in the
classical case), at the level of spaces of "continuous functions" one has something
which is a sort of a substitute, i.e. certain left inverses for the inclusions (4b) (5b)
(6b). These, of course, cannot be *-algebra homomorphisms, but one can still
manage to have "nice" properties. In fact, these inverses can be chosen to be
conditional expectations (see [St]). So, we have

EG/H:C(G)^C(G/H),

EH V G:C(G)-»C(H\G),
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which are left inverses for the inclusions (4b) (5b) (6b), that is, using a unified
notation,

EM I c(M) — Idc(M) ,

M being one of the "spaces" G/H, H\G or H\G/H. The £'s are given by
"integration" on H, more precisely,

EG/H = (Id®(τH°Φ))°AG, (7)

EHχG = ((τH°Φ)®U)°AG, (8)

EH\G/H = ((τH ° Φ) ® Id ® (τH° φ))o(jG <g> Id)°AG . (9)

If one takes, using the same notation, τM = τG|C(M), then by the bi-invariance of τG,
one gets

τG = τ M °E M . (10)

This formula will play a key role in what follows. In particular we get

Lemma 2.1. τG is faithful if and only if EM and τM are faithful

Recall that the faithfulness of EM means

/eC(G), /^O, / Φ O ^ E M ( / ) Φ O .

We shall see now that one condition in the above lemma can be checked using
the following criterion.

Proposition 2.2. Suppose τH is faithful and the counit SH can be extended as a charac-
ter εH: C(H) -> <C. Then, in any of the three situations considered above, EM is faithful.

Proof. According to the three cases M = G/H (resp. M = H\G, M = H\G/H\
take ΓM the *-homomorphism defined in each case, as

ΓG/H:C(G)^C(G)®C(H),

ΓH\G:C(G)^C(H)®C(G),

ΓH\G/H C(G) -> C(H) ® C(G) ® C(H\

given by

ΓG/H = (Id®Φ)°z! G ,

ΓH\G = (Φ®Id)°AG ,

ΓH\G/H = (Φ®Id® Φ)°(Id (x) ΔG}* AG .

But if we take ΨM, defined as

ΨG/H = Id (x) SH: C(G) ® C(H) -> C(G) ,

^H\G = ZH ® Id: C(fl) ® C(G) -> C(G) ,

^H\G/H = εH ® Id ® εH: C(H) ® C(G) ® C(H) -> C(G) ,

we get ΨM°ΓM = Id, so, in particular, ΓM is injective (see [Wo2; p. 626]).
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If we take FM, given as

FG/H = Id ® τH: C(G) ® C(H) -> C(G) ,

FH\G = *H® Id: C(H) ® C(G) -> C(G) ,

^H\G/H = τH ® Id ® τH: C(H) ® C(G) ® C(#) -* C(G),

one gets

£M = ^M°ΓM. (11)

This factorization reduces the problem to the proof of faithfulness of FM, which is
a "standard" fact (the property we invoke is: "Given C*-algebras A and B, if
φ: B -» C is a faithful state, then the completely positive map Id ® φ: A ® B -> ^4 is
faithful;' see [La]). D

Remark. We can easily see that, for the Hopf C*-algebras C(SUμ(N)) the counit ε is
automatically extendable to the entire C*-algebra (simply because ε is a ^-repre-
sentation of¥un(SUμ(N))).

3. Proof of the Main Result

In this section we work in the following context: G = SUμ(N), and
H = SUμ(N — 1), with N ^ 3. We view H as a sub-pseudogroup of G via the
surjective *-homomorphism Φ: C(G) -> C(H) given by

Φ(uiN) = Φ(uNj) = 0, Φ(Uij) = iiy, for ij < N, and

Φ(uNN) = 1 .

We shall try to describe the "space" M = H\G/H, using representation theory.
Let (v, V) be a representation of G. If we "restrict" it, we get a representation of H.
Formally, the representation we get by "restriction" is (%, F), where

VH = (IdL(F) ® Φ)(v) e L(K) ® C(H) .

Take Pv to the projection onto the subspace of H-fixed vectors of V, that is

The rank of this projection is nothing but the multiplicity of the trivial representa-
tion of H in VH. We denote this number by mH(v). Take u to be the fundamental
representation of G, and define the family (vptr)ptreN of representations of G, by

p times r times

For p = r = 0, ί;0>0 will be the trivial representation. Finally, take the representa-
tion vn given as
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We know from general theory (see [Wo2; Thm. 5.7]) that

In particular

Fun(G) = (J Coeff (if) .
neN

£M(Fun(G)) = U EM(Coeff(v")).
neN

But, of course, C(M) = Range EM = EM(Fun(G)), so, if we denote £M(Coeff (if)) by
Fun"(M), we have

C(M) - (J Fun"(M) .
WEN

As an intermediary step in describing C(M), we shall try first to do this for the
spaces Funw(M).

Proposition 3.1. As a vector space, Funw(M) has dimension equal to

Card{(p, r) e N x N: p + r ^ n} .

The above number is, of course, (n + l)(n + 2)/2, but we don't really need this.

Proof. Let us "break" the representation vn as a sum of irreducible ones

v»= Σ θ

keKn

where the wfc, for k e Kn, are mutually inequivalent irreducible representations of G,
and the corresponding l(/c)'s are their multiplicities.

Then

Coeff (ιf) = £ Coeff (w f c),
keKn

and, so,
Fun"(M) - Σ £M(Coeίf(wfc)) .

keKn

Note that the spaces Coefϊ(wfe) are invariant for EM.
On the other hand, for an arbitrary (w, W) e Irr(G), the vector space

£M(Coeίf(w)) is clearly isomorphic to (Range Pwc) (x) (Range Pw), and so we get

dim EM(Coeff(w)) = mH(w) mH(wc) . (12)

By the orthogonality relations (see [Wo2; Thm. 5.7]) the spaces EM(Coeff(wk)),
ke Kn are linearly independent. So, from (12) we get

dim Fun"(M) = £ ™H(wfe)' mH(wί) . (13)
keKn

Now, according to the general "philosophy" on representations, the set of
indices Kn and the numbers mH(wk), k e Kn are the same as in the classical case
(μ = 1), so dim Funn(M) is a number which doesn't depend on μ. So, the only thing
to prove is that the statement is true in the classical case. In this case we know that
Coeff (vn) consists of polynomial functions in M /S and w^ 's of total degree at most n.
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But then, by integration, we easily see that the conditional expectation sends any
such polynomial to a polynomial in UNN and ΰNN again of total degree at most n.
Now we are done, because, obviously, a basis in this space of polynomials is

+ r n . Π

The next step in our investigation is showing that, in fact, M is the Quantum
Disk. We shall use the following definition. Fix a parameter 0 < q ^ 1. We take the
"space" Dg, to be given by means of its algebra of "continuous functions," which
will be denoted C(JDq). It is defined as follows. Let Fun(D^) be the unital *-algebra
generated by a single element z, subject to

1 - zz* = q(ί - z*z) , (14)

and take C(ΊDq) to be the completion of Fun(D^) with respect to the norm

= sup{||π(/)||: π - ̂ representation of Fun(Dβ), with ||π(z)|| ^ 1} .

We shall need only some of the properties of !Dq, which are given by the
following

Proposition 3.2. For 0 < q < 1, the following properties hold.

(a) Take on /2(]N) the operators S and Y given, in the canonical orthonormal
basis, by Sen = en + ί; Yen = qnen, n e N, and let Z = S*(l - 7)1/2. Then the *-
homomorphism π: C(ΊDq) -*B(/2(]N)) defined by π(z) = Z gives a ^-isomorphism
between C(]Dq) and the Toeplitz algebra £Γ (i.e. the C*''-algebra generated by S).

(b) Any state φ: C(lDq) -> C which satisfies:

(i) φ(zz*) < 1 ,

(ii) for any x e C(D€): φ(xx*) = 0 => φ(x*x) = 0 ,

is faithful.
(c) The set {z*pzr: p9 r e N} is linearly independent in C(lDq).

Proof. Before beginning the proof, let us mention that in (b) the condition (ii) is
essential (without assuming it, take for example φ:&~-+<C to be defined as
φ(X) = <Zέ?oko>; note that <p(ZZ*) - 1 - q < 1, but φ(SS*) = 0). It is easy to see
that the operator Z = S*(l — 7)1/2 has norm ^ 1 and satisfies relation (14). Since
Y is compact, Z belongs to ZΓ. On the other hand, let y e C(ΊDq) be given by
y = 1 — z*z. Using formula (14) and

Spectrum(l - zz*) u {1} - Spectrum(l - z*z) u {1} ,

one can prove that

Spectrum(>>) = [qn: rceN} u {0} .

In particular, this shows that 0 is an isolated point in Spectrum(z*z), which implies
that the polar decomposition of z takes place in C(D9), that is, there exists a partial
isometry x e C(Όq) such that

z = x(l — j/)1/2, Range x = Range z, Kerx = Kerz ,
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the last two formulas being understood in any * -representation of C(ΊDq). But, on
the other hand, we have zz* = 1 — q(l — z*z). This, in particular, gives the inverti-
bility ofzz*. Thus the element x is, in fact, a coisometry, so there exists an isometry
s e C(ΊDq) such that

Z = S*(l - y)!/2 ^

So we have

Kerz*z = Kerz = Kerx = Range(l - ss*).

But the spectral decomposition of y gives a sequence (p«)Me]N of mutually ortho-
gonal projections in C(ΪDq) such that

y = Σ On.
neN

Since Kerz*z = Ker(l — y) = Range(p0)> we get p0 = 1 — ss*. Using now the
(obvious) relation zy = qyz it follows, by functional calculus, that we have
zPn = Pn-ιzPn f°r all n ̂  I. So z "sends" Range (pn) into Range (pn-ι). But since
zz* is invertible, z will be "onto." Consequently z "sends" Range (pn) "onto" Range
(pπ-ι). But then it is clear that s* will do the same, so we get

pn = 5«s*« - sn+ ls*n+ \ for all n e N .

In particular y, and consequently z, will belong to the C*-subalgebra of C(ΊDq)
generated by s. But, of course, the ^-representation π preserves the polar decompo-
sition. Since the operator Z = π(z) is exactly given in polar decomposition, we infer
S = π(s), and (a) follows.

To prove (b), we shall work now in the "spatial" picture of C(JDq) given by (a).
By condition (i) one gets

(i') φ(Y)>0.

If we denote by Pn the orthogonal projection onto <Cen9 n e N, of course we have

Y= Σ <fPn,
MEN

and, by (i') there exists at least one projection Pn with φ(Pn) φ 0. Since all the Pn's
are equivalent (in the sense ofMurrary and von Neumann) in C(Dg) = "̂, from (ii) it
follows that

φ(PΛ)*0 for all w e IN. (15)

To conclude the proof, take X e C(TOq) = F such that φ(X*X) = 0. Because
0 ^ X*PnX ^ X*X, we get φ(X*PnX) = 0 and, by (ii), we also get

φ(PΛXX*Pa) = Q for all n e N . (16)

But the operators PnXX*Pn are rank one operators and each of them has the form
PnXX*Pn = λnPn, for some scalars λn. By (15) and (16) we get λn = 0 for all n e N,
which gives PnXX*Pn = 0. Consequently, PnX = 0 for all n e N, so X = 0.

Finally, to prove (c) we may try to show that the Z*pZr's are linearly indepen-
dent. But it turns out that this approach will require exactly the same arguments as
those used in [Wol; Thm. 1.2]. That is why we shall try to reduce our problem to
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that result, simply because C(Έ>q) "lives" in C(SUμ(2))9 for μ = q1/2. More precisely,
take p: C(lDq) -» C(SUβ(2)) to be the *-homomorphism given by p(z) = ulί. Using
the notations from [Wol], w n = α , u2ι = y (it follows that w12 = — μy*,
W22 = «*), we know from [Wol; Thm. 1.2] that we have a basis (αmWp)mez,M,pe]N for
¥un(SUμ(2)) defined as

>πy*p, for m ̂  0
K-wyίy*^ for m < 0 .

Clearly we have

p(z*V) = α*V = X βsar-p,s,s,
s = 0

with non-zero "leading coefficient," i.e. /?min(P,r) Φ 0. This easily gives the linear
independence of the p(z*V)'s and, of course, the same will hold for the z* Vs. D

Comment. The quantum disk appears also in [Shi]. It was also investigated in
[KL], but with a different "parametrization" (which leads to another dense subal-
gebra instead of Fun(D^)).

Theorem 3.3. With the earlier notations, we have the following:

(i) C(M) is the unital C*-subalgebra ofC(G) generated by UNN.
(ii) The map π:z\-*u%N gives rise to a unital ^-isomorphism between C(ΊDμ2) and
C(M\
(iii) τM = τG\C(M) *5 a faithful state on C(M).

Proof. Let us note, first, that z0 = u$N satisfies formula (14), with q = μ2, and
\\UNN\\ ^ 1 (see> f°r example, [Br; formulas (4)]). So, if we denote by j/ the unital
C*-subalgebra of C(G) generated by UNN, from the definition, it follows that one
has a surjective unital *-homomorphism π: C(Dμ2) -> j^, given by the formula in
(ii). On the other hand, it is easy to see that UNN e C(M\ so,««/ ^ C(M).

Take now the state φ = τG°π: C(JDμ2) -> C. We have

τM(uNNuNN) ~ τθ(UNNuNN) < 1 ?
because

N-l
UNNUNN = 1 ~ Σ u?NuiN »

and the Haar state is faithful on Fun(G) (see [Wo2; Thm. 4.2]). If we compose with
π this gives φ(zz*) < 1. But we know from [Wo2; Thm. 5.6] that the Haar state
satisfies

τ(/*/) = 0=>τ(//*) = 0,

and, in particular, on C(Dμ2), we have also

φ(x*x) = 0 => φ(xx*) = 0 .

By Proposition 3.2, it follows that φ is a faithful state. Consequently, we obtain two
properties:

1. π is infective;
2. τM|^ is a faithful state on <$#.
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Take Xpr = U^N^N = π(z* V), p, r e N. Since π is injective, and the z*pzr's
are linearly independent, the Xpr$ will be linearly independent also. But
XpreCoeff(υp,r) and, moreover, XpreC(M), so, we have, in fact,
Xpre £M(Coeff(ι;pjr)). In particular, (Xpr)p+r^n will be a linearly independent set in
Fun"(M). Using Proposition 3.1, we conclude that

Fun"(M) = Span{^r: p + r ̂  n} .

This proves exactly that Funw(M) c j/ for every n, so C(M) c j/9 which gives
C(M) = j/ and the proof is complete. D

Proof of Theorem 1.1. It is clear that Theorem 1.1 follows from Theorem 3.3 by
induction, provided that the case N — 2 is true. But the proof for N = 2 is
essentially contained in both [VS1] and [Wol]. It follows from:

1. The concrete formulas for the Haar state, cf. [VS1; Thm. 5.5], [Wol; p. 130];
2. The injectivity of the "weighted shift" representation C(Sl/μ(2))->
J*(/2(N) (g) /2(Z)), used in the proof of Theorem 1.2 of [Wol]. This representation
was independently defined in [VS1; Thm. 3.7] as a direct integral of all irreducible
infinite dimensional representations of C(SUμ(2)). (For details, see [VS1; §5] or
[Wol; Appendix 2].) D

Comment. For the proof of case N = 2 one could use also T, the "maximal torus"
of Sl/μ(2) (see [Wol; Appendix 2], or [VS1; §3]) and the facts from Sect. 2 for the
"space" M = T\Sl/μ(2)/TΓ. The algebra C(M) is contained in the C*-subalgebra
generated by wn, on which, by Proposition 3.2 (the proof of (c)), the Haar state is
faithful.

Final Remark. We treated, in this paper, only the "groups" SUμ(N)9 but the same
method should work also for other "classical compact pseudogroups," provided
that one is able to deal with the following technical problems:

A. Work with universal C*-algebras, given explicitly by generators and rela-
tions.

B. Choose, for G, appropriate subgroups H, for which the Haar state is faithful
and the double coset space H\G/H is a "familiar" one. For example, for SOμ(N)
one should expect to get a quantum segment.
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