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Abstract. In [3] it was shown (in the framework of deformed enveloping algebras)
that quantum SU(2) and E(2) groups are related by the contraction procedure. We
consider the same problem on the (7*-level. As a result we find a number of formulae
coupling the comultiplications in quantum SU(2) and E(2). In particular we show
that the comultiplications in both groups are implemented by partial isometries. An
unexpected feature of quantum E(2) is discovered and the corresponding strange
behavior of quantum SU(2) is described.

0. Introduction

We shall consider two three-dimensional matrix groups:

SU(2) = f(a> ~Ί]e M2X2(C) : H2 + |7|
2 = 1 L

They have the common subgroup 5*1 consisting of all diagonal matrices. The
corresponding homogeneous spaces are: the two-dimensional sphere in the case of
SU(2) and the two dimensional Euclidean plane in the case of E(2). Since for small
regions, the spherical geometry may be well approximated by the Euclidean one, we
may expect that the two groups look very similar in a sufficiently small neighbourhood
of Sl. To reveal this similarity we use the same coordinates to parametrize SU(2)
and E(2).
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For SU(2) we set

where v,n £ C, \υ — 1 and \n\ < 1. The coordinate system covers the dense open
subset of SU(2) consisting of all matrices with non-vanishing diagonal elements. For
E(2) we set

/ \ / Nv λ / 17, n

, n / U

where n,v G C and \v\ = 1. In this case the coordinate system covers the whole of
/ v\

E(2). In both cases belongs to a neighbourhood of Sl if n is sufficiently small.
\nj

We have

\ ίv2\ /Phase (V1V2V(1 ~ lnl X1 ~ In2 )- n l™2~)\
I * SU(2} I 1 ^ 1 / / I

n

Comparing the right-hand sides of these relations, when n 1 ? n 2 —» 0 we see that
the difference of the first coordinates is small of the second order in (n l,n2). The
second coordinates are small of the first order in (n1? n2), whereas their difference is
small of the third order in (n1? n2).

Let μ be a positive number smaller than 1. For any I £ R we set

v

n) \μln

Clearly (τl)^R is a one-parameter group of automorphisms of E(2). It retracts E(2)

to Sl when / —» oo. Using the above analysis of the behaviour of ''su(2} an<^ ''£7(2)'
in a neighbourhood of Sl we get:

(1)

The limit appearing in (1) is known as the contraction procedure. We say that E(2)
is the contraction of SU(2). We refer to [7, 8, 2] where the contraction procedure is
considered (mainly on the level of the Lie algebra).

The idea to use the contraction procedure in the theory of quantum groups goes
back to E. Celeghini et al. In a series of papers [3-5] they applied this procedure
to quantum deformations of simple Lie groups producing new examples of quantum
groups. The paper [6] contains the review of their results.

In all these papers the quantum groups are considered in the purely algebraic
setting of g-deformed universal enveloping algebras.

In our paper we show how the contraction procedure works in the theory of
topological quantum groups. The main aim is to prove the quantum analog of formula
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(1). We consider the simplest case: contraction of 5 17(2) to E (2). The deformation
parameter is kept constant.

In Sect. 1 we recall the description of the quantum SU(2) and E(2) groups given in
[15, 18]. We work with concrete Hubert space representations of the function algebras
ASUW anc* ^E(2γ The Hubert spaces are related by the inclusion HSU(Ί} c HE(τ}.
This corresponds to the use of the same coordinates on SU(2) and E(2) in the classical
case.

The main results of the paper are listed in Sect. 2. They include a number of
formulae relating the multiplications in SμU(2) and E (2). One of them is the
quantum version of (1). The proofs are given in Sect. 3.

Section 4 is devoted to some unexpected features of quantum SU(2) and E(2)
that follow from our results. It turns out that in certain aspects they behave like
locally compact semigroups. For example there exists a proper open subset in SμU(2)
invariant under all right translations.

We shall freely use the concepts related to non-unital C*-algebras such as multi-
pliers, affiliated elements and morphisms (cf. [10, 14, 13, 1, 16]). The computations
presented in this paper heavily depend on the results of [17]. We shall use the topology
of almost uniform convergence on the multiplier algebra.

Let A be a (7* -algebra and (a{) be a sequence of elements of M(A). We recall
that the sequence converges almost uniformly to an element a^ E M(A) if for any

*
/x E A, \\a,x — a^xll —» 0 and \\afx — α* x\\ —> 0. In such a case we write

a.u. lim at = α^.
I—+00

In what follows, lim α, always denotes the norm limit.
/—>oo

Combining the Lebesgue integral theory with the spectral theory of normal
operators we obtain

Proposition 0.1. Let n be a normal operator acting on a Hubert space H and
(fk)k=ι 2 be a sequence of continuous bounded functions on Sp (n) such that

|/fc(λ)| < |λ| and lim /fc(λ) = Xfor all λ E Sp(n). Then for any ψ G H,
k—>oo

(ψ£

Moreover

for any ψ E J^(n).

The sequence fk(ri)ψ\

is norm converging J

nψ — lim fk(n)ψ
k—>oo

1. The Function Algebras ASC/^) and

Let μ E ]0,1[. To introduce the algebra ASU(T), which plays the role of "the
algebra of all continuous functions on S ί7(2)" we shall not follow [15], where

was defined via generators and relations. Instead we consider a Hubert space
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HSUp) equipped with an orthonormal basis (e^)l=0}lj2 .. jez anc^ two operators
α, 7 G B(HSU(2}) such that

aeia = Vl-μ2*^,, (2)

7% = μleij-l, (3)

The operators ce and 7 satisfy the commutation relations

* *
α7 - μ7 α, * , 2 *

^ ^ αα +μ 7 7 =
77 = 7 7 ,

where Isu(2} denotes the identity operator acting on HSU{2) By definition Asu^ is
the smallest norm closed *-subalgebra of B(HSU(Ί)) containing a and 7.

The two methods of introducing Asu^ are obviously equivalent: one can easily
verify that the representation of the commutation relations (4) given by (2) and (3)
weakly contains any other representation.

The group structure on SμU(2) is described by the comultiplication ΦSU(2) ^
Mor(A5[/(2)5 ^su(2) ® ^5t/(2)) ft acts on ̂ e distinguished elements in the following
way:

) = 7 ̂  « + a 0 7 (6)

In the following we shall find a partial isometry implementing ΦSU(2} fcf (35)].
The algebra AE(T> "of all continuous functions on Eμ(2) vanishing at infinity" is

introduced in [16, 18]. We follow the description given in [18]. Let HE<^ be a Hubert
space equipped with an orthonormal basis (e^)^ JGZ and v,n be operators acting on

by

It is understood that the set of all finite linear combinations of vectors e^ ( i , j G Z) is
a core for n. The operator v is unitary, n is normal and the spectrum of n coincides
with the set

Cμ := { λ G C : λ = 0 or |λ| G //} .

Moreover
vnv* = μn. (9)

By definition AE(Ί} is the smallest closed subspace of B(HE(2^) containing all

elements of the form vkf(n\ where k G Z and / G C00(Cμ)(C00(C/") denotes the set
of all continuous functions on C^ vanishing at infinity). Due to (9), AE(2} is closed

under multiplication and hermitian conjugation, so it is a C* -algebra. The operators
v and n are affiliated with AE(T) : v,nηAE(2γ IE(2} will denote the identity .operator
acting on HE(2γ
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The group structure on Eμ(2) is described by the comultiplication ΦE^ ^
2) ? ̂ E(2] ® ^£(2)) This is me only niorphism such that

(11)

The action of ΦE(^ is unitarily implemented. Let V be the unitary operator acting
on HE(2} <g> HE(2} such that V(eτj <g> e f c /) = e^ (8) efc+i+j;/ (i, j, fc, / e Z) and VF be
the unitary operator acting on #E(2) 0 #£(2) defined by

W = Fμ(n~lυ®vn)V,

where Fμ is the continuous function on C investigated in [17] [one can easily verify

that n~lv 0 vn is a normal operator and that Sp(n~~lv ® υri) = Cμ]. Then

*E(2)(α) = w(a ® IE&W* (12)

for any α e ^4^(2). It is sufficient to verify this formula for α = v and α = n. The

case α = f is easy: V(v (g) ^(2))^* = v ®v and v 0 v commutes with n~lv (g) vn.

To prove (12) for α = n one has to verify that V(n (g) ^(2))^* = n 0 υ* and then

use formula (2.1) of [17] (with R and 5 replaced by n 0 f * and υ 0 n respectively).
Identifying the basis vectors of HSU(2} with the corresponding basis vectors

of HEφ we embed Hsu^
 c— > HE^2γ Consequently we have the embedding

B(HSU(Ί)) -̂> B(HE(2^). By definition any element of B(HSU(Ί}) kills the orthogonal
complement of Hsu^2y IH particular ISU(Ί) is tne orthogonal projection onto Hsu^2γ

The main result of this section is contained in the following two relations:

For any λ G C we set

/7(A) = λχ(|λ| < 1),

where χ(true) = 1 and χ(false) = 0. Clearly /α,/7 G C00(Cμ). Taking into account
the definitions of α, 7, v and n one can easily check that

a = υfa(ri), (15)

7 = /7OΌ, (16)

and (13) follows. In particular ISU(2} £ AE(2} and (ISu(2) ^s me

To prove the converse inclusion, one has to show that
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for any k G Z and / G C00(iCμ). To this end it is sufficient to notice that

fWsuw = W)/(7*), W)v* W) = (d ~ μ27*7Γ1/2α)* for k> 0 and
Isu(2)vklsu(2) = (α*(7 - μ27*7)~1/2)~fe for fc < 0. The proof of (14) is complete.

Remark. The use of the same letter "e" to denote the basis vectors in H$U(2) anc^
#E(2) precisely corresponds to the use of the same coordinates on classical SU(Ί)
and E(2), as we did in Sect. 0. The result (14) is however much stronger than could
be obtained in the classical case. For topological reasons there exists no continuous
mapping of SU(2) into E(2) keeping the points of Sl C SU(2) Π E(2) fixed. In the
quantum case this argument does not work: SμU(2) and E (2) exhibit some properties
of a disconnected space.

For any / G Z and α G AE(Ί) we set:

rl(a) = vlav~l.

Clearly τl is an inner automorphism of AE(2}. By virtue of (10), ΦE(2)(rz(α)) =

(τl ® τl)ΦEQ)(β) It means that (τl)lez is a group of automorphism of E (2). Notice
that

r\v) — v, rl(n) — μln.

Therefore the group (τl)lez corresponds to the automorphism group of classical E(2)
considered in Sect. 0.

Let / e Cbounded(Cμ). Then

rlf(n) = f(μln). (17)

If I —> oo, then the function f(μl •) tends almost uniformly to the constant function
with the value /(O). Remembering that nηAE^2) we get

a.u. lim τlf(n) = /(0)/B(2). (18)
/—>00

In particular [cf. (15) and (16)]

a.u. lim τl(j) = 0, (19)
Z—>oo

a.u. lim rl(a) = v. (20)
I—*oo

Let us notice that ISU(2)
 = X(\n\ ^ 1) Therefore, by virtue of (18)

a.u. ^lim^ τl(ISU(2}) = IE(2γ (21)

The same result one obtains using (19), (20) and any of the relations in the
second column of (4). By virtue of (17): τl(ISU(2y) = χ(\n\ ^ μ~l) It

shows that (/7"/(/5t7(2)))/GZ is an increasing sequence of projections. Consequently

is an increasing sequence of norm-closed *-subalgebras of AE(2). Let

(JAASU(2)). (22)
zez
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By virtue of (21), Ac^ is dense in AE(2}. In what follows Ac^ plays a very
important role.

Proposition 1.1. Let (A, ρ) be a measure space, f and g be non-negative ρ-integrable
functions and, for any R > 0, ΛR = {X G A : /(λ) < R and g(X) < R}. Then

0. (23)

Proof. Replacing / and g by max(/, g) we increase (23). Therefore it is sufficient to
consider the case / = g. Assume that (23) does not hold, Then there exist δ > 0 and

a sequence (Rk)k=0 12

 sucn tnat ^k > ̂ ^k-ι anc*

— / /(λ)2 dρ(X) > δ. (24)

Denote the left-hand side of the above inequality by δk. Clearly R k f ( X ) > /(λ)2

for λ G ΛR . Therefore

/(λ)dρ(λ) > -^-(δkRk - δk ,Rk ,) > δk - -δk ΓΊ ^ / u v ' — 7") v K K K—i K—ί/ — K o K—1

Remembering that / G Ll(ρ) we get

oo , 1

Σ (δk- 26k~l ] <0°

fc=l ^

This statement is in clear contradiction with (24) saying that δk > δ for all k. Q.E.D.

We shall use this Proposition in the following context. Let Λ = Cμ x Cμ,
/(λ1? λ2) = |λ j 2, <7(λ1? λ2) = |λ2|

2 and dρ(X) = (fφ\dE(Xl)^>dE(X2)\ψ
is the spectral measure corresponding to the normal operator n and ψ G

Then, for R = μ~21 (I G Z), we have

f(X)g(X)dρ(X) = μ~4Z||(rZ7* 0r/7)^||2

Let us notice that / G Ll(ρ) (g G Ll(ρ) respectively) if and only if ψ G
(ψ G &(IE(2) ® n) respectively). Therefore, using (23) we see that

lim μ-l\\(τl-γ* 0 rZ7)^|| = 0 (25)
/—^ oo

for any ψ G @>(n 0 IE(2}) Π &(IE(Ί} 0 n).
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2. The Main Results

The contraction procedure leads to a number of formulae relating the quantum groups
S U(2) and E (2). In this Section we just list these formulae, the proofs are contained
in Sect. 3. We start with the following formula directly corresponding to (1):

For any α G A%$,

~ka)- (26)

Let us notice that r~k(a) G ASU(T> for sufficiently large fc, so &su(2}(r~ka} *s a

defined element of Asu^ 0 ^st/(2) ^ ^-#(2) 0 ^#(2) For general α G A^) this is
not always the case and the above formula becomes slightly more complicated:

φE(2)(a) = j}^(τk ® rk)ΦSU(2)(ISU(2)(r-kd)ISU(2}). (27)

To justify (27) it is sufficient to notice that it coincides with (26) for a G ACg^ (in

this case Isu(Ί)(r~k(1} = (r~ka^su(2) — r~ka f°r sufficiently large k) and that the
right-hand side of (27) depends continuously on α.

It turns out that the limit (26) may be computed explicitly and we shall obtain a
closed formula relating the comultiplications in SμU(2) and Eμ(2). Let

W7), (28)
k=l

oo

r=0

where

By definition the first term in (29) (corresponding to r = 0) is equal to
Clearly the infinite product (28) is norm-converging and t is a positive element of
ASUQy Since all factors in (28) are invertible (in ASU(2y), so is t. In what follows

we denote by t"1/2 the inverse of t1/2: t~l/2t1/2 = ί1/2^1/2 = ISU(2γ Similarly the
series (29) is norm-converging and X G AE(2} ® AE^2y

Let α G ASU(T>. Computing the right-hand side of (26) we shall obtain

ΦE(2](a) = Z*ΦSU(2}(a)Z, (30)

where

is a partial isometry belonging to AE(2^ 0 AE(2y

(32)
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Multiplying both sides of (30) by Z from the left and Z* from the right we obtain

ΦSU(2}(a) = ZΦE(2}(a}Z* (34)

for any α G ASU(2}. Combining this formula with (12) we get

where Q = ZW is a partial isometry acting on HE(^ 0 ##(2):

QQ* = /5C7(2) 0 J5[/(2), (36)

3. Proofs

The proof of (26) consists in three steps.
At first (Step 1) we have to show that the limit

Φ'(a) = l im(r f c <8> τ f c)Φ5 t / 2(τ- f cα) (38)

exists for any α G AC

E^. If this is the case then Φ' : AC

E^ —* AE(2) 0 AE^ is a

norm-preserving *-algebra homomorphism. It admits the unique continuous extension
(denoted by the same symbol) on AE^.

Next (Step 2) we prove that Φ' G Mor(AE(2), AE(2} 0 AE(2}). To this end it is
sufficient to find a bounded sequence (at) of elements of AE(2) such that

a.u. lirn^ Φ'(a{) = IE(2} 0 IE(2γ (39)

Finally (Step 3) we have to prove that Φ' acts in the correct way on generators υ and
n:

Φ'(v) = v 0 v, (40)

Φ(n) = ^(g)n + n0υ*. (41)

Then Φ' = ΦE(2} and (26) follows.

Step 1. By virtue of (22) it is sufficient to show the existence of the limit (38) for
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We shall use the following formulae:

lim akv~k = tl/2, (42)
/c— >oo

lim ΦSU(2)(ak)(v-k Θ v~k) = (ί1/2 ® t^2)X. (43)

To prove (42) we write akv~k = Y[(vs~lav~s). By virtue of (15) akv~k =
s=l

PJz;s/Q;(n)v s = PJ/α(μsn). One can easily verify that the latter operator kills

all ei3 for i < 0, whereas its action on eiy (i > 0) coincides with that of
k

Π(W) - M2s7*7)1/2 Now using (28) we get (42).
s=\

Remark. Formula (42) means that

lim \\tl/2υk-ak\\ = 0. (44)

The proof of (43) is more complicated. Let us notice that the terms in (5) satisfy
the relation (a 0 α)(7* 07) = μ2(7* 0 7)(α 0 α). Therefore using the binomial
formula we have

k / ; v
/ 1C \

1L ^ •> / i\J \ J ; „ Γ, „

r=o ^ r ^μ

/ A λ
where I I are deformed binomial coefficients:

V r 7

k-r

One can easily check that the binomial coefficients are bounded: There exists a
constant c (independent of k and r) such that

< c. (46)

Moreover

lim (k] = f f_A— (47)
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Multiplying the both sides of (45) by v~k 0 υ~k we get

A

r=o

Due to (46), the norm of the rth term on the right-hand side is smaller than cμr.
Since this estimate does not depend on fc, we can compute the limit for k — > oo term
by term. Taking into account (47) and (42) we see that the rth term converges to
cr(-M7* 0 7)r(ί1/2 0 ί1/2)(v (8) υΓr and [cf. (29)] formula (43) follows.

Now we are ready to compute the limit (38). Let α G ASU(2y Then α =

and

Φ'(a) = lim (v 0 υ)kΦSU(2)(υ-ktl/2t-l/2aΓl/2tl/2υkXv 0 t;Γfc.

Due to (44) we may replace tl/2υk by ak and υ~kt1/2 by (α*)fc:

Φ;(α) = lim (
k-^oo

Using now (43) we obtain

)Z, (48)

where Z is an element of AE(^ 0 ^β(2) defined by (31). In this way the existence of
the limit (38) is proved.

Remark. For any α e ̂ ^ and / G N we have:

Φ'ίr'α) = (rl 0 r^Φ^α). (49)

This formula follows immediately from (38).

Step 2. Inserting in (48) α = t we obtain [cf. (31)]

Let / be a natural number. By virtue of (49),

Φ'(rl(t)) = (rl 0 τl)(X*(t 0 t)X). (50)

We investigate the behavior of the right-hand side when / — » oo. Using (29) and
(19) one can easily show that

a.u. limJίT1 0 rl)X = IE(2} 0 IE(2γ (51)

Indeed (r = 0)-term in (29) is the only one that survives. Due to (18)

a.u. lim rl(tl/2) = IE(2γ (52)
I — >oo
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Inserting these data into (50) we see that the sequence al — τl(t) solves the problem
(39).

Step 3. We already know that Φ' G Mor(AE(2^AE(2) ® ̂ #(2))- By me general theory
[16], Φf may be applied to any element TηAE(2} (η is the affiliation relation). The
result Φ'(T} is affiliated with AE(2) (g) AE(2}.

Inserting α = £1//2α£1//2 in (48) and using (49) we obtain:

- (r (g)

- (τz (g) τ*)(X*(t1/2 (g) t1/2)(α 0 a - μ7* 0 7)(ί1/2

Let Z — > oo. According to (51), (52), (20), and (19), the right-hand side converges
almost uniformly to υ (g) υ. On the other hand a.u. lim rl(tl/2at1/2) = υ and using

I— >oo

almost uniform continuity of morphisms we obtain (40).
The proof of (41) is more complicated. In this case we have to deal with unbounded

elements. We shall need precise information about the rate of convergence in (51).
Rewriting (29) in the form

X = 2 _ . cr(
v ® v) r(~μτT(Ί ) ® rΓ(7))r?

r=0

and using (25) we see that

lim μ~l\\(rl (g) τl)Xψ -^11=0 (53)

for any ψ G ®(n (8) IE(2)) Π .

Inserting α = ί1/27*ί1/2 in (48) and using (49) we obtain:

(g) α* + α (g) 7*)(t1/2 (g) tl/2)X).

μFor any λ G C and Z G N we set

oo

/z(λ) = λ Πd-M 2 Ίλ| 2 ).

Then the sequence of functions (/z) satisfies the assumptions of Proposition 0.1: notice
that /z(λ) = 0 for |λ| > μ~l, so

μ-/ (54)

for all λ G Cμ. Moreover one can easily verify that
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Therefore our formula may be rewritten in the following way

fl(Φ'(n)) = Rl + Sl, (55)

where

RL = (τl ® τl)(X)*(IE(2) <S> τ'(ί1/2α*ί1/2))/z(n ®

) V(ί'/2αί1/2) ® IB

Let t/> e ^(υ ® n + n ® v*) = &(n ® Jβ(2)) ΓΊ ̂ (/E^ ® n) By virtue of (53) and
(54)

lim \\fι(IE(2) ® n)(r' ® τl)Xφ - ft(IE(2) ® n)^|| - 0
/ — > CX3

and (cf. Proposition 0.1)

lim fι(IE2) Θ n)(rz 0 rz)

Remembering that the almost uniform topology is stronger than the strong operator
topology and using (51), (52), and (20) we obtain:

lim Slip = (v ® n)ψ.
I-+00

In the same way we get

lim Rj'φ = (n ® υ*)^.

Using now Proposition 0.1 we see that ψ G §ί(Φf(n)) and Φ^rήψ
It means that Φ'(ri) is an extension of (v ® n + n ® v*). Remembering that normal
operators have no proper normal extensions we get (41).

This completes the proof of our main formula (26). Formula (30) coincides now
with (48). According to (42), lim ak(a*)k = t. Using (43) we have

k—>oo

^ k ( a * ) k ) = ΦSU(2)(t)

and (33) follows. Inserting now a = I$u(2) ^n (^^) we βet (^^) Equation (36) follows
immediately from (33). Equation (37) may be proved by direct computation [cf. (12)]:

Q*Q = W*Z*ZW = W*ΦE(2}(ISU(2}W = ISU(2} 0 IE(2γ
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4. Paradoxes (Semigroup Behaviour)

Let A and B be G* -algebras. By definition (cf. [14, 13]) φ G Mor(A, B) if and only
if φ is a * -algebra homomorphism from A into M(B} such that φ(A)B is dense in
5. In general 0(A) is not contained in B.

Let Φ G Mor(A, A 0 A) be the comultiplication related to a classical (i.e. not
quantum) locally compact, noncompact group G. Then A = G^G), ^4 0 ^4 —
GooίG x G) and Φ(a)(gλ , #2) = α^ g2) for any a £ A; g{,g2 e G. Let us notice that
the function Φ(a) is constant on sets of the form {(gι,g2)

 : 9ι' 92 = const} Since all
these sets are non-compact, Φ(a) does not vanish at infinity (unless a = 0). It means
that

Φ(A)f](A®A) = {0}. (56)

It is not difficult to show that the same relation holds for the Pontryagin duals of
c.q.m.grps and for double groups built over c.q.m.grps (c.q.m.grp stands for compact
quantum matrix group); these groups are described in [12]. One may think that the
property (56) is characteristic for non-compact quantum groups. However it follows
immediately from (27) that

#WAJS<2)) c (AEW ® AE(2)). (57)

Since this result contradicts our intuition, we give an independent purely compu-
tational proof. Let Fμ G G(C ) be the special function considered in [17] and

2π

fk(z) = ̂ f Fμ(eiθz)eikθ dθ (58)

o

be its Fourier transform. It is known (cf. the proof of Proposition 5.2 in [17]) that

fk £ Coo(Cμ) Moreover
fk(eiθz) = e~ikθfk(z) (59)

for any θ G [0,2π] and z G Cμ. According to the formula (3.1) of [17],

*-B(2)V'W - ' XΘ^ " *Λ ̂  ̂

Integrating over θ we get

- Fμ(eίθn 0 v*)Fμ(eίθv 0 n).

k= — oo

By virtue of (59), fk(n®v*) = fk(ri)®vk and f_k(v®ri) = vk®f_k(n). Therefore

+ 00

$W/o(»))= Σ fk(n)vk®vkf_k(n). (60)
k=—oo

Each term on the right-hand side belongs to AE^ (8) AE^2y Remembering that

\Fμ(z)\ = 1 for all z G C^ we get the estimate \fk(z)\ < 1 for all A; G Z and z G Cμ.

It follows easily from the definition of F (•) that the function Fμ(elθz) admits
the holomorphic extension into the strip 0 > lm(θ) > logμ, bounded on each line
Im(0) = const with the bound independent of z. Shifting the integration contour in
(58) down in the complex plane we get the inequality:

\fk(z)\ < Caa
k,

where a G [1, μ~l[ and Ca is a constant independent of k G Z and z G Cμ.
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Due to the above inequalities, the norm of the kth term in (60) is bounded by
Cαα~' f cl; the series (60) is norm-converging and ΦE(2^(fo(n)) £ Ae?(2)® As(2) There-

fore ΦE(2)(rlf0(n)) = (τl®τl)ΦE(2)(f0(n)) G AE(y®AE(2y Let α G AE(2^. By virtue

of (18), lim rl(f0(n))a = a. Therefore ΦE(2}(a) = lim ΦE(2}(rl:(/0(n)))ΦE(2}(a) G
I—>oo I—»oo

AE(2} 0 ^£(2) and (57) follows.

Inserting α — (IE(2} + n*n)-1 G ̂ £;(2) in (27), we obtain

Let x be an element of ^s^/o) ® ^5t/(2) suc^ mat a u nm (τ/ ® τl)χ = C
ί—> oo

assumption is satisfied for x = 7# 0 I$u(2γ ^ su(2) ® 7# an(^ 7# ̂  7#' wnere 7# is

either 7 or 7* [cf. (19)]. Remembering that ΦE(2)((IE(2) + n*n)-1) G ̂ 4^(2) 0 ̂ #(2)
we get

when I —» oo. Comparing the last two relations we see that

and

where αz = Ί*if(μ2lISU(2) + 7*7)~! - ̂ c/(2) - (^c/(2) + μ"2Z7*7)~1-
We know [11] that SμU(2) contains the classical subgroup Sl. Removing this

subgroup we obtain a locally compact (non-compact) quantum space SμU(2) — Sl.

Let B be the corresponding (7* -algebra. By definition B is the closed ideal in ^4s£/(2)

generated by 7 and 7*. One should notice that al G B for all /. According to (3),
ker 7 = ker 7* = {0}. Therefore a = 0 is the only element of ASU(^ such that ab — 0
for all b G B. Remembering that B is an ideal in ASU(2) we see that ASU(Ί) C M(B).
Consequently

ASU(2> C M(B (8) A5£7(2)), (62)

Af (S 0 B) (63)

and so on.
Let Φ = Φsu(2) \B Using the commutation relations (4) one can easily see that

^5t/(2)7 + ^5£/(2)7* ^s dense in B. Inserting x = 7# 0 /5c/(2) and x = 7# 0 7# in

(61) we see that ((Φ(α/))/=1 2 is an approximate unit for B 0 ^5^(2) and B (& B.
Keeping in mind the inclusions (62) and (63) we see that

®ASU(2}), (64)

Φ G Mor(£, B 0 B). (65)
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Relation (64) means that SμU(2) — Sl is invariant under right shifts (so we have an
example of a non-compact homogeneous space for a compact group). A similar result
holds for the Podles sphere SμU(2)/Sl. Removing the classical point (there is only
one) we obtain a non-compact "quantum plane" with a transitive(?) action of SμU(2).

Relation (65) means that SμU(2) - Sl is a subsemigroup of SμU(2).
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