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Abstract. J. Glimm's Stone-Weierstrass theorem states that if A is a C*-algebra,
P(A) is the set of pure states of A, and B is a C*-subalgebra which separates
P(A)v{0}, then B = A. We show that if B is a C*-subalgebra of A and x an element
of A such that any two elements of P(A)KJ {0} which agree on B agree also on x, then
xeB. Similar complements are given to other Stone-Weierstrass theorems. A
theorem of F. Shultz states that if x e A**, the enveloping von Neumann algebra of
A, and if x, x*x, and xx* are uniformly continuous on P(A)u{0}9 then there is an
element of A which agrees with x on P(A). We show that the hypotheses on x*x and
xx* can be dropped.

The Stone-Weierstrass conjecture is that if B is a C*-subalgebra of A and if B
separates P(4)u{0}, then B = A. It was shown essentially by Kaplansky (see p. 16
of [2] for the history of this result) that this is true if A or B is GCR. It was shown by
Sakai [18] that the conjecture is true if B is separable and nuclear. In Theorem 5(a)
below we show that if xeA, if any two elements of P{A)\j{U] which agree on B
agree also on x, and if one of the above extra hypotheses is satisfied, then xeB.
Theorem 5(a) also implies single-element versions of some other Stone-Weierstrass
theorems that have been proved, and possibly others that will be proved.

The factorial Stone-Weierstrass conjecture is that if B is a C*-subalgebra of A
which separates F(A)KJ {0}, where F(A) is the set of factorial states of A, then B=A.
This was proved in the separable case by Longo [14] and Popa [16], independ-
ently. In Theorem 5(b) below we show that if B is separable and if any two elements
of F(A)u{0} which agree on B agree also on x, then xeB. A major part of the
proofs of the factorial conjecture was the solution of the factorial state extension
problem. Theorem 6.1 of [14] states that if B is separable, then any factorial state of
B extends to a factorial state of A. (Theorem 4 of [16] states the same result for A
separable.) This result as well as the factorial Stone-Weierstrass theorem itself is
used in our proof.

Glimm's Stone-Weierstrass theorem appears in [12], and our complement to it,
stated in the abstract, is Theorem 5(c) below.
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Since the author is not an expert, the above should not be considered as
definitive with regard to either the history or current status of the Stone-
Weierstrass problem. Also, it should be emphasized that this paper makes no
contribution to the solution of the Stone-Weierstrass problem. A goal of the paper,
instead, is to make it easier to apply the Stone-Weierstrass theorems proved by
others.

The theorem of Shultz stated in the abstract appears in [19], and we need one
more piece of notation to discuss it. Let z be the maximal atomic projection in A**.
Thus A** = zA**(B(l— z)̂ 4**, z^4** is the direct sum of type I factors, and
(1— z)A** has no type I factor direct summands. Any element of P(A) can be
regarded as a normal state on A**, supported by z, and thus it can also be regarded
as a normal state on zA**. In the actual notation of [19], Shultz's theorem states
that if x e zA** and if x, x*x, and xx* are uniformly continuous on P(A)<u{0}, then
x e zA. Our proof that the hypotheses on x*x and xx* can be dropped is in
Theorem 6 below, which follows from Theorem 5(c).

This entire paper was inspired by [19], although the full extent of Shultz's
influence may be difficult to detect from the present form of the paper. We are also
grateful for helpful comments from R. Archbold.

We are going to prove an abstract lemma which can be used to deduce single-
element Stone-Weierstrass theorems from "ordinary" Stone-Weierstrass
theorems. In the applications of what follows Y will be P(A), F(A), or P(A)nS(A\
where S(A) is the state space of A.

If A is a C*-algebra and Y is a subset of S(A), then Y will be called r-closed if
whenever π is the GNS representation induced from a state in Y and v is a unit
vector in Hπ, then the state (π( )v, v) is in Y We remark that the concept of r-closed
set is just a formalization of ideas which have been known for a long time. Kadison
[13] contains abstract results on r-closed sets, expressed in a different terminology,
and related results on P(A) and F(A).

Lemma 1. Suppose Y is a norm closed subset of S(A) such that whenever feY,aeA,
and f(a*a) = 1, then f(a* -a)eY. Then Y is r-closed.

Proof. Let π: A -+B(H) be the GNS representation induced from an element / of Y.
Let v be a unit vector in H, and let w be a cyclic vector such that / = (π( )w, w). Then
there is a sequence (an), aneA, such that π(an)w-^v. Since ||v|| = 1, /(α*αn)->l, and
there is no loss of generality in assuming f(a*an) = ί, Vn. Then if fn=f(a* αn),
fneY and /n->(π( )v,v) in norm.

Lemma 2. // Y is an r-closed subset of S(A), and if Fγ is the smallest norm closed
face of Q(A), the quasi-state space of A, containing 7u{0}, then Fγ is a split face of

Proof. If p is the smallest projection in A** such that YCpA*p, then
Fγ = {feA*:f^0, | |/ | | ^l,and/6p^*/?}.(See[ll or 17].) Weneedtoshowthat
p is central in A**. Let V be the norm closed linear subspace of A* generated by Y
lϊfeY and a e A, then f(a* a) is a multiple of an element of Y Therefore a*VaCV.
By polarization a*VbcV for all a, b in A. If (e,) is an approximate unit of A, then
ej-tf and fe^f in norm for all / in A*. Thus V is closed under left and right
multiplication by elements of A, and it follows that V=wA* for some central
projection w in A**. It is clear that w=p.
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Lemma 3. Let A be a C*-algebra, B a C*-subalgebra, x an element of A, and Y an
r-closed subset of S(A). If A is the C*-algebra generated by B and x, and if any two
elements of Yu{0} which agree on B agree also on x, then B separates Fγ, where Fγ is
the smallest norm closed face of Q(A) containing 7u{0}.

Proof Let π be the GNS representation induced from an element of Y9 and let M
be an invariant (closed) subspace for n\B. We will show that M is invariant for π.
Choose vectors v0 in M and vί in M1 such that ||t;0|| = HuJI = 2 ~ 1 / 2 . For real 0, let
vθ = v0 + ewvx and let fθ = (π( )vθ, vθ). Then fθ e Y and all fθ's agree on B. Therefore
all fβ's agree on x. Since

fθ(x) = {π(x)v0, v0) + (π(x)ι;l5 vx) + {π(x)vl9 vo)eiθ + (π(x)v0, vγ)e ~iθ,

it is clear that (π(x)vί,vo) = (π(x)vo,vί) = 0. This shows that M reduces π(x). Since
{aeA:M reduces π(α)} is a C*-algebra, M is invariant forπ.

Next we show that π\B is non-degenerate. If not, let M be the degeneracy
subspace for π\B. If v is a unit vector in M and if/=(π( )v, v), then / G Y and f\B=0.
It follows that f(x)=0. Since v is arbitrary, this shows that the compression of π(x)
to M is 0. But M is reducing for π(x) by the previous paragraph. Thus π(x)|M
= π(x)*|M = 0. Since {αG^4:π(α)|M = π(α)*|M = 0} is a C*-algebra, this shows that
π(A)\M = 0, a contradiction.

Now since π{B)\ the commutant, is generated by projections, the first
paragraph shows that π(A)Cπ(B)". Since π\B is non-degenerate, the von Neumann
density theorem implies that π(A) and π(B) generate the same von Neumann
algebra.

Next let πί :A-*B(H^) and π 2 : A-+B(H2) be two GNS representations induced
from elements of Y, and assume that πγ and π 2 are disjoint. We will show that π^B

and π2\B are disjoint. If this is not so, there are non-trivial subrepresentations of
πjjg and π2\B which are equivalent. Since every J5-invariant subspace for πf is also
^-invariant, we may change notation and assume πγ\B is equivalent to π 2 | β . (Note
that a subrepresentation of a cyclic representation is cyclic.) Now there is a unitary
U: H1 -+H2 such that U ~ ίπ2(b)U = π^b) for all b in B. Let v1 be a unit vector in Hu

let v2 = Uvu and let f{ — (π{( )vi9 Vi). Then f1 and f2 are elements of Y which agree on
B. Hence /i(x)=/2(x); or, in other words,

Since v1 is arbitrary, we conclude that πί(x)=U~ίπ2(x)U. Since

{aeA:πί(a)=U~1π2(a)U}

is a C*-algebra, it now follows that π1(a)=U~ίπ2(a)U for all α in i , a
contradiction.

If π is any representation of A, we will say that a quasi-state / is associated with
π if /=tr(π( )T) for some positive operator T on Hπ with tr(T)^l. The set of
quasi-states associated to π is a split face of Q(A) and depends only on the central
support of π in 4**. (In other words we may replace π with a quasi-equivalent
representation.) Let πγ be the direct sum of all the GNS representations induced
from elements of Y. Then Fγ is just the set of quasi-states associated with πγ.

Suppose /i and f2 are elements of Fγ which agree on B. Since every trace class
operator is supported on a separable Hubert space, we can find representations
πl9 π 2,. . . such that each πn is the GNS representation induced from an element of Y
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and both ft and f2 are associated with © J° πn. Then there are subrepresentations n'n
of πn which are mutually disjoint such that φj° πn and ΘJ° π'n have the same central
support. Let π= φfπ^, so that fγ and / 2 are associated with π. By what has been
proved above, π(A) and π(B) generate the same von Neumann algebra. [Since the
π'n\B are mutually disjoint, this von Neumann algebra is just ®?π'n(B)", the ̂ °°
direct sum.] From this and the fact that / i l ^ Λ U we conclude that
/ i = / 2 . QED

Remark. Let w be the central projection in A** constructed in the proof of
Lemma 2. Then the conclusion of the lemma could be restated: wB** = wA**. (The
countability used in the last paragraph of the proof is not really needed. It was used
only to avoid Zorn's lemma.) This way of stating the conclusion would be more
pleasing if we could also assert that w is in β**. When Y—P(A), this is true by
[1,111.2], since we know that B separates P(A)u{0} \_w = z when Y=P(A)]. If
Y=P(A)nS(A) or if B is separable and Y=F(A), this is again true, since we can
invoke the theorems of Glimm or Longo and Popa to conclude that B = A.

Corollary 4. Let A be a C*-algebra, B a C*-subalgebra, and x an element of A. If
any two elements of P(A)u{0} which agree on B agree also on x9 then B separates
P(C)u{0}, where C is the C*-algebra generated by B andx.

Proof Since every pure state of C can be extended to a pure state of A, we may
change notation and assume A = C. Now P(A) is obviously r-closed. Thus the
conclusion follows immediately from Lemma 3.

Remark. For fixed A and B let D be the set of x satisfying the hypothesis of
Corollary 4. Corollary 4 does not imply that D is an algebra, or even that CcD,
since the restriction to C of a pure state need not be pure. Nevertheless, it can be
proved that D is a C*-algebra without introducing any new ideas.

More generally it can be proved that if Y is any r-closed subset of S(A) and if D
is the set of x in A such that any two elements of Yu{0} which agree on B agree
also on x, then D = {x e A: wx e wB**}9 where w is as in Lemma 2. After reading
an earlier version of this paper, Archbold told us of a single-element Stone-
Weierstrass theorem for P(A)nF(A) (in the separable case), and the above
assertion can be used to simplify Archbold's proof. The point is that if Y1 and Y2

are r-closed subsets of S(A) such that FYl = FY2, then a single-element Stone-
Weierstrass theorem for Yί is equivalent to one for Y2. Therefore we sketch the
proof of the assertion about D.

First note that it is obvious that {xeA'.wxewB**} is contained in Z), since
every element of Y is supported by w and any two elements of A* which agree on B
agree also on B**. Thus assume xeD. Let πγ be the representation of A defined in
the proof of Lemma 3. Then it is enough to show πγ(x) e nγ(B)'\ a property which
depends only on the restriction, π', of πγ to C, the C*-algebra generated by B and x.
Now assume, as we may, that A is unital and 1 e B and let Y' = {/|c :feY}. Then
7' is an r-closed subset of S(C). Also, π' is the direct sum of some GNS
representations of C induced by elements of Y'. To see this last fact, note that
although the restriction to C of a GNS representation from Y need not be cyclic, it
is a direct sum of cyclic representations. Because Y is r-closed each of these cyclic
representations comes from an element of Y'. Now the proof of Lemma 3 and the
remark after it (applied to C and Y' instead of A and Y) show that π\B) and π'(C)
generate the same von Neumann algebras (note that this statement depends only
on the quasi-equivalence class of π'). Therefore π'(x) e π'(JB)", as desired.
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Theorem 5. (a) Assume that B is a C*-subalgebra of A,xe A, and any two elements
of P(^4)u{0} which agree on B agree also on x. If A or B is GCR or if B is separable
and nuclear, then xeB. Also, if for every C*-algebra C such that BcCcA,the pair
(B, C) fails to be a counterexample for the Stone-Weierstrass conjecture, then xeB.
(b) Assume that B is a separable C*-subalgebra of A,xe A, and any two elements of
F(A)u{0} which agree on B agree also on x. Then xeB.
(c) Assume that B is a C*-subalgebra of A,xe A, and any two elements of P(A)u {0}
which agree on B agree also on x. Then xeB.

Proof (a) follows immediately from Corollary 4 and the Stone-Weierstrass
theorems of Kaplansky and Sakai quoted above.
(b) Let C be the C*-algebra generated by B and x. Then C is separable and 6.1 of
[14] implies that every factorial state of C extends to a factorial state of A.
Therefore we may change notation and assume A = C. Now the result follows
immediately from Lemma 3 [with Y=F{A)~] and the Stone-Weierstrass theorem
of Longo and Popa.
(c) Let C be as above. Since every element of P{C) extends to an element of P(A),
then every element of P(C) extends to an element of P(A). (The closures are with
respect to the weak* topologies of C* and A*, and the restriction map is
continuous.) Thus again we may change notation and assume A = C.

Let Y= P(A)nS(A). We prove that Y is r-closed by verifying the hypotheses of
Lemma 1. Obviously Y is norm closed. Assume fe Y, as A, and f(a*a) = 1, and
choose £ in P(A) such that f-tf Then f£a*a)->ί. If gl=/ί(fl*α)"1/J(fl* α), then
giEP(A) and g;-•/(#* a). Therefore f(a* a) is in Y and Y is r-closed.

It now follows from Lemma 3 that B separates Fγ, and it is not hard to see that
Fγ contains P(^4)u{0}. The quickest way is to quote Lemma 11 of [19], which
implies that P(A) is a union of weak* closed faces of Q(A) (cf. [5], bottom of
page 136). But it is less technical (and routine for this type of problem) to avoid this
issue by adjoining an identity to A and B. Once we know that B separates
P(A)κj{0}, it follows from Glimm's Stone-Weierstrass theorem that B=A and
hence xeB.

Remark. Lemma 11 of [19] can be generalized (see Theorem 3.8 of [4]). In the
terminology of this paper one has: If Y is r-closed, then the norm closure of Y is a
union of norm closed faces of S(A) and the weak* closure of Y is a union of weak*
closed faces of Q(A).

Theorem6. // A is a C*-algebra, xezA**, and x is uniformly continuous on
P(A)u{0},thenxezA.

Proof. We have noted above that each pure state of A determines a normal state of
zA**. Let X be the set of states of zA** obtained in this way. Then X determines
the order of zA**. Therefore X D P(zA**), where the closure is with respect to the
weak* topology of (zA**)* (cf. [10, Lemma 3.4.1]).

Suppose fγ and f2

 a r e i n -X"u{0} and fγ\zA=f2\ZA> Then there are nets (gf) and
(hj) in P(A)u{0} such that g ^ / i and Λ,—>/2> pointwise on zA**. It follows that
gι — ft,—»0, pointwise on zA. In other words gf — fy-•() in the weak* topology of A*.
Since x is uniformly continuous on P(A)v {0}, this implies gt{x) — hj(x)-*0, which in
turn implies /i(x)—f2(x) — 0. Now the conclusion xezA follows from Theorem 5(c)
with z^4** playing the role of A and zA the role of B.
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Remark. Glimm's Stone-Weierstrass theorem is in some sense the weakest of the
ones discussed here (though it is the only one with no extra hypotheses on A or B).
Therefore it might be thought that by assuming A is GCR (say), we could replace
uniform continuity with continuity. The memoir [3] of Akemann and Shultz
makes it clear that this is wrong. In fact the basic results of [3], including in
particular Proposition 2.16 on p. 28, show that there is a separable GCR algebra A
and an element x of zA** such that every element of C*(x) is continuous on Qat(A)
and xφzA. Here C*(x) is the C*-algebra generated by x and QΛi(A) is the set of
atomic quasi-states of A.

Corollary 7. Let w be the smallest central projection in A** which supports every
element of P(A). If xeA** and x is continuous on P(A), then there is a in A such that
wa = wx.

Proof lΐA is non-unital, then P(A) contains 0; and if A is unital, then 0 is isolated
in P(A)u{0}. Thus the hypothesis implies that x is uniformly continuous on
P(,4)u{0}. By the theorem, there is a in A such that za=zx. Since a and x are both
continuous on P(A), this implies that a and x agree on P(A). Hence a and x agree on
V, the norm closed subspace of A* generated by P{A). Now it follows from
Lemma 2 and its proof that V is wA*. Hence wa = wx.

Remark. It might be interesting to study w if this has not already been done. When
A is NGCR w is the projection tacitly considered by Shultz in the proofs of
Lemma 16 and Theorem 17 of [19].

Corollary 8. If xe zA** and x is uniformly continuous on P(A), then x e zΆ.where A
is the C*-algebra generated by A and the identity of A**.

Proof There is nothing to prove if A is unital. Therefore assume A non-unital. If
(β is a net in P{A) converging to 0, then the hypothesis implies that (/j(x)) is
Cauchy. Thus there is Λ, in C such that (/;(*)) converges to λ for all (/f) as above. The
result now follows from Theorem 6 applied to x—λz.

If / is a (closed, two-sided) ideal of A, then every positive functional on / has a
unique norm-preserving extension to a positive functional on A, and in this way
Q(I) is identified with a (split, not weak* closed in general) face of Q(A). This
identification is homeomorphic on S(I), but not generally on Q(I\ for the two
weak* topologies. A remark at the end of Sect. 1 of [5] suggests the question:
When is the map indicated above uniformly continuous from P(I) to P{A)Ί

Corollary 9. Let I be an ideal of a C*-algebra A and let θ be the natural map from A
to M(/), where M(I) is the multiplier algebra of I.
(a) The following are equivalent:

(i) The natural map from S(I) to S(A) is uniformly continuous.
(ii) The natural map from P(I) to P(A) is uniformly continuous.

(iii) θ(A)d.
(b) The natural map from P(/)u {0} to P(A)v {0} is uniformly continuous if and only
if A = IφIλ, where I1 is the annihilator of I.
(c) (i)—(iii) of (a) are also equivalent to:
(iv) ά\m{A/IQ)IL)^\, and if the dimension is 1, then A/I1 is unital.

Proof (a) (i)=>(ϋ) is obvious.
For (ii)=>(iii) let zI be the maximal atomic projection in /**. Then for a in A the

hypothesis implies that zιa is uniformly continuous on P(I). Then by Corollary 8
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applied to / there is b in /such that zIb = zIa. Then θ(a) — b is an element of M(I)
whose atomic part is 0, and hence θ(a) = b.

For (iii)=>(i) we need only prove that every element of A is uniformly continuous
on S(I). BuUz and θ(a) have the same restriction to S(/), and it is obvious that any
element of / is uniformly continuous on S{I).
(b) A proof similar to the above, using Theorem 6 instead of Corollary 8, shows
that uniform continuity on P(/)u{0} is equivalent to θ(A)Cl. But clearly
θ(A)Dθ(I) = I, and the kernel of θ is I1. Thus the condition is equivalent to
A=I®IL.
(c) (iii)=>(iv). In view of (b) we may assume Θ(A) = /(and / non-unital). Then Iφl1

has codimension one. If θ(e) = 1, then the image of e is an identity for A/11.
(iv)=>(iii) is also easy since (iv) allows us to compute θ explicitly.

Remarks. Corollary 9(b) can be deduced from Shultz [19] instead of from
Theorem 6, but we do not know whether Corollary 9(a) can be deduced from [19].

We now consider a hereditary C*-subalgebra, B, oϊA instead of an ideal. Most
of the remarks made before Corollary 9 still apply to the relationship of Q(B) and
Q(A). The only exception is that Q(B) is no longer a split face of Q(A). It is only a
norm closed face.

Corollary 9'. Let Bbea hereditary C*-subalgebra of A and let θ be the natural map
from A to QM(B), where QM(B) is the space of quasi-multipliers of B.
(a) The following are equivalent:

(i) The natural map from S(B) to S(A) is uniformly continuous.
(ii) The natural map from P(B) to P(A) is uniformly continuous.

(iii) Θ(A)CB.
(b) The following are equivalent:

(ϊ) The natural map from Q(B) to Q(A) is continuous.
(ii') The natural map from P(B)KJ{0} to P(^4)u{0} is uniformly continuous.

(iii') Θ(A)CB.
(iv') B is a corner of A.
(c) (i)—(ϋi) imply that B is a corner of an ideal of A.

Proof. The proof of (a) is the same as for Corollary 9(a). One minor change is that
the symbol "zjα" has to be replaced by "zBθ(a)" or "zBqaq" where q is the open
projection corresponding to B. (Thus q is the identity of B**.)
(b) (ϊ)o(iϊ)o(iiϊ). A proof similar to the above shows that (ii') and (iii') are
equivalent to uniform continuity on Q(B). But since Q(B) is compact, this is
equivalent to (i').
(ϋi')o(iv'). Since B is a corner if and only if q e M(A), θ(a) = qaq, and (qAq)nA = B,
this is equivalent to: qAq C Aoq e M(A). Perhaps the least technical way to see this
is to quote [7], 2.23 (ii), p. 880.
(c) This follows from [7], 2.23 (i).

Remark. It would be desirable to have a structural criterion for the conditions in
9'(a), analogous to condition (iv) in Corollary 9. A reasonably satisfactory analysis
can be carried out, but it does not produce a simply stated conclusion. In the case
where A is unital the following is a simply stated sufficient condition for 9'(a), but it
is far from necessary, as the analysis sketched below shows: B is a corner of an ideal
of A and the hereditary C*-subalgebra generated by B and B1 is a maximal
hereditary C*-subalgebra of A. (The two parts of this condition are independent.)
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Let / be the ideal generated by B, Aγ =A/I9 B
1 the two-sided annihilator of B,

which is again a hereditary C*-subalgebra, and B' the hereditary C*-subalgebra
generated by B and Bx. B' can also be described as the largest hereditary
C*-subalgebra such that B is a corner of it. Since 9'(c) implies that B is a corner of/,
/ C B'. Also, B' and JB1 have the same image in Av We regard / as an algebra of 2 x 2
matrices whose upper left corner is in B, lower right corner is in BLnI, and upper
right corner is in (BAB1)'. According to Busby [9], the rest of the structure of A is
determined by a *-homomorphism τ: Ax -*M(I)/L If M(I)/I is also regarded as an
algebra of 2 x 2 matrices, then (iii) is equivalent to the statement that the upper left
corner of τ{x) is a scalar, Vx e Av Denote this scalar by /(x). [Equivalently, f(x) is
the scalar component of θ(a) for a in the pre-image of x.] Then feQ{A^)9 / + 0
unless the conditions of 9'(b) are satisfied (an uninteresting case), and | |/ | | can be
less than 1 if A is non-unital. The image of B1 in Ax is {x e A1: /(x*x)=/(xx*) = 0}.
Thus B' is maximal if and only if / is a multiple of a pure state. (The justification of
the sufficient condition of the first paragraph of this remark uses 3.13.6 of [15] to
prove that θ(ά) is in B whenever a + I is in the kernel of / In this context we are
given the relationship between the image of B1 and / stated above, but we are not
given that θ{a)-f{a + I) is in B.)

If we are given B (non-unital), Al9 and /, it is easy to construct an example for
this data. Let π:A1^B(H) be the GNS representation constructed from / (if
11/11 < 1 we add a degeneracy subspace to H), and let v be a unit vector in H such
that /=(π( )v, v). Let I = B®JίT(H) and identify B with B®p, where Jf(H) is the
algebra of compact operators on H and p is the rank one projection on <£v. Let τ(x)
be the image in M(I)/I of l®π(x). (We note in passing that / must be strongly
Morita equivalent to B [8], and in the separable case / is stably isomorphic to
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