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Abstract. We define and study a wide class of associative algebras in which the
Poincare-Birkhoff-Witt theorem is valid. This class includes numerous quantum
algebras which recently appeared.
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1. Introduction

According to DrinfeΓd [6] a quantized enveloping algebra is a Hopf algebra over
<C[[ft]] which is a deformation of a usual enveloping algebra < (̂g), with the Planck
constant λ a s a deformation parameter. For each simple Lie algebra g, Drinfeld
and Jimbo have given a non-trivial deformation ^/,(g) of < (̂g), defined by
generators and relations. A basic property of the usual enveloping algebras is the
Poincarέ-Birkhoff-Witt theorem (briefly CPBW theorem, C for classical). This
theorem asserts that the ordered monomials in the generators of g form a basis
of < (̂g). A natural expectation is that this theorem has an equivalent (called QPBW
theorem, Q for quantum) after quantization. A QPBW theorem was stated by
Jimbo [11] for %(sί(2))9 by Rosso [22] for %(sf(n)) and by Lusztig [15] for the
general Drinfeld-Jimbo algebra ^Λ(g).

In this paper, we put the question of the PBW basis inside the general class
of the associative algebras over C[[/i]] defined by inhomogeneous quadratic
relations. This class does not contain the algebras ^Λ(g), but some subalgebras as
the + part of the triangular decomposition of %h(sί(n)) belong to it. On the other
hand, quadratic relations arise when one quantizes the algebra of the functions
on the Lie group rather than the enveloping algebra (Manin [18]) and the existence
of PBW basis also comes up in this case. Moreover, Priddy had already showed
the interest of quadratic algebras with PBW basis for the construction of
generalized Koszul resolutions [21].

A condition on the relations has to be required in order that the ordered
monomials form a basis, even if the classical limit (obtained for h -> 0) has the
same property. For example, consider the associative algebra U generated by
eue2,e3 with the following relations:

e2e1=eίe2, (1.1)

e1e3 + h, (1.2)

= {l+h)e2e3 (1.3)

The classical limit \J/h U is the polynomial algebra in eί9e2,e3. But it is easy to
see that h divides zero in U (see Sect. 3.2) which makes the QPBW theorem
impossible in this case.

The essential ingredient in the CPBW theorem is the Jacobi identity. In order
to have a QPBW theorem, we propose a certain "Jacobi condition," satisfied by
a lot of known examples, and which is a quantization of the Jacobi identity.
Evidently, this condition avoids the pathology of the above example.

As a matter of fact, we begin to express our Jacobi condition in the context
of the ^-quantization (the ^-analogues) initiated by Jimbo [11] and fully used since
in relation with the so-called g-calculus [19]. For us, the ^-quantization just consists
in forgetting the parameter h. For example, if q = 1 + h, the above relation (1.3)
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becomes the ^-commutation relation e2)e2 = qe2e3. So, we work first with algebras
on any commutative ring K. If we want to recover the /z-quantization, we take

Roughly speaking, our ^-analogues of the enveloping algebras are defined as
follows. Firstly, ^-commutators eiei — q^e^j play the role of the classical com-
mutators βjβi — e^j. Secondly, the ^-commutators are (inhomogeneous) quadratic
in the generators with a symmetry hypothesis on the quadratic part. For these
g-algebras (see Sect. 2.1), we introduce the g-Jacobi sums J(efc, ej9 et) which live in
the tensor algebra. The Jacobi condition is fulfilled if each 3{ek,e^e^ belongs to
an explicit submodule S of the tensor algebra. A g-algebra with satisfies the Jacobi
condition is called a q-enveloping algebra. We prove in Sect. 2.8 the PBW theorem
for the ^-enveloping algebras.

As in the classical case, the verification of the Jacobi condition is automatic. The
following known algebras are g-enveloping algebras: the additive (multiplicative)
^-analogue of the Weyl algebra due to Kuryshkin [14] (Jategaonkar [10]); the
algebra of the infinitesimal shifts of the Woronowicz pseudo-group S\Jq(2) [25];
the Manin algebra Mq(2) of the 2 x 2 quantum matrices [17, 18]. To this list, we
add a (probably unknown) g-Heisenberg algebra which we represent by three
fundamental operators of the g-calculus. Other quantum algebras are deduced
from g-enveloping algebras by reduction modulo an ideal or by localization. For
example: The Manin algebras GL^(2) and SL^(2); the Podles quantum 2-sphere
[20, 19]; the Hayashi ^-analogue of Weyl algebra [7].

In Part 3, we return to the /z-quantization and we prove the expected QPBW
theorem for the /z-adic completion of any g-enveloping algebra. In Part 4, we apply
this result to %{sί{2)).

A consequence of the CPBW theorem is that a finitely generated enveloping
algebra on a field has no zero divisor / 0 and is Noetherian. We extend these
two properties to the g-enveloping algebras and their completion. The extension
is obtained by considering the ^-enveloping algebras as iterated skew polynomial
algebras and using well-known results of Non-Commutative Algebra [16].

The usual enveloping algebras are almost commutative for the natural filtration
(i.e. the associated graded algebra is commutative). Unfortunately, this result does
not hold after the ^-quantization. However, at the /z-level, we can restore the almost
commutativity thanks to the following hypothesis: h has degree —1 (Sect. 5.1).
Roughly speaking, the quantum world appears as the negative part of a Z-filtration.
For the quantum Hopf algebras, the coproduct is generally filtered for the new
filtration. Then, we can associate to the quantum algebra a classical object which
is a graded Hopf-Poίsson algebra (in the Drinfeld sense).

2. The 0-PBW Theorem

2.1. The q-Algebras. In this paper, K is a commutative ring and V is a K-module
with a basis (eί9...,ep). The indexing set I = {1,...,p} is endowed with its natural
total ordering. For each pair (ij) of indices such that 1 ̂  i <j ^ p, we choose qβ

in K and <^ , ^ > in K φ V 0 V ® 2 . Then, we consider the associative K-algebra
U = UX(V)/R, where ΎK(V) is the tensor algebra of V and R is the two-sided ideal
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of Ύκ(\) generated by the following elements:

R i = βj® et - q^i® βj - (ej9 et\ i <j. (2.1)

2.1.1. Definition. With the above notations, U is called a q-algebra if the following
ordered quadratic symmetry holds:
(S) //, in the quadratic part Σtfίek®et °f (βpei)> the coefficient cήf does not

vanish, then i<k^έ <j and k — i=j — (.

The ^-algebra U is called scalar (linear, affine, quadratic) if each <£/,£;> belongs
to K(V,K0V,V®2). Obviously, in the affine case, the hypothesis (S) becomes
superfluous. The ^-algebra U is called classical if qβ = 1 for all i <j. In this case,
if <,> is extended into an alternate bilinear application on V®2, the two-sided
ideal R is generated by the elements Ruv = u® v — v® u — <w, v}9 ueV, veY. But,
apart from this particular case and the case studied in Sect. 2.2, <w, ι?> makes sense
only if u = ep v = ei9 i <j.

2.2. The Invertible q-Algebras. The g-algebra U is called invertible if each qn is
invertible in K. In this case, R can be generated by elements Rtj = et ® e j — q^βj ® e{ —
(e^ej}, i < ; , where qij = q]i

ί and the quadratic part of <£*,£/> has the property
(S) for the inverse ordering (if U is affine, we have <βt ,e ; > = —qij^e^ei}). So, U
is also a ^-algebra when I is endowed with the inverse total ordering. In general,
U is not a ^-algebra for any total ordering (because of (S)). Nevertheless, if U is
affine and if I is endowed with another total ordering ^ ' , U is also a g-algebra
for g ' .

2.2.1. Example. Assume qji = (ej9eiy = 0 for all i<j. The g-algebra U is not
invertible. Moreover, for any other total ordering, U is not SL ^-algebra.

2.3. The Ordered Monomials of a q-Algebra. The following result is the first step
towards the g-PBW theorem. We denote by a the class in U of any element a of

2.3.1. Theorem. Let U be a q-algebra. The unit 1 and the ordered monomials eiχ eln,
h = '" = h> n — h generate the K-module U.

In his proof of the CPBW theorem, Jacobson uses an index which measures
the disorder of a non-commutative monomial eh ® ® ein [8]. Unfortunately, the
presence of quadratic terms in <£,,£,> prevents this index playing its role. We start
to introduce an alternative index.

The index Ind (x) of a sequence x = (i1,...,in) of elements of I is defined by the
relations:

Ind(x) = £ ηjki (2.2)

ηjk = 0, if ij£ik9 (2.3)

ηJk = iJ-ik, if ij>ik. (2.4)

(In the Jacobson index, 1 takes place of ij — ik in (2.4)). It is clear that Ind (x) = 0
if and only if ix ^ •• ̂  in. Once the following technical lemma is proved, we shall
be able to fully use the ordered quadratic symmetry (S).
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2.3.2. Lemma. Let x = (iί9..., in) be such that i{ >i^+1 for a precise / (1 ^ / ^ « — 1).
Let r, s be two integers such that i^+1 ^ r ̂  s ̂  î  and r — ί^+ι = i{ — s. Then, for
the sequence y = (z l 9...,*>_!,r,s,ίV+ 2> >U> t n e inequality holds:

Ind()0<Ind(x). (2.5)

Proof. We have to compare the ηjk of x and the η'jk of y. We distinguish four cases.
First Case. ηjk = η'jk if j and k are different from £ and ί + 1.
Second Case. η^+1 = i, — i^+ί>0 a n d ̂ + 1 = 0.
Third Case. If 1 %j ^ / — 1, we prove the inequality:

Ίjί + rijί+i^η'js + Ί'jS+i ( 2 6 )

For doing that, examine each of the following cases:

A. ij^if+u B. iV+i<0 = r» C. r<ij^s, D. s<i^i^ E. i^<ij.

In A, η^+ι=η^ = 0.
In B, yyjV+1 = i, - i , + x and ^ = 0.

dIn D, //jr = 0 and η'jί+ x = /,- - 5.
In E, ηu = ij - i, and η'.,+ ι = i} - s.
InA,BorC,^ = ^ + 1 = 0 .
In C, D or E, η.,+ χ = i} - i,+ x and η'., = ij - r.
Then, it is clear that (2.6) holds in A, B, C.
In D,

= 2ij — if — Ϊ/+ i by hypothesis.

Hence, (2.6) holds in D.

In E, r\je +

Hence, (2.6) holds in E.

Fourth Case. If ί + 2 ̂  j ^ n, by examination of the same cases A to E, we obtain
the inequality:

a tΓ (2.7)

We leave the verification to the reader.
Putting together the four cases, we deduce (2.5). •

2.2.3. Remark. The condition r — i^+ί = i^ — s is essential. For example, the
sequences (4,4,4,4,1) and (4,4,4,2,2) have the same index.

Proof of Theorem 2.3.1. We have to show that any (non-ordered) monomial
eit ® - ® ein in ΎK(Y) is congruent modulo R to an ordered monomial. Reasoning
by induction, we assume the assertion for monomials of lower degree than n and
for those of degree n which are of lower index than the index of (il9...,ίn). Let
α ^ 1 be the index of (iί9...Jn) and let ί be such that i^>i^+ι. The monomial
eiι ® •" ® ein is congruent modR to the following expression:

(2.8)
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By the lemma, the first term has an index < α. By the lemma and the hypothesis
(S), the homogeneous part of degree n of the second term has also an index < α. •

2.4. The q-Jacobi Sums. Let U be a ^-algebra. For p ̂  k>j> i' ^ 1, the q-Jacobi
sum J(ek9epei) is the following element of V0V® 2 0V® 3 :

J(ek9 ej9 et) = (ek9 e, > ® et - q^q^ ® <efc, e, >

- 4ji < ek,et > ® ej + qkjej ® <efc, ef >

*;> et }®ek-ek® (ep e{ >. (2.9)

2.4.1. Proposition. The q-Jacobi sums J(ek9 ej9 et) belong to the ideal R. In particular,
the following relations hold in U:

J(ek,epei) = 0, k>j>ί. (2.10)

(Recall that a denotes the class in U ofaeΎκ(\)).

Proof. Using the expression (2.1) of R^ , we have:

J ( e k , ^ ) = J' + J", (2.11)

where J'(J") is the expression obtained from the second member of (2.9) by replacing
(em, e,> by - Rm/ (respectively by em ® e£ - qmtee ® em) for (m, /) = (k9j)9 (k9 i) and
(7,0- The reader will check by an easy computation the surprising fact that
J" = 0. •

It is interesting to notice that the hypothesis (S) does not occur in this proof.
Moreover, in the classical case qn = 1, the relation (2.10) is exactly the usual Jacobi
identity in U endowed with the commutator ab — ba.

2.5. The q-Enυeloping Algebras. The statement of the Jacobi condition requires
the introduction of two submodules of ΎK(V). The submodule S'ί is generated by
the elements Rjh i < j , and the submodule S2 ^s generated by the elements et ® Rjh

Rβ®eh ej®Rji9 R^®e p i < j . It is easy to prove the following lemma (using (S)
for (ii)).

2.5.1. Lemma.
(i) ί
(ii) <f
(iii)

2*5.2. Definition. A q-algebra U is called enveloping if U satisfies the following
Jacobi condition: for all integers i, y, k with 1 ̂ ί< j <k^p9 the q-Jacobi sum
J(ek9 ep βi) belongs toδ = δ1φδ2.

So, the Jacobi condition strengthens the belonging to the ideal R expressed by
Proposition 2.4.1.

Suppose that the g-algebra U is invertible. According to Sect. 2.2, J(ek9epei)
makes sense for any distinct integers i, j , k in I. Moreover, some relations hold
between these q-Jacobi sums if the indices are permuted. For example, if U is
qffϊne, we have:

J(ep ek9 βi) = - qjkJ(ek9 ep et). (2.12)
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These relations show that if U is affine and is enveloping for the natural ordering
of I, U is enveloping for any total ordering.

2.6. Classical Examples. At this stage, it is necessary to prove that the g-enveloping
algebras contain the usual enveloping algebras. In fact, we prove a little more.

Let U be a g-algebra which is classical and affine. In this case (see Sect. 2.1),
the ideal R and the module δγ are generated by the elements Ruv = u®v-v®u-
(u,v},ue\,ve\. Write the decomposition of (u,v} in V©K by:

(u,vy = [u,v] + φ(u,v). (2.13)

Then, for u = ek, v = ej9 w = ehk> j> i, we can decompose J(u, v, w) in the following
manner:

J(u, v, w) = Σ R[UtV]w + Σ'ίlu, » > ] + Σ>([u, ύ]w)9 (2.14)

where £ ' denotes the sum on the cyclic permutations. The second £ ' (the third
Σ') belongs to V(K), while the first ]Γ' belongs to S'1. Hence, according to Lemma
2.5.1, J(w,ι?,w) belongs to S if and only if the second and the third £ ' vanish.
We have obtained:

2.6.1. Theorem. Let U be a classical, affine q-algebra. Let [,] (respectively φ) be
the alternate K-bilίnear application from V®2 to V (respectively K) defined by (2.13).
Then, U is enveloping if and only */[,] makes V into a Lie algebra g and φ is a
2-cocyclefor the cohomology o/g. In this case, U is the Sridharan enveloping algebra
[23] of the pair (Q,φ).

I am endebted to R. Ouzilou to have pointed out to me Sridharan's work. The
two extreme cases of the Sridharan algebras correspond to:
(1) the pairs (g,0) which give the usual enveloping algebras,
(2) the pairs (g, φ), g abelian and φ alternate.
This latter case contains the Weyl algebras.

2.7. Non-Classical Examples. The verifications of the Jacobi condition will be left
to the reader. We start by some scalar examples. Let U be a scalar ^-algebra.
Lemma 2.5.1 shows that U is enveloping if and only if each i(ek,e^,e^ vanishes,
i.e. if we have the relations:

2.7.1. Example. A g-algebra such that each ie^e^) vanishes is called pure. Any
pure q-algebra is enveloping. It is the case of the Jategaonkar multiplicative analogue
of the Weyl algebra [10], generated by e1,...,en, e*,...,e*, with the relations:

e^j - ejei = efef - efef = etf - e*et = 0, i Φj, (2.15)

eie* = qie*ei, (2.16)

where q1,...,qnare given in K. The case n = 1 is called a quantum plane by Manin
[17, 18].

2.7.2 Example. With the same notations, the additive analogue of the Weyl algebra,
defined by the relations (2.15) and the following:

etf-qtfe^l, (2.17)
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is also a g-enveloping algebra. This algebra was introduced in Quantum Physics
by Kuryshkin [14] and studied by Jannussis-Brodimas-Sourlas [9].

The next linear examples is new in our opinion.

2.7.3. Example. Let q be a real >0, q φ 1. We denote by / a function of a real
variable x. The functional space which contains / is not specified. We consider
the operators δq, τq, x acting on / by the formulas:

(2.19)

(2.20)

In g-calculus, δq is the q-derivation and τq is the q-shift (see e.g. Wallisser [24]). It
is straightforward to verify the following q-analogues of the Heisenberg commutation
relations:

δqx-xδq = τq, (2.21)

δqτq = qτqδq, (2.22)

τqx = qxτq. (2.23)

The relations (2.21)-(2.23) define a g-enveloping algebra. We call it the q-Heisenberg
algebra.

2.7.4. Example. The algebra generated by eue2,e3 with the relations

e2e1 = qexe2, (2.24)

^ - 4^2. = Mi, i = U 2, (2.25)

is a g-enveloping algebra. Actually, we have:

J(e3>
e2>ei) = Φ + «')(«2 ® ei ~ <lei ® ei\

2.7.5. Example. The algebra generated by eί9e2,e3 with the relations

e2e1-qe1e2 = cceu (2.26)

e3e2 - qe2e3 = ote3, (2.27)

^ 4 (2 2 8)
is a ^-enveloping algebra for the ordering eί <e2 <e3. An example of such an
algebra for α" = 0 is provided by the infinitesimal shifts of Woronowicz ([25],
Table 7). An example for α" Φ 0 is provided by three of the four relations defining
the quantum sphere 5^ of Podles [20,19].

2.7.6. Example. The Manin algebra M^(2, K) of the 2 x 2 quantum matrices [17,18]
is generated by a, ft, c, d with the relations:

ba = qab, ca = qac, dc = qcd, db = qbd, cb — be, da — ad = (q — q~ ι)bc.

(2.29)
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It is a g-algebra for the ordering a<b <c<d. We find:

J(d9 b,a) = ( l - q 2 ) b <g> (c <g> b - b ® c ) , (2.30)

J(d,c,a) = (q2 -\)(c®b-b®c)®c. (2.31)

Hence, this ^-algebra is enveloping. A consequence of our g-PBW theorem
(Sect. 2.8) is that the monomials aibickdί realize a basis of M^(2,K).

2.7.7. Example. Hayashi has introduced a more sophisticated version of the g-Weyl
algebra than the above one (Example 2.7.2). His purpose is to get bosonic
representations for the types An and Cn of the Drinfeld-Jimbo quantum algebras
[7]. Let U be the algebra generated by ωί9...,ωn, φί9..., φn9 φ*,..., φ*9 with the
relations:

ΦjΦt ~ ΦiΦj = Φj Φΐ ~ ΦΐΦJ = ω/t), - ωfi)j = 0, i <j, (2.32)

ωjΦi ~ q~δijΦiC0j = φfωt - q-δiJωtφ* = 0, (2.33)

Ψ*Φi = ΨιΨ*, iΦh (2.34)

ΦΐΦi-q2φiφ*=-q2ωl (2.35)

For the ordering ψ1 < < φn < ω x < < ωn < \jj\ < < ψ*9 U is a (j-enveloping
algebra. To recover the Hayashi algebra s/~9 take K = C and consider the
multiplicative monoid S generated by ωί9...,ωn. We shall see in Sect. 2.9 that any
element of S is not a zero divisor. In addition, the relations (2.33) are pure. Hence,
S is a regular Ore set and the localization S " 1 ! ! of U at S exists (see [4] or [16]
for the quotient rings S - 1 A with denominators in S). Then $t~ is S'1!] modulo
the ideal generated by φiφf — q2φfφi — ω.~2, i = 1,..., n.

2.8. The 4-PBW Theorem

2.8.1. Theorem. Let U be a q-envelopίng algebra. The unit 1 and the ordered
monomials β^ ^ , iί ^ ••• ^ ίn9 n ̂  19 form a basis of the K-module U.

As in Jacobson's proof of the CPBW theorem [8], it suffices to prove the
existence of a certain map σ from non-commutative polynomials to commutative
polynomials.

2.8.2. Lemma. There is a K-linear map a from ΎK(V) to Sκ(\) (the symmetric algebra
of\) such that:

(i) σ ( l ) = l ,
(ϋ) Φii® ®ein) = eh- >ein ifiί^-..^in9

(iii) if ik >ik + ι in the sequence (iί9..., Q9 we have:

ein). (2.36)

If we suppose this lemma, σ goes through the quotient and defines a K-linear
map σ:U-^Sκ(V). Moreover, σ sends the family of the ordered monomials of U
into the free family of the commutative monomials of Sκ(\). Hence, the source
family is free, which is Theorem 2.8.1, taking Theorem 2.3.1 into account. Notice
that σ " 1 is a standard quantization correspondence in our sense [2]. But here, the
enveloping algebra U is a lot more general.
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Proof of Lemma 2.8.2. Let T"(V) (Tn(V)), neN, be the submodules defining the
natural grading (filtration) of TK(V). For αeN, Tn(V)α denotes the submodule of
T"(V) generated by the monomials of index ^ α (see Sect. 2.3 for the index). Suppose
that σ is defined on Tπ_ X(V) with (i)-(iii). We define σ on TW(V)O by (ii). Now, suppose
that σ is defined on T/l_1(V)®Tπ(V)α_1.with (i)-(iii), and choose eh®-~®ein

with index α ^ 1. There is an integer k such that ik >ik+i. We define σ(eiχ ® ® ein)
by (2.36). This makes sense since Lemma 2.3.2 and the symmetry (S) assure that
the n-degree monomials on the right-hand side of (2.36) have an index < α. Now,
we have to verify that our definition does not depend on the choice of (ik, ik+ί) such
that ik >ik+ί. Let (ίΛ i^+ί) be another pair such that it > i^+ x. As in Jacobson, we
distinguish the two cases: I. / > k + 1, and II. / = k + 1.

The Case I is easy (it does not involve the Jacobi condition) and is discussed as
in J a c o b s o n . I n the c a s e II, set u = eik, v = e i k + 1 = ei/9 w = e^+ί9 quv = qikik+, a n d s o
on. The induction hypothesis allows to transform the right-hand side of (2.36)
into:

, w> ) + σ( <M, t;> ® w •)• (2.37)

In a similar fashion, if we start from qΌWσ(~ u®w®v~-) + σ( ~u®(v9wy~-\ we
obtain:

(2.38)

The difference between (2.37) and (2.38) is written σ(X), where X is expressed by
means of a q- Jacobi sum:

X = eiί®'"®eik+1®3(u,v,w)®eik+3®'"®ein. (2.39)

As the q-algebra U is enveloping, we have J(M, V, W) = JI(M, V, W) + J2(w, v9 w), where
Ji(u9v9w)e&i9 i = 1,2. We write X = X1 + X2, where Xf is obtained by replacing J
by Jf in (2.39).

For convenience, for αeT(V), we set

The element Xx is a linear combination of the /(R7i), each of them belonging to
Tn_x(V). The induction works out and provides σ(/(Rif)) = 0, hence σ(XJ = 0.

To prove σ(X2) = 0 is more delicate. We decompose 3-degree homogeneous
part of J2(w, v, w) in the following sum:

ΣcrSter®es®et9 crst*0. (2.40)

By construction, f{er® es® et) has an index <α. On the other hand, by definition
of ^2^2(u^v^w) equals to the following sum:

Σ ίdjuRji ® ei + dijiei ® Rβ + djtjRji ® ej + djjtβj® R^]. (2.41)

It suffices to prove the assertion:

// drst φ0, then f(er®es® et) has an index <α. (2.42)
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Indeed, the induction would work out:

σ(f(Rrs®etorer®Rst)) = 0, hence σ(X2) = 0.

Proof of (2.42). Fix i <j such that j — i has the highest value in the sum (2.41). By
comparison between (2.40) and (2.41), we obtain:

Σ trst er®es®et = S,, + S;, + S J + S'", (2.43)
rst

sβ = djuej ® ei ® ei + (diβ ~ 4jidjii)ei ® ej ® ei ~ QjAji^i ® *» ® ej>

Sjt = Σ SJT + S'rv ( s u m o v e r '* </> OV) * (U)).

As S'" is deduced from the quadratic parts of the <,>, we find in it either monomials
ek®et®em with distincts kj,m, or monomials ek®ek®em, em®ek®ek with
\k — m\<j — i (because of (S)). Hence, the monomials of Sβ are linearly independent
from all the monomials of S^ + S^ + S'". If djU Φ 0, then cjU = djU and f(ej ® et ® et)
has an index <α by construction. Now, if din Φ 0 and dtji φ q_ytdiih then
ciβ = diβ — Q.βdjih a n d f(ei ® ej ® ei) has an index < α. On the other hand, if d y i ^ 0
and dij^qjidjn, then djUφ0 and /(e,-®^-®^) has an index <α. Lemma 2.3.2
shows that f(ei®ej®ei) has also an index <α. We identically proceed for dj{j

and djβ. Then, we have to repeat the same argument for a lower value oϊj — i.
Finally, for the lowest value; — i = 1, the argument is clear because S'" = 0 in this
case. •

2.8.3. Remark. The difficulty of the previous proof comes from the quadratic terms
of (ep βi}. If U is affine, the proof essentially becomes the Jacobson one (his index
suffices) and it works out again in the infinite-dimensional case.

An immediate consequence of Theorem 2.8.1 is that the canonical mapping
K-* U is ίnjective. From now on, we identify et to its class ~ev

2.9. The Natural Filtration. Let U be a g-enveloping algebra. We denote by Q(eβ e()
the quadratic part of <^,^>. The algebra Q(U) = TX(V)/R',R' ideal generated by
the elements ej®ei — qjiei®ej — Q(ej,ei\ i<j, is called the quadratic algebra
associated with U. It is easy to see that Q(U) is also a q-enveloping algebra. If U
is a Sridharan algebra (Sect. 2.6), Q(U) is the symmetric algebra SX(V). In the
general case, Q(U) plays the role of Sκ(\). To see this, we introduce the natural
filtration of\J.

For meN,U m is the submodule of U generated by the products of k elements
in V, k ̂  m. Then, U is a K-algebra filtered by the Um. Denote by gr(\J) its associated
graded algebra. The grading of gr(U) is formed by the grm(\J) = U 7 U m ~ \ meN,
and V = grι(U) generates the algebra gr(\J). The g-PBW theorem easily implies
the following lemma:

2.9.1. Lemma. // x is the product of gr(\J), the elements 1 and eh x ••• x ein,

i\ ύ "' ^ in>
 n = 1> realize a basis of the K-module gr(\J).

With the notations of Sect. 2.1, the defining relations of Q(U) are:

βfii = qjieiej + Σ αjf eke^ i <j. (2.44)
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Now, in U 2 / U \ we have:

x e3 + £ α*f efc x e,. i <;. (2.45)

Hence, the canonical mapV-»0r(U) extends to a unique algebra morphism
φ:Q(\J)^gr(\J). But the image by φ of the PBW basis of Q(U) is the basis of
Lemma 2.9.1. So, we obtain the following generalization of a classical result [4].

2.9.2. Theorem. Let U be a q-enveloping algebra. The algebra morphism φ:
Q(U) ->#r(U) extending the identity o/V is an isomorphism.

Suppose Q(U) commutative. The equality (2.44) and the g-PBW theorem imply
that qβ = 1 and oήf = 0, i <j. We can claim:

2.9.3. Corollary. Let U be a q-enveloping algebra. The associated graded algebra
gr{\J) is commutative if and only ifU is a Sridharan enveloping algebra.

The latter results are rather disappointing. For example, if U is quadratic, gr(U)
is isomorphic to U! In fact, the Planck constant is lacking in the picture (see
Sect. 5.1). From this point of view, the ̂ -quantization is more superficial than the
/i-quantization.

We end this Part by the extension of two classical algebraic properties [4]. A
ring which has no zero divisor ^ 0 is called a domain: Noetherian means left and
right Noetherian.

2.9.4. Theorem. Let U be an invertible q-enveloping algebra onK.IfK is a Noetherian
domain, so is U. In particular, in this case, U has a quotient division algebra (according
to the Goldie theorem).

Proof. It suffices to prove the theorem for gr(\J) [16], i.e. for U quadratic. We
reason by induction on the number p of generators of U. If p = 1, U = K[e x ] and
the result is classical. Suppose that the property holds for the ^-enveloping algebras
having p— 1 generators. Let U be with generators e1,...,ep. Consider U' the
subalgebra of U generated by eγ,..., ep_ 1. It is clear that Ur is a quadratic g-algebra.
Noting that the generators defining S'1 and S2 (Sect. 2.5) are linearly independent,
we see that U' is enveloping. Hence, U' is a Noetherian domain. On the other
hand, the g-PBW theorem shows that any element αeU is uniquely written
a = YJθίjep, OjeU'. Moreover, we have the commutation relations epei = qpieiep

j

+ (ep>ei}- Then U is a skew polynomial algebra on U' [16]. Its endomorphism σ
and its σ-derivation δ are defined by:

Φi) = qPiei and 5(e£) = <*?„,*,•>, i<P- (2.46)

As the qpi are invertible, σ is an automorphism. Theorem 1.2.9 of [16] allows to
conclude that U is a Noetherian domain. •

Among the non-classical examples of Sect. 2.7, we choose the following:

2.9.5. Corollary. Suppose that K is a Noetherian domain and that q is invertible in
K. The Manin algebras M9(2,K), GL4(2,K), SL^(2,K) are Noetherian domains.

Proof. The assertion for Mβ(2,K) obviously comes from the theorem and
Example 2.7.6. Let us define GL^(2, K) in a different manner than Manin does (but
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the two versions are isomorphic). The quantum determinant [18] is D^ = ad — q~ 1fec =
ds — q be. As D^ is central, the multiplicative monoid S generated by Όq is a regular
Ore set. We set GLg(2,K) = S ^ M ^ K ) which is a Noetherian domain.

Now, fix λ in K. The algebra AΛ = M^(2, K)/(Dq — λ) is Noetherian again. The
fact it is a domain is an easy consequence of the following lemma. By definition,
SL,(2) = A1.

2.9.6. Lemma. The set of the monomials aιbjd^ aιcΨ, i ^ 0, j" ^ 0, k ^ 1, t ^ 0 is a
basis of the K-module \ λ .

Proof Taking the associated graded algebra, we only examine the case λ = 0. The
K-endomorphism p of Mβ(2, K) is defined by:

piaVcΨ) = qmU+k-»*ai+mbj" V " mdf ~ m, (2.47)

where m = min(j,k). For all xeMg(2), x — p(x)e(Όq). We deduce Kerp = (Όq). As
pop — p^ Mβ(2) = Kerp©Imp. Hence, Ao identifies to the K-module Imp. Now,
it is clear that the monomials of the lemma form a basis of Im p. •

Notice that in Lemma 2.9.6, we can replace the basis by the following: ajbιc'9
dkbιc*. In the case of SL4(2), it is exactly the Woronowicz basis [25]. Woronowicz
finds it by using an infinite dimensional representation by raising and lowering
operators.

3. The QPBW Theorem

In all the sequel, the underlying ring is K = K 0[[ft]], Ko a commutative ring and
h an inderminate (the Planck constant). The classical limit ft->0 will be seen in a
formal sense, i.e. relatively to the adic topology. This formal point of view, chosen
by Drinfeld, has its source in the deformation quantization of Flato-Lichnerowicz

[1]

3.1. The h-Adic Completion of a q-Enveloping Algebra. As in the previous part, V

is a K-module with a basis (eί9...,ep). We consider the tensor algebra ΎK(V) in

the /z-adic topology. Its completion ΊK(Y) is identified to ΎKo(\) [[ft]]. So, any

element x in Ύκ(\) is uniquely written x = £ x^h1\ X^EΎKO(V). Moreover, x belongs

to Ύκ(\) if and only if the degree of x{ (for the natural grading of TXo(V)) is bounded
when £ runs over N. Let U be a ^-algebra (Sect. 2.1). Its ft-adic completion U is
identified to TX(V)/R, where R is two-sided ideal of Ύκ(\) generated by the R^ ,
ί<j. Hence, any element a in U is written α = £ a^hf, where a{ is the class

modulo R of an element xe of TXo(V). The element a^ is a non-commutative
polynomial with coefficients in Ko. Precisely, if p = ( i l 5 . . . , in) is a sequence of indices
in 1 = {1,...,/?}, we denote by ~e~p the monomial ~e~^-~e^n in U and we set ~e~φ=\.
Then, a<r = Σ C

P^~P (finite sum) with cpί in Ko. It is clear that a belongs to U if
p

and only if deg(α^) is bounded. Obviously the coefficients a{ or cpί are not uniquely
determined by a. However, if we notice that each a{ is in U, Theorem 2.3.1 shows
that we can reorder all the monomials ~e~p which appear in the series £ a{hf. For
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conveniently formulating the latter statement and the QPBW theorem, we
introduce the following terminology.

3.1.1. Definition. Let a be an element in the h-adic completion \Jofa q-algebra. An
expansion of a such that:

^ = Σ<V^> < V G K O > (3.2)
P

where the sums (3.2) are finite, is called a quantum expansion of a. If all the monomials

Tp in each a^ are ordered (i.e. p = (i1,...,in) with i1 ^ ••• ^ in, or p = 0\ such a

quantum expansion is called ordered.

3.1.2. Theorem. Let U be a q-algebra on K = K 0 [[Λ]]. Any element of the h-adic
completion U o / U has an ordered quantum expansion. If moreover, U is enveloping,
this expansion is unique.

We have already said that the first assertion is a straightforward consequence
of Theorem 2.3.1. The second assertion lies on the unicity of the g-PBW theorem,
but also on the concept of semi-classical approximation which is quite common in
Quantum Physics. This concept will have a precise meaning in our context. For
each r e N , we set K(r) = K/(hr+1) and U(r) = TJ/(hr+ί) = V/(hr+ *). The algebra U(r) is
easily identified to TX(Γ)(V)/R(r), where R(r) is the two-sided ideal of ΎK(r)(V)
generated by the Rj7 modulo hr+1. Then, it is clear that U(r) is a q-algebra on K(r)
which is enveloping if\J is. Naturally, U is the projective limit of the U(r), r e N .

3.1.3. Definition. The q-algebra U(0) is the classical approximation of the algebras
U and U. The natural projections J^ o :U->U(0) and <£Q = &Q\υ are the classical
limits. For r^l, the q-algebra U(r) is the r-degree semi-classical approximation of
U and U. The natural projections J^Γ:U->U(r) and^r — ̂ r\υ are the r-degree
semi-classical limits. On the contrary, we say that U (or U) is a quantization of U(0).

This definition of quantization is quite compatible with Drinfeld's one [6].

Proof of Theorem 3.1.2 (unicity). Let us give an ordered quantum expansion of
a by the equalities (3.1) and (3.2). We omit the bar because U is enveloping. Then,

/ \
<£r(a) = Σ I Yjcptep W' I n ^ i s formula, ep has to be read in U(r). Now, we can

permute the two finite sums:

Suppose a = 0. Then, &r(a) = 0. The g-PBW for U(r) shows that £ cp^ = 0

(read in K(r)) for all p. Hence, all the c p Λ 0 ^ ί g r, vanish. As r is arbitrary, we
get the result. •

3.1.4. Remark. The previous proof indicates that Ker &r is exactly the set of the
ordered quantum series £ a^h? such that ^ = 0 , 0 ^ ^ r .
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3.2. The Obstruction CPBW-» QPBW. An easy consequence of the QPBW
Theorem 3.1.2 is the following.

3.2.1. Theorem. // U is a q-envelopίng algebra onK = K0[[ft]], then h is not a zero
divisor in U.

Proof. Suppose ftα = 0, where the quantum expansion a= £ a^hf is ordered.

Then, the quantum expansion £ a^+1 is ordered and vanishes. Hence, all the

ae vanish and a = 0. • ^- 0

We are going to locate the obstruction CPBW -* QPBW. We only suppose that
U is a g-algebra and that U(0) is an usual enveloping algebra on Ko. If a = £ a^hf

is an ordered quantum expansion in U such that a = 0, the CPBW theorem applied
to &0(a) shows that a0 = 0 (as in Theorem 3.1.2). We deduce haι + h2a2 H — = 0 .
Now, we cannot a priori simplify by h and carry on the process. Roughly speaking,
we have

QPBW = CPBW + "ft is not a zero divisor." (3.4)

The essential role of our Jacobi condition (Definition 2.6.2) is to remove the
obstruction CPBW -> QPBW. It becomes clear with the following examples.

3.2.2. Example. We consider the algebra U generated by ex, e2,e3, with the relations

(1.1)—(1.3) of the Introduction. It is a scalar g-algebra. We find J{e39e29eί) = h2e2.
So, U is not enveloping. The Proposition 2.4.1 shows that h2e2 = 0 in U. But, it is
obvious that e2 Φ 0 in U. Hence, ft is a zero divisor in U and there is no unicity
of the ordered quantum series in U. We emphasize that U(0) is a usual enveloping
algebra (it is the symmetric algebra).

3.3. Quantization of Two Classical Properties. We complete Theorem 2.9.4 in the
following manner.

3.3.1. Theorem. Let U be a q-envelopίng algebra as K = K0[[ft]] and let U(0) be
the classical approximation of\J. //U(0) is a Noetherian domain, so are U and U.

Proof We simply paraphrase the proof of the well-known theorem: if A is a
domain (a Noetherian ring), so is A[[ft]]. This standard proof coiϊsists in associa-
ting to a non-vanishing series £ a^hf the first non-vanishing coefficient a^ which

allows to carry over the property from A to A[[ft]] [16]. In case the series is an
ordered quantum one, we have to associate J^0(

α/) which belongs to U(0). We
leave the details to the reader. •

3.3.2. Corollary. // Ko is a Noetherian domain and if U o is a Sridharan enveloping
algebra on Ko, then any quantization (in the sense of Definition 3.1.3) of U o is a
Noetherian domain.

4. The QPBW Theorem for

4.1. Quantum Series in General. We need enlarge the framework of the Definition
3.1.1. The hypothesis K = K0[[ft]] continues. Let A be an associative K-algebra
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with unit which is complete for the h-adic topology. We fix an ordered family
(xl9...,xn) elements in A. A series a = £ a ^ *n A such that a<f = YJc^x^ xa

n

n

(finite sum on α = (α1,...,απ)eIhΓ),cα < feK0, is called an ordered quantum series
relatively to the ordered family ( x l 9 . . . 9 x n ) . T h e f a m i l y ( x ί 9 . . . , x n ) h-generates A if
any element of A has an ordered quantum expansion relative to this family. The
family is h-free if an ordered quantum series which vanishes has all its coefficients
cΛί = 0. If the family /z-generates A and is /z-free, we say that it is a h-basis of A.
In this case, the product in A is entirely determined by the ordered quantum
expansions of the products XjXi91 g i < j ^ n. An example of /z-basis is provided
by the QPBW theorem (3.1.2).

4.2. The Algebra %(sί(2)). From now on, V is a vector space on Ko = C with a
basis (X+,X_,H). Introduced by Kulish-Reshetikhin [13], %(sί(2)) is the
reduction of Tc(V)[[/z]] modulo the ideal generated by the following elements:

H ® X ± - X ± ® H + 2X±, (4.1)

X+ ® X- - X- ® X+ --shl - H ) . (4.2)
h \2 )

The complete K-algebra %(sέ(2)) is a quantization (in the Drinfeld sense) of the
usual enveloping algebra <%(s/(2)) since we have %{sί{2))/{h) = Φ

4.2.1. Theorem. With the above notations, the family (X+,X_,H) is a h-basis of

The relation (4.2) is not quadratic. Hence, we cannot consider tfίh(s£(2)) as the
completion of a ̂ -enveloping algebra. For proving Theorem 4.2.1, we first linearize

the bracket [X+, X _ ], i.e. we "replace" H by the two generators - exp( ± - H 1 — 1
h \ 2 )

which essentially amounts to take Jimbo's generators [11]. Some ^-commutators
are arising from this linearization and the Jacobi condition may be used (see the
following section). Then, Theorem 4.2.1 is easily derived from the fact that the
linearization is a trivial extension of ^(sί(2)).

4.3. Linearization of %(sέ(2)). We introduce the K-algebra U generated by
X + , X _ , / + , / _ with the following relations:

X + X_-X_X+=/+-/_, (4.3)

/+/_=/_/+, (4.4)

/+X±-e±*X±/+=^±*-l)X±, (4.5)

/_X+ -e+hX + f_ = l-(e+h- 1)X±. (4.6)
h

4.3.1. Theorem. The K-algebra U is a q-enveloping algebra.

Proof. Obviously, U is a linear and invertible ^-algebra. We compute the q-Jacobi
sums for the ordering X + < X _ < / + < / _ . In fact, the involution X+<->X _, /+ <-»/_
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allows to confine us to J ( / + , X _ , X + ) and J ( / _ , / + , X + ) . We get:

X_,X + ) = /_®/+-/+®/_, (4.7)

(4.8)

These two sums belong to the submodule S'1, hence the Jacobi condition holds. •

The QPBW theorem (3.1.2) shows that the family (X + ,X_,/+,/_) is a h-basis of
0. Wet set:

G± =-log(l +hf±). (4.9)

The right-hand side of (4.9) is a quantum series with 2/± as first term. Hence,
(X + ,X_,# + ,#-) is also a h-basis of U. Relatively to this /i-basis, the product of
U is entirely determined by the following brackets:

[0 + , X ± ] = ± 2 X ± , (4.10)

[ 0 _ , X ± ] = + 2 X ± , (4.11)

[g+9g-l = 0, (4.12)

(4.13)

Comparing with (4.1) and (4.2), we see that φ{X±) = X±,φ(g±)= + H define an
algebra morphism φφ^%(sί(2)). The element u = j{g+ +g_) belongs to Kerφ
and the morphism φ: U/(u) -• %(s/(2)) obtained by reduction is characterized by:

~ ~ (4.14)

(4.15)

Now, we introduce the following elements in U:X'± = X+exp( I. As u is

central in U, we easily deduce from (4.10)-(4.13), ^ '

(4.16)

(4.17)
n \4 //

Hence, σ(X +) = X'±, σ(H) = \{g + — g _) define an algebra morphism σ: tflh(sέ(2)) -• U
such that φ°σ = Id, and we obtain:

4.3.2. Theorem. The morphism φ:\J/(u)^>%(sS(2)) defined by (4.14)-(4.15) is an
isomorphism. Moreover, the extension of algebras

0 -> (M) -• U - ^ %{sί{2)) -» 0

is trivial. That means there is a morphism σ which is a section of φ.
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Proof of Theorem 4.2.1. The family (X+,X_,#+,#_) /i-generates U. Then, its image
(X+,X_,H) by φ Λ-generates %(sί(2)). On the other hand, the family

(X+,X_,^(#+ — #_)) is clearly ft-free in U. Now, the quantum series expί
V 4

is central in U and has 1 as first term. Hence, (X'+,X'_,f(#+ -g-)) is also /i-free
in U. But the latter family is the image under σ of (X+,X_,H). We conclude that
(X+, X_, H) is fc-free in %(sφ)). •

5. The Quantum Filtration

5.1. The Planck Constant Has Degree -1. We have noticed (Corollary 2.9.3) that
the ^f-enveloping algebras which are naturally filtered are never almost com-
mutative except for the usual ones. For restoring the almost commutativity for a
larger class of algebras, we adopt a new filtration, called the quantum filtration. As
a matter of fact, we do not develop all the consequences of this choice in this
paper. We just study the associated graded algebras, seen as classical objects.
According to the works of Brylinski [3] and Kassel [12], an interesting application
would be the computation of the homology of quantum algebras.

The terminology of Sect. 4.1 is used again. We suppose that the complete
associative K-algebra A has a h-basis (xl9...9xn). Let a be an element of A. We
write its ordered quantum expansion as a = YJcΛ/fx

a

1

ι ---xph'. We say that a has

degree m (meΈ) if the condition caίΦθ implies αx + — h α π - / ^ m . The
submodule of the elements with degree m is denoted by Fm(A). Clearly, (Fm(A))m e Z

is an increasing Z-filtration of A such that: f] Fm(A) = {0}, Fm(A) Fn(A) g Fm + π(A).

The union F(A) of the Fm(A) is not A, but is dense in A. We denote by
G(A) = 0 Gm(A) the graded algebra associated to F(A) and by C(A) the

meZ

completion of G(A) for the /i-adic topology.

5.1.1. Definition. With the above notations, the algebra A endowed with the quantum
filtration (Fm(A))m e Z is called a quantum object. The graded algebra C(A) is called
the classical object associated to A. The algebra A is said almost commutative if
C(A) is commutative.

5.1.2. Theorem. Let U be a^q-enveloping algebra on K = K0 [[/*]] (notations of

Sect. 2.1). The completion U is almost commutative if and only if, for all i < j ,

qjt = 1 (mod. h) and <£,-,£;> has degree 1.

Proof. It is immediate from the following commutation relation:

ejβi - e^j = {qβ - l)etej + (ep et}. (5.1)

The right-hand side of (5.1) (which has degree 2) will have degree 1 if and only if
each term has degree 1 (because of (S)). •

Practically, it is easy to verify the almost commutativity of U. For example,
the Manin algebra Mg(2) is almost commutative when q = eh/2 (the Drinfeld parameter
[6]). In this case, the quadratic part [q — q'^bc of (2.29) (Example 2.7.6) has really
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degree 1. Obviously, any affine ^-enveloping algebra such that qjt = 1 (mod A), i < j ,
is almost commutative.

An example of almost commutative algebra which is not the completion of a
g-enveloping algebra is provided by <%h(sl(2)). Indeed, the brackets [H,X ± ] and
[X + ,X_] have degree 1 (see (4.1)-(4.2)). More generally, we conjecture that any
Drίnfeld-Jimbo quantum algebra %{Q), where g is a Kac-Moody algebra, has a
h-basis and is almost commutative for the quantum filtration.

We return to the general case of an almost commutative algebra A. The
description of the classical object C(A) is straightforward. It is clear that the algebra
C(A) coincides with the commutative algebra K 0 [ x l 5 . . . , x j [ [ A ] ] . The grading of
C(A) is such that xl9...,xn have degree 1 and h has degree — 1 . The subalgebra
G(A) is the set of series in A having a finite degree.

As usual, the commutative classical object C(A) is naturally a Poisson algebra
(see e.g. Kassel [2]). Let us outline the Poisson bracket of two elements α and β
of G(A), deg(α) = m, deg(β) = n. If α(j8) is the class of ae¥m(A) (be¥n(A)\ the
commutator ab — ba belongs to F m + π _ X(A) and its class in G m + π _ X(A) only depends
on α and β. This class is the Poisson bracket {α,jS} of α and β. Clearly, {,} is
extended to C(A) by density. So, C(A) is a graded Poisson algebra.

5.1.3. Example. The Poisson bracket of the classical object C(Mq(2)) is defined on

the generators α, b, c, d as follows. Any bracket of two distinct generators vanishes
except {d,a} = — {a9d} = hb x c.

5.1.4. Example. The Poisson bracket of the classical object C(°llh(sί{2)) is defined
on the generators X + ,X_,H by the following formulas:

{ H , X ± } = ± 2 X ± , (5.2)

(5.3)

5.1.5. Remark. The presence of the Planck constant A in the description of the
"classical" object C(A) seems strange. Actually, it is possible to have some bijective
quantization correspondences (in our sense [2]) between C(A) and A, which is
impossible between U(0) and U (because of the difference of dimension).

5.2. Filtered Coproducts. We keep the notations of 5.1. It is clear that the complete
algebra A <g) A has a A-basis. Then, we can endow it with the quantum filtration.
As A is almost commutative, A® A is also almost commutative. Let us give a
coproduct A on A, i.e. a continuous K-linear mapping 4:A->A®A. We suppose
A to be coassociative and compatible with the product of A (i.e. A is an algebra
morphism). So^ A is entirely determined by the data of the 4(xf), 1 ̂  i ^ n. The
Hopf algebra U becomes filtered if we suppose that A is filtered, i.e. each A(xι)
has degree 1. With all these hypotheses, the graded linear mapping C(Δ) associated
to A makes C(A) a graded Hopf algebra. As C(Δ) is a Poisson morphism, we
conclude that C(A) is a graded Poisson-Hopf algebra (in the Drinfeld sense [5]).
All the previous hypotheses hold for the coproduct of %(sl(2)) (see its definition
in [6]). Here again, these hypotheses should be true for the coproduct of a general
Drinfeld-Jimbo quantum algebra ^ft(g).
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