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Abstract. We discuss an algorithmic approach for both deriving discrete analogues
of Painleve equations as well as using such equations to characterize "similarity"
reductions of spatially discrete integrable evolution equations. As a concrete
example we show that a discrete analogue of Painleve I can be used to characterize
"similarity" solutions of the Kac-Moerbeke equation. It turns out that these
similarity solutions also satisfy a special case of Painleve IV equation. In addition
we discuss a methodology for obtaining the relevant continuous limits not only at
the level of equations but also at the level of solutions. As an example we use the
WKB method in the presence of two turning points of the third order to parametrize
(at the continuous limit) the solution of Painleve I in terms of the solution of
discrete Painleve I. Finally we show that these results are useful for investigating
the partition function of the matrix model in 2D quantum gravity associated with
the measure exp[— t^z2 — t2z

4 — ί3z
6].

1. Introduction

Painleve and Gambier [1], at the turn of the century, classified second order ODE's
linear in the second derivative, whose solutions are free from movable branch
points and essential singularities [2]. They found that, within a Mδbius trans-
formation, there exist fifty such equations. These equations can either be integrated
in terms of known functions or can be reduced to one of six distinguished equations,
called the six Painleve transcendents. It is quite remarkable that although the
Painleve equations were introduced from purely mathematical considerations, they
began, since the early 70's, appearing in several physical applications [3-4]. The
appearance of these equations in physics (in particular in connection with the Ising
model) and the realization that they are also closely related to integrable PDE's
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[5] (like the Korteweg-deVries equation) generated a renewed interest in them.
This led to the discovery [6, 7] of a new method, the so-called inverse monodromic
(or isomonodromic) method, for studying equations of the Painleve type. We recall
that integrable PDE's can be solved using the inverse scattering (or isospectral)
method. The isomonodromic method can be thought of as an extension of the
isospectral method for solving certain ODE's. Both these methods reduce the
solution of nonlinear equations to the solution of linear Riemann-Hilbert (RH)
problems. A rigorous methodology for studying the RH problems associated with
the isomonodromy method is given in [8].

In this paper, motivated from the recent appearance of Painleve equations in
2D quantum gravity [9-16], we study discrete versions of Painleve equations. In
particular:

(a) We shall show that there exist discrete equations which are integrable (in
the sense that they admit a Lax pair representation) and furthermore they reduce
to Painleve equations in an appropriate continuous limit. Such equations, which
we call discrete Painleve equations, can also be studied via the isomonodromy
approach, (b) It is well known that solutions of integrable PDE's in one spatial
and one temporal dimensions invariant under the action of Lie groups, satisfy
ODE's of Painleve type. Such solutions are usually referred to as similarity solutions
and the corresponding ODE's as similarity reductions. (The description invariant
is more accurate since not all invariant solutions are self similar; however we shall
use the terms similarity and invariant interchangeably.) Similarity solutions are
physically important; in particular they play a fundamental role in the long time
behavior of the associated PDE's. Since integrable PDE's have integrable discrete
analogues it is natural to ask the following question: Is it possible to characterize
"similarity" solutions for integrable spatially discrete equations? We use " "
since the group theoretic approach breaks down for discrete equations. We shall
show that discrete Painleve equations can be used to answer this question affir-
matively. Furthermore, similarity solutions of spatially discrete equations satisfy
continuous equations of Painleve type.

As an example of (a) above we note that the equation

n + c3 = y wπ + y wΛ(wn + ! + wn + W M _ J, (1.1)

where neZ and cl9c29c3 are arbitrary constants, is the compatibility condition of
the Lax pair

zβn^X'Λδn-M +X/2e»-l, (1-2)

^
(1.3)

where zeC. Furthermore, since the continuous limit ([10, 11]),

V/CΛ

maps Eq. (1.1) to the Painleve I equation

d2u ,

dξ2

We call Eq. (1.1) discrete PI.

(1.4)
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As an example of (b) above we consider the Kac-Moerbeke (KM) [17]
equation, a discrete analogue of the Korteweg-deVries (KdV) equation. Let us
first review the continuous case: The Lie group of transformations x' = x + 12βί,
t' = t + β, q' = q — β (which is a combination of time translation and the Galilean
group) leaves the KdV equation invariant; this group implies the transformation
u(ξ) = q(χ, ί) + 1, ξ = x — 6ί2, which in turn maps KdV to PI. It is important to
notice that there exists an alternative characterization of these invariant solutions:
These solutions satisfy simultaneously the KdV and the invariant condition
qt + I2tqx -1-1=0; using KdV to eliminate qt we find that q solves simultaneously
the KdV

ft + 3*** -12^ = 0, (1.5)

and the equation
0^-1=0. (1.6)

This q can also be found from

q(x9t) = u(ξ)-t, ξ = x-6t\ (1.7)

where u(ξ) solves the PI equation (1.4). We note that (1.6), when viewed as an
ODE in x (t considered as a fixed parameter), is also Painleve I. We now consider
the discrete versions of Eqs. (1.5) and (1.6). "Similarity" solutions of KM equations
are characterized by the simultaneous solution of the KM

wnt + wn(wn + 1 - w n _ 1 ) = 0, (1.8)

and of the discrete PI equation

n + y = 2twn + wn(wn + wn + 1 + wπ_ J. (1.9)

This wπ can also be found by solving the PIV equation

ϊ (1.10)
2wn 2 V 2

Equation (1.9) is a special case of (1.1) (cl=4t, c2 = 2, c3 = y). This example
illustrates the remarkable fact that similarity reductions of both continuous (like
KdV) and discrete (like KM) integrable equations yield Painleve equations.

Appropriate continuous limits of Eqs. (1.8) and (1.9) yield Eqs. (1.5) and (1.6)
respectively. This implies that there must exist an appropriate limit from Eq. (1.10)
to Eq. (1.4). Indeed the double limit

w->oo, ί-»oo, - = 0(1), (1.11)
n

maps PIV (Eq. (1.10)) to PI (Eq. (1.4)). Clearly, these kind of limits can be discussed
independently of the connection with KM and KdV. Actually such limits at the
level of equations are given in [2]. In Sect. 4 we shall discuss the limit (1.11) at
the level of solutions. Similar types of limits have also been discussed in [20].

Recalling the physical importance of similarity solutions for continuous equa-
tions, we expect that similarity solutions of discrete equations will also be significant
in applications. Indeed, Eq. (1.9) with y = 0 has recently appeared in the theory of
2D quantum gravity and as it was mentioned earlier, provided the motivation for
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the present study. In the work of [10,11] the question of computing a certain
partition function reduces to the question of evaluating hn, where hn is the volume
element associated with the orthogonal polynomials Pπ(z), defined by the ortho-
gonality relations

<5_,A(f)= ί P,(t,z)Pm(t,z)e-««*+*dz, P.(ί,z)=.z"+ . (1.12)
— oo

Using Eq. (1.12), and defining Qn,wn by

w"^ (U3)

it is easy to show (see Sect. 5 where we follow [10,11]) that wn satisfies Eqs. (1.8)
and (1.9) with γ = 0, while Qn satisfy Eqs. (1.2) and (1.3) with c1 = 4ί, c2 = 2. Also

00

J z e dz

wM = 0 for π = 0,-1,-2,..., and W l = 4 — . (1.14)
A 00

— oo

Using this fact we show in Sect. 3 that it is possible to express vvπ (and hence hn)
in terms of certain derivatives of parabolic cylinder functions. Furthermore the
results on continuous limits derived in Sect. 4 are used to discuss the physical signi-
ficance of these solutions.

In more details this paper is organized as follows:
In Sect. 2 we give an algorithmic approach for both deriving discrete analogues

of Painleve equations (such as Eq. (1.1)) as well as using these equations to charac-
terize "similarity" solutions of spatially discrete integrable evolution equations.

In Sect. 3 we use the isomonodromy approach to express the solution wπ(ί) of
the PIV equation (1.10) in terms of appropriate monodromy data {S}. We recall
that wπ(ί) is the "similarity" solution of the KM equation (1.8), characterized by
the fact that it satisfies simultaneously Eq. (1.8) and the discrete PI equation (1.9).
For a special choice of the monodromy data, the so-called triangular case, it is
shown that wn(t) can be expressed in terms of parabolic cylinder functions.

In Sect. 4 we first show that the transformations

map both the discrete PI equation (1.9) with y = 0, and the KM equation (1.8), to
the PI equation (1.4). Furthermore, the transformations

1/2 / ί,2^2N

(1.16)

map the Lax pair of the discrete PI (Eqs. (1.2) and (1.3)) to the Lax pair of PI
(ψ(ξ, k) denotes the eigenfunction associated with PI).

In Sect. 4.1 using the methodology of [27] we investigate the above limits at
the level of solutions. We consider only the case of t imaginary

t = iτ, τ>0, (1.17)

and we scale z by z = ^/τζ. Let Φπ(τ, 0 and Y(ξ, k) denote the matrix eigenfunctions
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associated with wπ(τ) and u(ξ) respectively. For the complete description of wπ and
u one needs 8 and 10 such matrices respectively; since these matrices will be related
asymptotically, we denote them with superscripts j and f(j) respectively. Let {S}
and {G} denote the monodromy data associated with Φn and Y respectively. As
τ-> oo, Φ^} can be found by using the WKB method, which in this particular case

e-iπ/4 e~ίπ/4

involves two turning points ζ+ = - and £_ = -- . The matrix solutions

V V •* WKBO>

φU\ j= 1,2,7, 8 can be expressed in terms of WKB solutions Φn near ζ+;

similarly the matrices for j = 3, 4, 5, 6 can be expressed in terms of WKB solutions

near ζ_ (see Fig. 4.1). Near the turning point ( + , the WKB solutions Φn ,
TP(j)

j = 1, 2, 7, 8 break down and are replaced by Φn , j = 1, 2, 7, 8. It is shown in Sect. 4.1
TP(j)

that Φn can be related to y/ ( Λ,with/(l)= l,/(2) = 2,/(7)= - 1,/(8) = 0 (similarly
TP(j) WKB

the Φn , j = 3,4,5,6 are also related to appropriate y's). Since Φn is related to
TP

Φn the above analysis provides a connection between the matrices ΦM's and the

matrix y's. Using this connection we find that the associated monodromy data
satisfy

σ\ j= 1,7,8, (1.18)

where α0 is a certain constant.
Let 5 and g denote the entries of the monodromy matrices S and G respectively.

In the special triangular case considered in Sect. 4.1 our analysis summarized
above yields

05=0, g2=g3 = i, g^--1—, g4 = -^-9 pφ^, α0 = -ln-^— . (1.19)
1+p l + p Si 2 s3 — s1

In Sect. 5 we show that the wπ(ί) corresponding to the triangular case studied
in Sect. 3.1, is associated with the 2D quantum gravity corresponding to the
measure e~

4(tz2 + z4) and discuss the physical meaning of the results of Sect. 4.1
concerning the calculation of the parameters of the Pi-function u(ξ).

Some of the results of Sect. 5 we were announced in [29] and were also obtained
in [14].

2. Discrete Analogues of Painleve Equations and Similarity Reductions
of Spatially Discrete Integrable Equations

As it was mentioned in the introduction, there exist integrable discrete analogues
of the Painleve equations (see for example Eq. (1.1)). Such equations can be used
to characterize similarity reductions of spatially discrete integrable equations. Since,
in this paper we are mainly concerned with this particular application of discrete
Painleve equations, we concentrate on how to find a discrete Painleve equation
associated with a given spatially discrete integrable equation. For this purpose we
propose the following algorithmic approach.

Suppose we are given a spatially discrete integrable evolution equation in one
spatial dimension, and its associated Lax pair. To find a "similarity" reduction of
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this equation we first find an appropriate discrete Painleve equation. This is
achieved by looking for an equation of the form βΠz = F(Qn, Qn+ 1? . . . , βπ_ 15 . . . )
which is compatible with the ί-independent part of the given Lax pair. The
compatibility condition of the ί-independent part of the Lax pair and of Qnz = F
defines a discrete Painleve equation. This equation will depend in general on a
number of constant in n parameters. We then choose these parameters so that
<2Πz = F is also compatible with the ί-part of the given Lax pair. The discrete
Painleve equation with this choice of parameters is compatible with the original
spatially discrete equation. Hence, the simultaneous solution of these equations
characterizes a "similarity" reduction of the given spatially discrete evolution
equation. We emphasize that the above procedure is completely algorithmic. Also
in the examples we have studied it is possible to manipulate the above two equations
to obtain a single ODE.

Example. Consider the KM equation (1.8); its Lax pair is given by Eq. (1.2) and by

Qat = >„ + wn+1)βn + wj'x^e.-j. (2.i)
In order to find a discrete Painleve equation we consider the compatibility of
Eq. (1.2) and of Qnz = F. Let for example F = F(ρM_1,βn_3) (other choices of F
will give us "higher" Painleve equations). That is, we consider

Qnι = AnQn-,+BnQn_,. (2.2)

Demanding that Eqs. (1.2) and (2.2) are compatible we obtain three equations;
these equations are obtained by equating the coefficients of βπ_4,<2,,_2, and Qn

to zero. The coefficient of βn_4 yields

B

This equation can be written as

Bn

(w π w π _ 1 w M _ 2 ) 1 / 2 (w n _ 1 w n _ 2 w n _ 3 ) 1 / 2 '

and hence it implies Bn = c 2(wπwn_ 1wπ_ 2) 1 / 2. Using this expression for Bn, the
coefficient of Qn-2 yields

2 n ( n _ .
(Wn)

1/2 (Wn-l)1

Adding to both sides of this equation the term — c2wn — c2wn-1, it follows that

Using these expressions for An and Bn, Eq. (2.2) becomes Eq. (1.3); also the coefficient
of βπ implies Eq. (1.1).

Demanding that Eqs. (2.1) and (1.3) are compatible we find c1 = 4ί, c2 = 2, and
c3 = y; hence Eq. (1.1) reduces to Eq. (1.9).

The similarity reduction of the KM equation, characterized by the simultaneous
solution of the KM equation (1.8) and of the discrete Painleve equation (1.1) can
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be characterized further: Equations (1.1) and (1.8) can be written in the form

2wπ + 1=--^-2ί-ww, (2.3a)

H W
- + -^-2ί-HV (2.3b)

Writing Eq. (2.3b) as,

and using Eq. (2.3a) to eliminate ww + 1 we obtain a second order ODE for ww(ί).
Since the KM equation is integrable we expect that this ODE is also integrable.
Indeed, we obtain Eq. (1.10) which is a special case of Painleve IV (PIV).

Other approaches to deriving discrete Painleve equations are given in
[18 and 19].

3. A Method of Solution

It was shown in Sect. 2 that a "similarity" reduction of the Kac-Moerbeke equation
satisfies the PIV equation (1.10). This equation can be solved by the isomonodromy
method. For the sake of completeness we indicate how Eq. (1.10) can be solved
in the present context.

•Letting c1 = 4ί, c2 = 2, c3 = 7 = 0 and

Φn = (Qn+1,Qn)Te-2"2-224, (3.1)

and writing Eqs. (1.2), (1.3), (2.1) in matrix form we find

Φn+1(z)=l/n(z)Φπ(z), (3.2)

Φπ,(Z)=Kπ(z)ΦB(z), (3.3)

Φnι(z) = An(z)Φn(z), (3.4)

where the matrices Un, Vn, An are defined by

~1 / 2 - 1 / 2 ~ 1

(3.6)

and

- 8z3 - 4tz - 4zwB+ ls w^ί + 8z2 + 2(wn+1 + wπ+2))

^ (4ί -h 8z2 + 2(wΛ H- WΛ +1)), 8z3 + 4ίz -f 4zwΛ +1

(3.7)

For simplicity of notation we have suppressed the explicit dependence on ί. The
transformation (3.1) was used in order to obtain a traceless matrix An.
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Equation (3.4) plays a fundamental role in the subsequent analysis, while
Eqs. (3.2) and (3.3) play only auxiliary roles. The basic idea of the isomonodromy
method consists of using Eq. (3.4) to formulate an inverse problem for Φn(z) in
terms of appropriate monodromy data. This can be achieved by determining the
analytic structure of solutions of Eq. (3.4) with respect to zeC. Since Eq. (3.4) is
a linear ODE in z, the analytic structure of Φn depends only on An. Actually,
Eq. (3.4) has only one singularity, namely an irregular singular point at z = oo. A
formal solution at z = oo has the form,

Φ ~ <Z><°°) φ(oo) _ φ(oo)-(2z 4 +2fz 2 -(«+!) lnz)(T3 (Ϊ Q\
ψn ψ

n ' ψn ~~ ^n κ ' V~' CV

where σ3 = diag(l, — 1), and ΦJI

00) is a formal power series. However, the actual
asymptotic behavior of Φn changes form in certain sectors of the complex z-plane
(Stoke's phenomenon). These sectors are determined by Re(2z4 + 2ίz2) = 0; thus
for large z the boundaries of the sectors which we call ΣJ9 are asymptotic to the

rays argz = 1 , 05^7^7. Let Ωj be the sector containing the boundary
8 8

Σp i.e. if zeΩi9 ^ argz < -, etc. Then, if Φn ~ Φjl°
0) as z-> oo in Ωί9 it turns

8 8
out that Φn~Φ(

n

co)SίS29...,Sj9 as z->oo in Ωj+ί9l^j£%. The matrices SJ9

1 ̂  j ^ 8 are triangular and are called Stokes matrices. Alternatively, it is more
convenient to introduce different solutions Φj,j), 1 g j ^ 9 such that Φj^ is
asymptotic to Φ^00) in Ωj. Then Φj/+ 1 ) = Φ®SP 1 ̂ ;^8; also it can be shown
that Φ<ϊ\z) = φ^)(z^/π^2M«+i)σ3 = φW(ze^ Therefore

2ίπ)S8, (3.9)

jn Q, (3 1Q)

Σ4
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The Stokes matrices have the form

S2J = (1 °\ 0^;S4mod4. (3.11)
\^2j A /

Using the symmetry relationship

(- 1)"+1, (3.12)

it follows that the Stokes matrices satisfy the constraints

SJ+4 = σ3Sjσ3. (3.13)

Also, Eq. (3.9) implies the cyclic equality

S1S2-S8 = /. (3.14)

The constraints (3.13), (3.14) identify the set of the monodromy data as a three-
dimensional algebraic variety. The quantity wπ can be reconstructed via

1, (3.15)

where Φ ) are the coefficients of the formal series

(3 16)
Equation (3.15) implies that WM depends only on the orbits of the action

Skh->exp((5σ3)Skexp(- &τ3), <5eC. (3.17)

This action is well defined on the algebraic variety specified by Eqs. (3. 1 3) and (3.14).
Since An depends on n and on f, it follows that the monodromy data will also

depend in general on n and t. However, it is possible to normalize Φn in such a
way that, if wπ satisfies Eqs. (1.8) and (1.9) then, the monodromy data are n and
ί independent (this is a usual situation in the isomonodromy method [7]). The
correct normalization is achieved by choosing Λn(t) so that the formal solution
Φ^00) defined in Eq. (3.16), is also a formal solution of Eqs. (3.2) and (3.3). This is
the case if

(3.18)π4wπ + 1 2 4

and

Hπ + 1-Hπ = ln2- | lnw n + 1 w n + 2. (3.19)

Indeed substituting Φj,00' in Eq. (3.3), where Φj,00* is given by (3.16), we find

and
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These equations imply,

i = fK + 2 + wπ + J = - 3f ln(Λπ)2.

Letting (Λn)t = απe
H", (Λn)2 = ane~H\ we find

0* = HV/ί4, d, #„ = £5, In WΛ + ! + |(wπ + 2 + wn + 1 ).

Using Eqs. (1.8) and (1.9) to simplify the equation for dtHn we find Eq. (3.18b).
Similarly, substituting Φ^00) in Eq. (3.2) we find Eq. (3.19).

Equations (2.3) imply that Eqs. (3.18) and (3.19) are consistent; they can be
rewritten in the form

— - π-r i •• n '' 2. A -- \j\~ >•> ~ ι~~ \j Λ\ i / ^ \ J έΛJ)

We note that the relations (3.18), (3.19), and (3.20) determine Hn(t) within the
constant H0(0). This is consistent with the fact that the algebraic variety of the
monodromy data is three-dimensional while wπ is specified from w0 and n^. Given
the monodromy data {5k},/f0(0) is determined through the relation

β2H0(0)^φ(oo^i2 __ e-2#o(0)(φ(oo)^ (3.21)

We conclude this section with some comments on the τ-function associated
with the solution wπ(ί). In accordance with the general definition [7], the τ-function
corresponding to the nonlinear system (1.8) and (1.9) is determined by

(3.22)
ΰz

where, dT(z) = d{ -2σ3z
4-2ίz2}σ3 = -2z2σ3dt. Using the general recursion

equations connecting the coefficients of the formal solution with the coefficients
of the corresponding ^-equation, we find that

^lnτn=-wn + l(n+l + wnwn + 2). (3.23)
dt

Using this equation and the basic equations (1.8) and (1.9) it follows that

— In -̂ - = - (WΛ +! + wj, (3.24)
n — 1

and

— lnτn = wn + 1(wn + wn + 2). (3.25)

3.1. An Explicit Solution. The RH problem defined by Eqs. (3.9) and (3.10) can be
solved in closed form only if the monodromy data have a special form. In what
follows we investigate the case of

S2J = I, 7=1,2,3,4. (3.26)

Since the monodromy data are n-independent we consider the case of n = 0. Now
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Fig. 3.2

the RH problem is defined on the contours Σ2,Σ4,Σ6,ΣS and

SΛ e =

Π Π / 7 ~ J l Λ i i7 ~ ^ \ f^ i /' 7
"* \ c _

o ι> S 5"lo o
Let's orient the contours Σ2,Σ49Σ69 and Î 8 as it is shown in Fig. 3.2 and let

us introduce the piecewise analytic function Φ(z):

The RH-problem under consideration can be reformulated in terms of the
function Φ(z) in the following way:

(a)

^9 = ̂ . (3.28)

(b) The boundary values Φ±(z) of the function Φ(z) on the contours £ are

connected by the relations 2/

φ-(z) = Φ + (z)G(z), (3.29)
where

G(z) =
0 1

1 c .,2γ(:
1 0-5 cί

, zeΣ29Σ69

zεΣ^Σs,,0 1

γ(z) = H0(£) - 2z4 - 2ίz2 = H0(t) - ±\ (3.30)
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Using Φ(

0^ = A' 1 Φ^Λo, it follows that

)12(Φ^)21. (3.31)

_^ Let Φ = (Φ1? Φ2). The triangularity of the matrix G(z) implies that the vector
Φχ(z) is holomorphic everywhere on the z-plane, and because of (3.28) it satisfies
the following asymptotic condition as z-+ oo:

0(1)

This implies the equality

z + d
(3.32)

where c, d are some constants. The vector Φ2(
2) satisfies

), zeΣ2,Σ6

φ-(z)-Φ+

2(z)=' (3.33a)

and

Φ2(z).

Z \Z

oo. (3.33b)

Thus

2πi
dμ

2πi - o o / / - z \ c / πi -i<x>μ-z\ c

The large z asymptotics of the above equation yields

+ (3.35)

Because U(μ) is an even function, the asymptotic condition (3.33) is satisfied by
setting

d = 0, c = -
-2Ho

(3.36)

l f
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Formulae (3.32), (3.34) and (3.36) give the solution of the RH-problem (3.29).

The relations (Φ(

1

00))2i = c> (Φ(™})i2 = b, (Φ2(z))ι = — + θ( — ),z-»oo, and Eqs.
(3.31), (3.35) and (3.36) imply z \z '

ao ίoo

W i =4
— oo

oo

Sl ί '
— oo

(3.37)

where Dv(y) is the parabolic cylinder function.
Note that for the case n = — 1 the asymptotic behavior of Φ(z) is

Z-»00.

/

That leads immediately to Φ±(z) = (1,0)Γ and hence w0 = 0.
Equations (3.37) and w0 = 0 provide and explicit parameterization of the initial

data for the solutions of the discrete equation (1.9) with γ = 0 (considered in the
domain n ̂  0) through the monodromy data in the special case (3.26). For any
fixed n the corresponding functions wπ(ί) are the explicit solutions of the PIV
equation (1.10). It should be mentioned that this family of solutions of the PIV
has been derived earlier [21] using a similar technique.

4. The Limit from the Discrete to Continuous Painleve I

We first show formally that the transformations

1 / 9 \
(4.1)" ι ^ \ •> / / ' '2

map the discrete PI

n = 2twn + wn(wπ + i + wπ + wπ _ t), (4.2)

to the PI equation

d-^ = 6u2 + ξ, (4.3)
dξ2

as h-+Q. Indeed, letting wπ = tp(l — εu), where p is a constant, Eq. (4.2) becomes
as ε—>0,

-f- = 2 + 3p - 2(1 + 3p)εu + pε2 ( 3u2 - — uξξ\ (4.4)
ί P \ ε J

h2

We take — = O(l), which we normalize for convenience to be |, and we take
ε
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p = - 1/3 in order to eliminate the 0(ε) term in Eq. (4.4). Then Eq. (4.4) and
vvn = tp(\ — εu) imply Eqs. (4.1).

The transformation (4.1) with the additional condition

ί 2 =-f/Γ 5 , (4.5)

also maps the KM equation (1.8) to

d3u ^ du Λ-_=12W--+1, (4.6)
dξ5 dξ

as /z->0. Indeed, letting w π = —(1— 2h2u) in Eq. (1.8) we find as /ι->0,

2th2(ut - ϊthUξ) - [1 - ^t2h5(uξξξ - I2uuξ)~] = 0. (4.7)

Equation (4.7) implies Eqs. (4.5), (4.6) and ut = f(-f)1 / 2/ι~3 / 2Mξ. This equation is
dξ

consistent with Eq. (4.1b), since ut = uξ—, and Eq. (4.1b) implies
at

_ 3 h*dξ dξ 9n 3 / 9\- 1 / 2 ,_ 3 / 2nt 3 = , or — = = — I I —1 h 3'2, — = _—-~ = _—
9 at at t*h4 th* V 2

Remark. In the above derivation we have used the assumption

wn±l(t) ~ pt(l - εu(ξ ± h)) s ptίl - εu(ξ) + εuξ(ξ)Λ - y

This assumption is consistent with Eqs. (2.3) iff the equality (4.5) takes place.
In what follows we present a general methodology for:

(a) Showing that the transformations (4.1) and (4.5) in addition to mapping both
the KM equation (1.8) and the discrete PI equation (4.2) to PI equation (4.3), they
also map the common solutions wn(ί) of (4.2) and (1.8), to solutions u(ξ) of (4.3).
(b) Calculating the parameters of the solution u(ξ) in terms of the parameters of
the solution wπ(ί).

This methodology involves the following steps:
(i) Express wn(ί) in terms of appropriate monodromy data.
(ii) Express u(ξ) in terms of appropriate monodromy data.
(iii) Study the relationship between the above sets of monodromy data under

the limit /ι->0.
Step (i) was presented in Sect. 3. Step (ii), which involves applying the iso-

monodromy method to solving the PI equation (4.3) was investigated in [22].
Here we only discuss the Lax pair of PI, and we summarize the main results of
[22] in Appendix A. The investigation of step (iii) comprises the main subject of
this section.

We recall that the Lax pair of the KdV equation (1.5) is given by

φxx + (A - 2q)φ = 0, φt = - 2qxψ + 4(Λ + q)ψx. (4.8)

The transformations

flfcί^-ί+ „(£), ξ = x-6t\ λ=~t-*, (4.9)
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map the KdV equation (1.5) to the PI equation (4.3) and the Lax pairs (4.8) to

ψζξ = 2(u + λ)ψ,

ψλ = 2uξψ + 4(2λ - u)ψξ. (4.10)

Letting Ψ = (ψ, ψξ)
τ, Eqs. (4.10) yield a matrix Lax pair for the matrix eigenfunction

Ψ. The transformation

* l , (4.11)
Ill -.

maps this Lax pair to the one studied in [22]:

yt = Γ (4k4 + 2u2 + ξ)σ3 - i(4uk2 + 2u2 + ξ)σ2 - \2kuξ + — V 1 y,

(4.12)

where σj91 ^ 7 ̂  3 are the usual Pauli matrices.
It is straightforward to show formally that under the transformations (4.1),

(4.5) and

1/2 (4.13)

Eqs. (1.2) and (1.3) (with c1 = 4f,c2 = 2) are mapped to Eqs. (4.10): Consider Eq.
(1.2); its right-hand side becomes

Comparing this with the left-hand side of (1.2) it follows that z is given by (4.13b).
Using (1.2), Eq. (1.3) can be represented in the following equivalent form:

+ wM + 1) 4- 8zX'2).

Using Eqs. (4.1), (4.5) and (4.13) we find the relation

tfψλ * ψ($h2λ - 4h2u) + (ψ- hφξ)(4h2u - 8/ι2A 4- 2h3uξ), h ->0,

which immediately yields the second equation in (4.10).
Recalling that Φn = (Qn+ 1? βπ)τexp(- 2ίz2 - 2z4) (Eq. (3.1)) and Ψ = (φ9 ψξ)

τ,
the above calculation implies

, » . (4.14)
1 -ft

We note that Eq. (4.13b) is not well defined because of the multivalueness of
the right-hand side. The precise meaning of Eq. (4.13b) will be elucidated later.

4.1. The Connection between Monodromy Data of the Discrete and Continuous PI
Equations with t Imaginary. The formula (4.1) and the exponential term in (3.8)
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suggest the scaling

ί = iτ, τ>0, z = ̂ τζ. (4.15)

Then our formal results above can be summarized as follows: The transformations

τ2 3
\ Λ->0 (4.16)

map both the KM equation (1.8) and the discrete PI equation (4.2), to the continuous
PI equation (4.3). Furthermore, if in addition

,, ..
l-hk l+hk

ξ9k)σ39 (4.17)

then the discrete Lax pairs (3.2)-(3.4) are mapped to the Lax pair (4.12) of PI.
Since the solution wπ(τ) of (1.8) and of (4.2) is basically determined by Eq. (3.4)

we concentrate on this equation. It is more convenient to work* with Φπ_ t instead

of Φn; using t = iτ, z = ^fτζ it follows that

where

_"

αn=-8ζ 3- 4/C-

(4.18)

(4.19)

Equation (4.18) with τ large, can be solved by the WKB method. Diagonalizing
the matrix Ba^l we find

1 1

The turning points ζτ are given by
(4.20)

1/2

i.e. there exist two turning points of third order,

-iπ/4

(4.21)

In the rest of this section we concentrate on one of the turning points. Using (4.20),
it follows that the WKB solution of (4.18) is given by

τ2σ3 f μ(ζ')dζ' -
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or

'1/2 m

(4.22)

where m = [C + (C2 - ( + )1/2]/ί + The Stokes lines of the WKB solution are given

by Re J μ(ζ)dζ = Q. Therefore WKB solutions about ζ+ and C_ can be used for
ζ±

the evaluation of the solutions Φ ̂  x , Φ^ 1 , Φ[Ί1 1 , Φ(*l ί and Φ^ 1 , Φ(^\ 0 g 7 ̂  3
respectively (see Fig. 4.1). Hence,

, 1 / 2

1,-il— eaι('n i \ Λ I

= lim τ2 j μ(C')C - 2τ2C4 - 2ίτ2ζ2 + n l n ζ
Ί

L
J

where 7= 1,2,7,8.
In the neighborhood of the turning point £+, the WKB asymptotics (4.22)

breaks down. In this neighborhood we introduce the new variable k by (see
Eq. (4.17a))

2 2

(4.24)

Then Eq. (4.17b) indicates that the solution Φn-± at the turning point ( + , which
TP

we denote by Φn-ly is related to the solution Y(ξ, k) associated with PI. More

precisely

ι 1 \

M , ,. σ3r^,/c)σ3, ;=1,2,7,8, (4.25)
\-hk l + hkj

where /(I) - 1, /(2) = 2, /(7) = - 1, /(8) = 0 (see Fig. 4.1).
Our aim is to relate the monodromy data {S} associated with Φ n _ t to the

monodromy data {G} associated with Y. This is now straightforward, since we
WKBC/) rp(j)

can relate Φn-± to Φ,̂  and hence we can relate Φj/lj to Yf(j): In the matching

/c2

domain — - ~ Λ ε, ε > 0,
2

-, (4-26)

δ+= lim - j"(4fc'3 + 2 '̂ + r)1/2dfc' + -
5

-,
,

J

where r = u? — 4u3 — 2ξu. To obtain this equation we use the fact that in the
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Φn-1

RAY 1: argk = ~<^, RAY 2: arak = f^
t

RAY 3: argk = ff, RAY 5: argk = -f£

Fig. 4.1

matching domain
ζ A

- τ2 J μ(ζ')dζ' - 2 j (32A/3 + 4ξλf + r)ll2dλf.
ζ+ o

Using Eqs. (4.23), (4.25), and (4.26) and the definition of the monodromy data

we find

Sj^e"<»σ3Gf(j}σ,e-«*\ j=l,7,8; a = δ + (ξ)~δ^n,τ)-"lnτ-Hn^(τ). (4.28)
2
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Recalling that Sj are independent of n and of t we obtain the main result of this
section:

Λ-O \ 2

7 = 1,7,8. (4.29)
ξ

Evaluating the integral J μ(ξ)dξ under the asymptotic condition (4.16) it

follows that ξ+

-δ + ({)- + o(l), A->0.
4 4

This means that we have also obtained the asymptotic formula for the quantity

(4.30)

This equality is formally consistent with Eq. (3.18). It is interesting to note that it
does not appear possible to obtain equality (4.30) directly from Eqs. (3.18) or
(3.19) using Eq. (4.16) only.

The manifold of the monodromy data {G} is two-dimensional (see Appendix A).
The formula (4.28) shows that the monodromy data {G} depends on the orbits
(3.17) only; the constant α0 parameterizes the transversal directions of the manifold
{S}.

4.2. The Triangular Case. In this special case considered in Sect. 3.2, the mono-
dromy data are given by (3.26) and (3.27). Then Eq. (4.29) yields

05=0, ?!=-Λ (4.31)
04 *3

This corresponds to the case (A. 5) of Appendix A, and the corresponding solution
u(ξ) of the equation PI (4.3) can be characterized by one of the asymptotic formulae
(A.7-A.9) with

(4.32)
1 +p 1 +p sί

Equations (4.32) indicate that p Φ — 1 is a necessary condition of the existence of
the limit (4.1), (4.5) of the solution ww(ί). For the constant α0 in (4.30) we have from
(4.29) and (4.32),

α0 = ±ln-^-. (4.33)

We emphasizes that the results obtained in this section are formal: Assuming
that the solution wπ(ί) has the asymptotic behavior (4.16) we have derived the
formula (4.29) connecting the monodromy of wπ(ί) and of u(ξ). This means that
the solvability of the algebraic equation (4.29) is a necessary condition of the
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existence of the limit (4.16) for given {S}. Our previous experience with the
isomonodromic approach suggests that the solvability of the Eq. (4.29) is also a
sufficient condition. Rigorous aspects of these results are under investigation.

5. An Application in the Theory of 2D Quantum Gravity

It turns out that there exists an intimate connection between the special solutions
of Eqs. (1.8) and (1.9) studied in Sects. 3.2 and 4.2 and the matrix model in the theory
of 2D quantum gravity. The partition function of this model is defined by the
equality

Zn(7) = μΦexp{-Trl/(Φ)}. (5.1)

Here Φ is a n x π-hermitian matrix, and the potential U(z) is an arbitrary even
function of z depending parametrically on 7 = (tl9t2913,...). As it is shown in [26],
it is possible to represent Zn in the form

n

Zn=l\hj9 (5.2)
j = ι

where hn are the volume elements associated with the orthogonal polynomials
Pn(z) with respect of the measure dμ(z) = exp(- U(z))dz:

tnmhn = f Pn(z)Pm(z)dμ(z), Pn = z"+ . (5.3)
— oo

Note that hn and Pn depend parametrically on i^li,..., but for convenience of
notation we suppress this dependence. Equation (5.2) means that the question of
computing the partition function (5.1) reduces to the question of evaluating hn.
Following ideas of [10 and 11] we first show that:

(a) Pn satisfies the recurrence relationship

w h
zPa = Pn+ί+^Pn^, wnΦ4-^. (5.4)

4 /!„_!

This becomes Eq. (1.2), if Qn Φ PJh^'2.
(b) hn satisfies the spatially discrete evolution equation

TL=- ] P2

n(z)~dμ(z), fc=l,2,..., (5.5)"
Ctk -oo Ctk

and the discrete Painleve equation

(1 + 2*1)11,,= J zP2

n(z)U'(z)dμ(z). (5.6)
— oo

One can use the recurrence relation (5.4) to eliminate the powers of the variable
z from the right-hand side of both (5.5)Λ and (5.6) and to obtain nonlinear difference
equations for hn. An elegant way of achieving this will be given later in this section.

(c) Equations (5.5)fc and (5.6) are integrable, in the sense that they admit a Lax
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pair formulation. The Lax pair of Eq. (5.5) is Eq. (5.4) together with

Pn,= ΣCnmPm, Cπm = l J PJ Άμ, Cnn^dtklnhn + ~] P2

n^-dμ,
m = 0 "m-oo Ctk 2 2/In-oo θtk

(5.7)

while, the Lax pair of Eq. (5.6) is Eq. (5.4) together with

n— 1 1 °° ATI

Pnι = Σ DnmPm, Dnm = Γ J PnPm — dμ. (5.8)
m = 0 nm -oo OZ

We now derive the above results. In order to derive the recurrence relationship
(5.4) we note that the orthogonal polynomials Pn satisfy the symmetry condition

). (5.9)

Indeed, using the fact that U (z) is even, it follows that Eq. (5.3) remain invariant
under the transformation (5.9). Any polynomial from the orthogonal set {Pn} is
orthogonal to any other polynomial with lower degree. Thus,

zPn = AnPn+i+BnPn + CnPn,l.

The normalizing condition (5.3b) implies An = 1. Furthermore,

BA= J zP2

n(z)dμ(z);
— 00

using Eq. (5.9) it follows that Bn = 0. Also
00 00

CΛ-ι= J zPnPa^dμ(z) = J Pn(Pn+-)dμ(Z) = hn,
— oo — oo

where the dots mean polynomials of degree lower than n. Therefore, the recurrence
relationship for the orthogonal polynomials defined by an arbitrary even measure
is Eq. (5.4). dp dp

To derive Eq. (5.5)k we note that deg — is less than n, thus — - is orthogonal
to Pn. Then Eq. (5.3) implies (5.5)*. dtk dtk

To derive Eq. (5.6) we use integration by parts:

hn= f P2

ne-v ldz=- J z[2PnP'n-P2

nUΊdμ(z). (5.10)
— oo — oo

But

J zPnP'ndμ(z) = n J ?„(?„+ )dμ(z) = nhn.
— oo — oo

Thus Eq. (5.10) becomes Eq. (5.6) »
To derive Eq. (5.7) we let Pn^ = £ CnmPm, hence

m = 0

hmCnm= J PmPntdμ, m^n. (5.11)
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But Eq. (5.3) implies

0= J PntkPmdμ+ f PnPmtkdμ- f PnPmUtkdμ, m*n, (5.12)
— oo — oo — oo

and

*-,„= ί 2/VV/ι- f P2

nUtkdμ. (5.13)
— oo — oo

Using the fact that degPmt < m and m ̂  n, the second term in Eq. (5.12) is zero.

Solving for J PmPntjdμ from Eqs. (5.12) and (5.13) and using (5.10), we find

Eq. (5.7). -°°
To derive Eq. (5.8) we let Pnz = £ DnmPm, hence

and using (5.3) we find Dm = 0 and hnDnm = J PnPmU'dμ.
— oo

It is convenient to write the basic equations (5.4)-(5.8) in terms of the variable
Q. Also we consider a special form U. Using

t = l

Eqs. (5.4)-(5.8) become Eq. (1.2) and equations

dtklnhn=- J S2z2*<ίμ, or 5 ( k lnw n = f (Q2

n_ , - Q2

n)z2kdμ, (5.15)
— 00

N

l + 2 n = £2/cί t f ρn

2z2ft^, (5.16)
fc=l -oo

Qntk = Σ ( f QnQmz2kdμ\Qm + (\ ] Q2

nz
2*\Qn, (5.17)

m = 0 \ - o o / \ Z - o o /

e .= "Z f Σ 2fe* ί β,,Q1.z
2*-1dμ>)e«. (5.18)

m - 0 \ k = l -oo /

It is possible to represent Eqs. (1.2) and (5.15)-(5.18) in an elegant form using
a notation similar to the one introduced in [10 and 11]. Let H be the space of
sequences Q = {βπ}"ϊ ί ̂  for any operator M in H we can define its matrix elements
Mnm through the equality

00

(M<2)n= X Mn,mβm.
m = — oo

In the space // we introduce the operator

= (5.19)
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where the operators Δ and ω are defined by

(5.20)

Then Eq. (1.2) takes the form of an eigenvalue equation for the operator L,

LQ = zQ. (5.21)

We note that the matrix elements of the operator L are given by

,̂m = X/2^+1>m + X/2'5n-1,m, (5-22)

and Ln m = Lm n. It is straightforward to compute the matrix elements of Lk. For
example

4L2 = 4w1 / 2ziw1 / 2 + w + ΔwΔ-i + w^Δ-WiΔ-1 (5.23a)

and

+ 2.*; (5.23b)

in general Δj gives rise to δn+jm.
For the case of orthogonal polynomials we restrict Eq. (5.21) to the subspace

H+ = {QeH, Qn = 0 for n < 0}. This implies the condition

w0 = 0, (5.24)

in order for H+ and H_=HQH+tobe invariant for L. Then

00 00

J Qn(z)Qm(z)z2kdμ(z) = f Qm(z)(L2kQ(z))πdμ(z)
— oo — oo

= Σ ί-ίί f Qm(z)Ql(z)dμ(z)= Σ L^δ^L2^.
1 = 0 - oo l = Q

Using this relationship, Eqs. (5.15)-(5.18) become

dtk\nhn=-L^ or ^Invv^Lf.,^,-^, (5.25)
N

1+ 2n = X 2/UfcL^, (5.26)
fc=l

βΛ = (L» + iL2»)β, (5.27)

βz = Y2/cίkLlk- lρ, (5.28)
fe=l

where we have used the decomposition

L2k = L2k + L2k + L2k9 (5>29)

for the positive, zero, and negative with respect to Δ parts.

Example. N = 2. Equation (5.23) indicates that L2

nn = £(wπ + wn + J, thus Eq. (5.25)
with k = 1 becomes

dtllnhn= -τ(wn + wn + ί ) or 3 ί l lnw Λ = ̂ (wII_1 - wπ + 1). (5.30)
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Also,

8L3 = Δwΐ/2Δwl/2Δw112

thus

IβL^ΔwWΔwΔ-iwWΔ-t+ΔwΔ-1™
1 + w 1 / 2/d~ 1w/dw 1 / 2.

Hence, Eq. (5.26) yields

1+2* = /, + /„ + !, / Λ = y w n + ̂ w>Λ + 1 +*„ + *„•_!). (5.31)

Using the explicit forms of L_ and Li, Eq. (5.28) becomes

= hW^+^
(5.32)

Letting ^ = 4ί, ί2 = 4, Eqs. (5.30) and (5.32) become Eqs. (1.8) and (1.3) respectively;
also Eq. (1.9) is the integrated form of (5.31) (we use w0 = 0 to evaluate the constant
of "integration"). Similarly, Eq. (5.27) is Eq. (2.1).

The compatibility condition of the linear equations (5.21) and (5.27) and of
(5.21) and (5.28) implies the Lax-type equations

Lίk = [L2_* + iL2fc,L], (5.33)

and
[L,l/'_(L)] = l, (5.34)

N

where we have used U(z) = £ tkz
k. Actually it can be shown that Eqs. (5.33) and

fc = 0

(5.34) coincide with Eqs. (5.25) and (5.26) respectively. The proof of this statement
is given in Appendix B. Here we check this fact explicitly for the case N = 2, k = 1:
Using the explicit forms of the relevant operators we find,

(5.35)

1 w).
2 4

Thus, the nontrivial elements of the above commutators are

[Li+iL^LL^^^^w^K-vv^,),

[L2_ +iL2,L]w,π.1 =>;/>,,_! - wπ + 1),
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The above equations and Eqs. (5.33), (5.34) imply Eq. (5.30) and In+1 — In = 1, or
/„ = n (using again that w0 = 0).

The results obtained above show that the partition function Zn(Ύ) can be
represented as

(5.36)
7=1 4

where wn(7) is the common solution of the commuting Lax-type equations (5.33).
It should be emphasized that this wn is the special self-similar solution of (5.33)
satisfying simultaneously the discrete Painleve equation (5.34) supplemented with
the initial data

4/ι
Wo = 0, Wj = -A j = l,2,. . . ,ΛΓ-l. (5.37)

Here, hj are determined successively through (5.3): For instance,

— oo — oo — oo "0

Equations (5.33) are well-known; these are the Volterra-hierarchy investigated
by M. Kac and P. von Moerbeke in 1975 [17] where they discovered the connection
with the orthogonal polynomials as well. The partition function (5.1) appears to
be the τ-function of the Volterra-hierarchy (5.33) calculated on the special self-
similar solution described by (5.34), (5.37). To illustrate this statement consider the
case of the potential U(z) = 4tz2 + 4z4. From (5.2) and (5.30) we have that

d Zn- n^-—--(wπ + 1-f wπ),

— In Zn = wπ +! (wn -f wπ + 2) — w! w2.
dt2

The comparison of these equalities with (3.24) and (3.25) and the arbitrariness in
the definition of the τ-function allow us to identify Zn and τπ. More precisely,

f
ZB(ί) = τ l l(ί)expjfw 1(ί)Λ

In addition to the discrete equations (1.8)-(1.10), the continuous limits (4.1)
and (4.5) to the Pi-equation, also arose in the work of [10,11] where it was stated
that the nonperturbative 2D gravity coupled to minimal conformal strings models,
should be identified with the following double scaling limit of the matrix model (5.1):

β = h-4-2lmC, fc->0; - = (l+δξh4)C2. (5.39)
β

In the above, the integer "w" numbers the models, "£" is a new independent
variable and C l9(5, C2 are some suitable real constants depended on the concrete
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choice of the potential l/(z) (i.e. on the parameters #ι,g25 ) In Λe language of
quantum gravity the variable ξ and constant C2 are the renormalized string
coupling and the critical value of the cosmological constant respectively. The
constant CΊ is fixed by the assumption (5.40b). The constant δ is the scaling
parameter governing the value of coefficients in the limiting equations (5.41).

The authors of [10 and 11] assumed that at the above limits,

ι(ξ)), wΛ ± 1 s p(\ - 2h4'mu(ξ ± Jz2/m)), (5.40)

and then they showed that the discrete equation (5.6) (or (5.34)) for the function
vvn, transforms into the following ordinary differential equation

[H,ΛJ = 1, m = 2,... (5.41)

mfor the function w(ξ); here H = -- - + u(ζ\ and Am is the ^-operator of the
Clίy

KdV equation. For m = 2, Eq. (5.41) coincides with the Pi-equation (1.4), and the
double scaling limit (5.39), (5.40) is just the limit (4.1), (4.5).

The integer m in (5.39)-(5.41) depends on the potential U(z). All potentials
which correspond to the same "m" belong to the so called "wth universal class."
The minimal potential in the mth universal class is an polynomial of order 2m. It
is important that the limiting equation (5.41) depends only on the universal class
of the potential U(z).

The principal question, connected with the double scaling limit (5.39), (5.40),
is how to characterize the solution u(ξ) of the limiting equation (5.41). The answer
to this question for the case m = 2 and for the corresponding minimal potential
U(z) = t1z

2 + t2z
4 follows from the results of Sects. 3 and 4. Actually in this case

the limit (5.39) is a reformulation of the following more fundamental limit [14]

where λc= — -̂  is the critical value of the cosmological constant and λ^λ^ are
the renormalized cosmological constant and renormalized string coupling
respectively. The potential considered in Sects. 3 and 4, is given by U(z) = 4ίz2 + 4z4

z2 λz4

(recall ίj = 4ί, t2 = 4), while the physical case is given by U(z) = — I -- . The change
2 4n

n112

of variables z2 = 4 1 - 1 z2 implies that the two potentials are equivalent, and
\λj

l / n \ 1 / 2

-it) <5 43)

Now we shall show that the physical limit (5.42) implies precisely the mathematical
limit,

considered in Sect. 4. Indeed, ί2 =---»*— (ε1/4Γ5, while ~ = 4λ-^4λc(l -ελ°).
4 λ 4λc r
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Thus Eqs. (5.42) imply Eqs. (5.44), where

h = (f eλ°)ll5εl'\ ξ = - (f)1/5A?e-(4/5)λl (5.45)

It is important to notice that the interesting physical limit involves considering
00 λ

integrals of the type f e~(*2/z}~(λ/4n)**dz9 where -<0. Our suggestion is to
-oo n

analytically continue these integrals and to consider instead,
OD ooe'π/4 ooe- ί π/ 4

J -»»ι ί -*3 ί (5-46)

It is clear that there exists a one parameter family of analytic continuations
depending on the "regularization" parameters

PEE -A (5.47)

Following the results of Sect. 4.2, we find, at the continuous limit, a one parameter
family of the PI function u(ξ). This family can be uniquely characterized by its

2π
asymptotics on the ray arg ς = π :

= *-f, (5.48)

where
/ / 7 \ A / o n

(5.49)

-oo, (5.50)

/8π W 1+P
v

Also, for real ξ

where /8

i + p

Also, using the formulae (A.8), (A. 10) where one should put

i ip
01 =

4 ' ^ ** -<1 +p l+p

it is possible to describe the behavior of u(ξ) on all others "nonlinear" Stokes rays,
2π 4π

that is arg ξ = π + — , π ± — .

Another example of a potential from the second (m = 2) universal class is given
by the potential

(7(z) = ί1z
2 + ί2z

4 + ί3z
6. (5.52)
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In this case one finds [23] that the values of constants C l 9C2,^,p are:
2

p
\ δ l=

15g2 4 2Δ

where qί9q2 satisfy the inequalities

q1<0, 0^5g2 <4g2. (5.53)

Thus in this,case the relevant integrals converge and there appears no need for
analytic continuation of the initial data (5.38). Nevertheless, following the methodo-
logy developed in Sects. 3, 4 one finds that the asymptotic representation (5.40) is
consistent with the initial data (5.38) only if Eq. (5.38) is modified as in Eq. (5.46):

oo ooe f π/ 3 ooe~ ί π / 3

ί ->*ι ί -*3 ί - (5.54)
— oo — oqe ίπ/3 — ooe"'7 1/3

After this modification the corresponding Pi-function u(ξ) is described by the same
formulae (5.48)-(5.51).

Remarks.
(a) In order to have real solution u(ξ) (and real initial data (5.38)) one needs

(b) The dots in (5.50) mean a perturbation series of the form ]Γ cz(— x)1 / 2~5 / / 2

1=1
(see [12]). The parameter y describes the nonperturbative effect. This effect is
absent (as it follows from (5.51)) only for the case p=l.

(c) The fact that it is impossible to obtain the asymptotics (5.40) (for m = 2)
without the modification (5.54) confirms results of [24]. The "triply truncated"
solution of PI considered in [24] corresponds in our notation to the case p — 0.

In the case 5q2 = 4g2 it was shown in [25] that the potential (5.52) belongs to
the third class of universality, e.g. m = 3. In this case instead of (1.4) one finds the
equation

— uξξξξ + 2Quuξξ + 10(wξ)
2 — 40w3 = 5ξ, (5.55)

and the following asymptotic behavior for u(ξ):

u(ξ) = —1£1/3, ξ -> ± oo. (5.56)

It was claimed in [25] that this asymptotic defines the solution u(ξ) uniquely. This
was proved in [15] by the isomonodromic deformation technique. Using the results
of [15] and the method described above one can verify that in the case 5q2 = 4q2

the solution of (5.6) with initial data (5.38) (without any modification!) actually
has asymptotics (5.40) with u(ξ) described by (5.55), (5.56).

We note that since y does not depend on the parameters ql9 q2 the "universality"
of the solution for the class of potentials (5.52) also takes place. It should also be
mentioned that our calculations indicate that for all even m a modification of the
type (5.54) must be performed if one wants to obtain for the solution of (5.34) the
asymptotic behavior (5.40). At the same time it seems that the theories with odd
m do not require this modification. We expect that our scheme for calculating the
nonperturbative effects (parameter y) can also be applied to the odd case. To
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achieve this one needs the description of the solutions of (5.55) in terms of the
corresponding monodromy data (in analogy with the case of Eq. (1.4) studied in
[22]). This description has been obtained in [28]. In this paper the nonperturbative
term in the asymptotics (5.56) was also calculated:

1 1 /5Y / 8
L -1 '•» ' ^ * c- 1/4

2 ./πV6

00.

Appendix A

According to the isomonodromy method the main role in the investigation of the
Pi-equation (1.4) is played by the second equation in (4.12). This equation has two
singular points; a regular singularity at η = 0 and an irregular at η = oo. Following
[22] we shall introduce the monodromy data for the second equation in (4.12) as
the set of Stokes matrices Gp jeZ, defined by the equations

Here Yj(κ\ je% are the canonical solutions determined by the asymptotics

in n - - a r g κ < U + - (A.2)

The Stokes matrices (Ey have the usual triangular structure

l **+Λ (Γ ί l

1 ]> 0*21 = \ 1

1 / \g2ι I
and they satisfy the relations

<BJ+5 = σ1CJσ1, yeZ; G^G^G^iσ^ (A.3)

This implies that the monodromy data for the second equation in (4.12) can be
parametrized by the Stokes multipliers {#/}?= 1 connected by the relations

(A.4)

The monodromy data {0J J provide a parametrization of the solutions of the
Pi-equation (1.4). An alternative parametrization is provided by the asymptotic
characteristics of the solution u(ξ) on one of the "nonlinear Stokes rays," given by

2π 4π
π, π±— -, π±— -.

«? o
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The main result of [22] is the calculation of the explicit form of the connection
between these two parametrization. In particular, for the special case

05 = 0 (A.5)

and, as a consequence,

03 = *, 02 = *, 04 + 01=*', (A.6)

the following asymptotic behavior for u(ξ) has been obtained:

•*•/*• , <*^ i _ / β / I V I \s I 4* \ - , 1 IO- 1/8

%π\3,

~1/8), (A.7)

-iπ/20 / 9 \ l / 8

178). (A.8)

Moreover, in [22] using ideas based on the analytical continuation of the
asymptotics (A.7), (A.8), the following description of the asymptotics of the solution
u(ξ) on the ray arg ξ = π is proposed:

(A.9)

4π
The behavior of the function u(ξ) on the rays arg ξ = π + — is more complicated.

It depends on the combinations

and 1 + igA rayargξ = π-h — j. (A.10)

For example, if 1 + ig^ = 0 (i.e. g1 = i,g4 = 0), the asymptotics of u(ξ) on the rays
_4π

arg ξ = π + — are the following:

4π
-:
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4π
π + — :

Γi8/3\ 1 / 4 1
l£Γ 1 / 8 exp I m l£|5 / 4

(.5 \2J J

For details and explicit formulae for the cases 1 + ig1 > 0 and' 1 + ig4 ^ 0 we refer
to [22].

As it follows from the asymptotic formulae (A.7-A.11), in the case g5 = 0 = 04,
g1 = g2 = g3 = f we obtain the so-called "triply truncated solution," the solution
having infinitely many poles only in the sector |π < arg ξ < f π.

Appendix B

Here we prove that the Lax-type equation (5.34) coincides with equations (5.26).
Similarly it can be shown that Eq. (5.33) coincides with Eq. (5.25).

The equalities

imply
[L, U'_ (L)]n>m = [L, £/'(L)Lfm = 0, V n * m.

Also for the diagonal elements we have

(LV'_(L))ntΛ = Ln9n+ι(V'_(L))n+ l t n = (U'_(L))n+ltΛLntn+ , = (U

so Eq. (5.34) can be rewritten as

/B+ ι - / Λ = l , (B.I)

where we introduce the notation

/B = (t/'_(L)L)Π,B.

The right-hand side of (5.26) can be transformed as follows:
2n

X 2ktkL% = (U'(L)L)m = l/'(LU_ !LΠ_ 1-Π + U'(L)Π,B+ jLΠ + 1>n
Λ = l

= [/'(L)n,n- ι^n_ l ιn + Ln,n+ ! t/'(L)n+ M = (C/'_(L)L)n,Π + (Ll/'_(L))n>n)

hence Eq. (5.26) can be rewritten as

1^ + 1,= I + 2n. (B.2)
Note that

)̂ ^
This equation shows that /0 = 0 implies w0 = 0. Also, /0 = 0 together with the
condition w0 = 0 for n<0 implies that both (B.I) and (B.2) coincide with
In = n,n^Q.
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