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Abstract. We show that Witten's open string diagrams are surfaces with metrics
of minimal area under the condition that all nontrivial open Jordan curves
be longer or equal to π. The minimal area property is used together with a
mini-max problem to establish a new existence and uniqueness theorem for
quadratic differentials in open Riemann surfaces with or without punctures on
the boundaries. This theorem implies that the Feynman rules of open string
theory give a single cover of the moduli of open Riemann surfaces.

1. Introduction and Summary

The open string field theory proposed by Witten [Wi] is based on a single
interaction joining three open strings. This interaction gives a simple set of
Feynman rules that build string diagrams. A string diagram is a Riemann sur-
face with a choice of analytic coordinates at punctures. In open string theory the
Riemann surfaces are surfaces with boundaries, and the punctures, that must lie
on the boundary components, represent the external open strings. Typically, if we
endow a Riemann surface with a suitable metric, it is possible to extract analytic
coordinates around the punctures. This is the case for the string diagrams of
[Wi], which are conveniently described in terms of metrics.

A necessary condition for the consistency of open string theory is that the
Feynman rules construct string diagrams that provide a single cover of all relevant
moduli spaces. While there is a fair amount of evidence [Wi, GMW, Gi, Og, BS,
Sa], and it is widely believed to be the case, we lack a complete proof. This
important point has been correctly emphasized by Samuel [Sa]. Not only we are
missing a complete proof, but also a proper understanding of why it works. As
we have learned in closed string theory, the fact that a set of Feyiμnan rules work
well at the classical level, namely, produce a single cover of moduli spaces of
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genus zero punctured surfaces, does not guarantee that they will work for higher
genus surfaces. Thus gauge invariance of the classical theory does not explain
why Witten's theory gives a single cover of moduli space to all genus. Physically
one expects correct covering to all genus if the path integral measure is BRST
invariant. It is not yet clear, however, whether or not the path integral measure
of [Wi] is BRST invariant [Th].

One way to understand why string diagrams give a correct covering of moduli
space is to find a principle that defines for any given Riemann surface a unique
string diagram. Such principle guarantees that the set of all inequivalent string
diagrams give a single cover of moduli space. Overcounting cannot happen
because it would imply that there exists more than one string diagram for a given
Riemann surface, in contradiction with uniqueness. No surface can be missed
since for any surface there is a string diagram, which must therefore be included
in the set of all string diagrams. It must also be checked that the Feynman
rules construct all string diagrams precisely once. All in all, this shows that the
Feynman rules give a single cover of moduli space.

In this sense, light-cone diagrams work because they are the unique solution
to the problem of finding a meromorphic abelian differential of specified residues
and with pure imaginary periods [GW]. Similarly, the polyhedral diagrams [SaZw,
KKS] of classical closed string field theory work because they are the unique
solution of a problem that asks for the metric of minimal area under the
condition that any nontrivial closed curve be longer or equal to 2π [Zwl], This
same minimal area problem seems to define the string diagrams and Feynman
rules of the full quantum closed string theory [Zw2].

In this paper we show that the open string diagrams of Witten are also the
unique solutions of a new minimal area problem. The minimal area problem asks
for the metric of minimal area under the condition that all nontrivial Jordan open
curves (curves without self intersections) be longer than π. In fact it will be quite
straightforward to show this is the case. This property explains why Witten's
string diagrams do not overcount. In order to show that no surface is missed
we have to show existence, namely, that this minimal area problem always has a
solution, which, in fact, is a Witten digram. This second part is much harder to
prove but turns out to be very instructive. It is almost a miracle that the solution
of this minimal area problem is always given by a quadratic differential. It is well
known that quadratic differentials arise from minimal area problems in which
we impose length conditions on curves homotopic to a set of nonintersecting
Jordan curves [St]. Nevertheless the set of all nontrivial Jordan open curves in
a surface is an infinite set of surves with intersections! The proof explains why
the metric arises from a quadratic differential, and illuminates why dealing with
open curves is much simpler than dealing with closed ones. The end result is a
new existence and uniqueness theorem for quadratic differentials. This theorem
implies that the Feynman rule of open string field theory give a single cover of
moduli space.

The earlier work on the open string diagrams of [Wi] began with Ref. [GMW]
who elucidated to a large degree the structure of the string diagrams, and gave an
argument to show that one has a single cover for Riemann surfaces one boundary
and no punctures. This argument was subsequently extended in [Gi] to the case of
several boundary components and no punctures. Actually these particular results
follow directly from StrebePs existence and uniqueness theorem for quadratic
differentials of specified heights [St]. We will explain how this happens, and in
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this way simplify the discussion of [GMW, Gi]. For the case of surfaces with
punctures at the boundary, the nature of the peoblem is somewhat different and
no known theorem seems to apply.1 This is actually not surprising. Quadratic
differentials on open surfaces are typically studied by doubling. Open string
tree level diagrams when doubled give closed string diagrams, whose quadratic
differentials have closed trajectories and both punctured disks and intermediate
annuli. The existence and uniqueness theorem for quadratic differentials with both
punctured disks and annuli, was only established recently [Zwl] by combining
earlier theorems of Jenkins and Strebel. While there are no complete proofs, two
kind of arguments have been given that suggest strongly that things ought to
work for surfaces with boundaries and punctures. In the first on [Gi], one argues
that the vacuum diagrams define string diagrams with punctures by factorization;
it seems possible to turn this into a rigorous argument for the existence of an
open string diagram for any punctured surface (although uniqueness would not
follow immediately). In the second one [BS], one argues that BRST invariance is
clear since all Feynman graphs match properly and produce correct singularities
in the open string sector.

We will assume some familiarity with quadratic differentials and with [Zwl].
Background material for the present paper can be found in [Zw3], where we give
some simple theorems relating homotopy classes of open and closed curves, and
discuss the issue of regularization of the area for open surfaces with punctures.
The necessary results will be quoted. In that work we discuss a different minimal
area problem for open string theory, one yielding at the quantum level string
diagrams that are manifestly factorizable both in open and closed string channels,
and that lead to an action that satisfies manifestly the full Batalin-Vilkovisky
master equation [Zw4] (the open string diagrams of [Wi] do not satisfy those
properties).

The problem studied here defining open string diagrams can also define string
diagrams when there are closed strings present in the open Riemann surface. This
leads to a remarkable simple way of introducing closed strings into the open
string formalism of Witten, giving a single copy of moduli space. In contrast
with the theory proposed in [Zw4], this latter theory does not seem to be as
fundamental since the closed strings must be on-shell. As a way to generate
moduli space, however, the Feynman rules are as simple as can be. These results
will be presented in [Zw5].

Brief Sketch of the Results. Our basic result is an existence and uniqueness
theorem for a special type of quadratic differentials on Riemann surfaces with
at least one boundary component. These quadratic differentials, denoted as open
string quadratic differentials are defined as follows.

Definition. An open string quadratic differential on a Riemann surface R with at
least one boundary component, and possibly punctures on the boundaries is a
quadratic differential whose singularities are zeroes, and second order poles at the
punctures. Its characteristic domains are rectangular strips, finite or semi-infinite.
The strips are covered by open horizontal trajectories of length π. The boundaries
of the strips are horizontal edges, corresponding to critical horizontal trajectories
(two or one if the strips are finite or semi-infinite, respectively) and two vertical

1 As a consequence, the commonly made claim that open string theory gave a cell decomposition
that was previously known appears to be incorrect
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trajectories. The strips are joined together along their horizontal edges with all
zeroes of the quadratic differential at the midpoint of these edges. The endpoints
of a horizontal edge are never identified. The vertical edges of the strips are left
open and make up the boundary of R. (The double of an open string quadratic
differential is a JS quadratic differential).

Our main result is a theorem establishing the existence and uniqueness of
open string quadratic differentials and their relation to a minimal area problem:

Theorem 4. Given a Riemann surface R with at least one boundary component and
possibly punctures on the boundary (except for the disk with one or no punctures)
there is a unique open string quadratic differential on R. This quadratic differential
gives rise to the metric of minimal area under the condition that all nontrivial
Jordan open curves on R be longer or equal to π.

A simple consequence of this theorem is the desired physical result establishing
that.

Theorem 5. The Feynman diagrams of open string theory give a single cover of the
moduli spaces of Riemann surfaces with b > 1 boundaries and m > 0 punctures.

Brief Sketch of the Proof Most of our work in the present paper is devoted to
make the following arguments precise. It is simple to understand why the open
string diagrams solve the advertised minimal area problem. Given a flat strip of
height T and width π, as shown in Fig. 1, the flat metric ρ = 1 (recall dl = ρ\dz\)
is actually the metric of minimal area under the condition that any curve γ with

Fig. 1. A rectangular region in the z-plane, of parameter height T and parameter width π. The flat
metric ρ — 1 gives the minimal area metric under the condition that any curve γ with endpoints on
the vertical segments be longer or equal to π

endpoints at the two vertical edges be longer or equal to π. But in fact the open
string diagram is made up of strips. It can be shown that in open string diagrams,
on every strip, open curves going from one boundary to the other, are nontrivial.
Under the length condition on those curves alone, the string diagram gives the
least possible area. Thus one only has to verify that all other nontrivial open
curves are longer than π, and this is fairly obvious.

In order to tackle the existence of the string diagram, we first study a class of
quadratic differentials that are mirror symmetric. Throughout this paper R will
denote on open Riemann surface, R*, will be its mirror image, and R will be the
doubled surface, made by gluing R and R* across their boundaries. We choose an
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admissible set of open curves in R (nontrivial Jordan curves that to not intersect
nor are homotopic to each other). By doubling we get a mirror symmetric
admissible set of closed curves in JR. We pose the problem of minimizing the area
of R under the condition that any curve homotopic to one in the admissible set
be longer or equal to 2π. The answer is a metric arising from a Jenkins-Strebel
quadratic differential having both punctured disks and internal annuli [Zwl]. It
is nice that the closed curves in R representing the boundary components of R
appear as geodesies on the metric defined by the quadratic differential. Due to
the mirror symmetry, in each cylinder the boundary components of R appear as
vertical trajectories of the quadratic differential splitting each cylinder into two
rectangular strips of width π. This shows that R is built by joining strips. But
this is not enough in order to have an open string diagram, and at any rate this
could not be the answer since there is an infinite number of choices for the open
curves on R, yielding many (or possibly infinite) different quadratic differentials.

The solution is to try all possible choice of curves in R, get all possible
quadratic differentials, and choose the one of largest area. It will be shown
that this quadratic differential is unique, and yields an open string diagram.
Choosing the quadratic differential of largest area guarantees that any nontrivial
open curve homotopic to a critical trajectory must be longer than π. Otherwise,
the double of the curve could be added to the admissible set, and we would
find another quadratic differential of even larger area. This length condition on
open curves is very powerful. It allows us to rule out the possibility that the
boundary of R lies on a critical (horizontal trajectory. This is simply because
on each boundary of a ring domain we already have two points corresponding
to boundaries of R, any other piece of R appearing on this critical trajectory
will give rise to a short nontrivial open critical curve joining the two boundaries,
which is not permitted. It also allows us to show that the boundaries of R cannot
hit zeroes of the quadratic differential. The patterns of gluing of the horizontal
edges of the open strips are therefore severely limited. For example there cannot
be self-identification of segments, because we would get a critical open curve
shorter than π. A little thought shows that only the symmetric gluing patterm of
open string diagrams, with zeroes at the midpoint of the horizontal segments is
allowed.

2. Open String Diagrams as Minimal Area Surfaces

In this section we begin by describing the Feynman diagrams of the open
string field theory [Wi]. We think of a Feynman diagram as a collection of
data (lengths of propagators, and parameters of the graph) which determine a
Riemann surface. Each Feynman diagram defines a surface with a canonical
metric, and a canonical quadratic differential, which will be denoted as an
open string quadratic differential These quadratic differentials were discussed in
[GMW]. Moreover given a surface with an open string quadratic differential
we can canonically obtain a Feynman diagram. The above define maps between
the set of inequivalent Feynman graphs and the set of inequivalent open string
quadratic differentials. We will see that the maps define an isomorphism between
these two sets. As explained in detail in Sect. 2.1 of [Zw3], this fact, together
with an existence and uniqueness proof for open string quadratic differentials,
to be proven later, guarantees the single cover of moduli space. We also show
that the open string diagrams are surfaces with a metric of minimal area under



198 B. Zwiebach

the condition that all nontrivial Jordan open curves be longer or equal to π.
A nontrivial open curve is one that cannot be continuously shrunk away while
keeping its endpoints on the boundary components of the surface. The endpoints
cannot be moved across punctures lying on the boundary (for more details on
nontrivial open curves see [Zw3]). The minimal area property is actually simple
to prove, and it is useful because, even without the existence and uniqueness
theorem, it already guarantees that there cannot be overcounting. Moreover, we
will also use it to prove the uniqueness part of the existence and uniqueness
theorem for open string quadratic differentials.

Let us begin with the Feynman diagrams. The covariant open string field
theory of [Wi] is based on a single three string vertex and a propagator that
consists of flat rectangular strips of width π and length T with T e [0,oo]. The
vertex joins three such strips symmetrically creating a singularity of total internal
angle equal to 3π at the midpoint, as illustrated in Fig. 2a, b. While this is the only

a b e
Fig. 2. a The Witten vertex for three open strings joins symmetrically three strips of width π. The
strips, labeled 1, 2 and 3 are glued via the segments AOB, BOC and CO A which correspond to critical
horizontal trajectories. Point 0 is the midpoint of these segments, b The total internal angle at 0 is
3π since every strip contributes an angle π. Point 0 is a first order zero of a quadratic differential, c
When n strips are joined symmetrically we have a zero of the quadratic differential of order (n — 2)

elementary vertex, when propagators joing different vertices collapse (T — 0),
we effectively get situations where more than three strings join symmetrically.
Thus in all generality, the string diagrams include configurations in which n > 3
strings join as illustrated in Fig. 2c. Here the singularity created at the midpoint
corresponds to a neighborhood of total internal angle nπ. External open string
states are represented by semi-infinite strips. We will always think of the strips as
a rectangular region in the z plane with corners z = 0, π, iT and iT + π (Fig. 1).
The horizontal edges, from z = 0 to z = π and from z = iT to z = iT + π
are to be glued to other strips using the gluing patterns of Fig. 2. The vertical
edges are left open and correspond to the boundary components of the surface.
The Feynman diagram is the pair (R,D), where D is the data concerning the
propagator times, and the way they are joined to each other, and R is the resulting
Riemann surface. To each Feynman diagram we can find a string diagram (R, ρ)
(a surface with a metric, expected to give local coordinates) by defining ρ = 1
(recall dl = ρ\dz\) on every strip. This is just the flat metric.

In fact this metric arises from a quadratic differential. We can therefore asso-
ciate canonically to each Feynman diagram a string diagram (R,φ), as follows:
on every finite strip, such as that of Fig. 1, the quadratic differential is defined of
the form φ = φ(z) (dz)2 = (dz)2. Thus, the vertical edges correspond to vertical
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trajectories of the quadratic differential (φ is real and negative). The horizontal
edges of the strip are horizontal trajectories (φ is real and positive). It is possible
to glue the strips as indicated in Fig. 2 and get a quadratic differential on the
whole surface. The singularities are the zeroes of the quadratic differential, and
the order of a zero is given by (n — 2), where n is the number of strips that
are glued together. Indeed, the familiar pattern of three strips joining symmet-
rically corresponds to a first order zero of a quadratic differential, with the
correct value of 3π for the total angle. Therefore the horizontal edges of the
strips are critical horizontal trajectories (horizontal trajectories that go through
critical points). For the semi-infinite strips, all of the above holds, the only dif-
ference is that there is just one horizontal edge. The horizontal edge can be
chosen to be the horizontal line joining z = 0 to z = π, and the vertical edges
go from this point down the imaginary axis all the way down, as shown in Fig. 3a.

a b
Fig. 3. a A semi-infinite strip of width π. The horizontal line extending from zero to π (shown with
arrows) is a critical horizontal trajectory, b This strip can be mapped to a half-disk, the point at
w = 0 corresponds to the puncture

When the string diagram is built, horizontal edges become critical trajectories,
and zeroes appear at z = π/2. Note that the strip can be mapped in an unique
way into the half disk \w\ < l,Im(w) > 0 (Fig. 3b) via w = — exp(—iz). The w
coordinates are the standard analytic coordinates around the puncture (w = 0).
This is the way to extract coordinates from the flat metric, or the quadratic
differential on the surface. The puncture corresponds to a second order pole
of the quadratic differential, since one verifies that in w coordinates (where the
puncture is at a finite point) the quadratic differential is φ = — (dw)2/w2. The
horizontal trajectories in the above quadratic differential are all of length π and
have boundary endpoints. It we double the surface, and extend the quadratic
differential to the double (this can be done since the quadratic differential is real
along the boundaries), we obtain a quadratic differential with closed horizontal
trajectories of length 2π. Each finite strip becomes a finite cylinder, or annulus,
and every semi-infinite strip becomes a semi-infinite cyclinder, or a punctured
disk, with a second order pole at the puncture. All of this establishes that we
have an open string quadratic differential (see the definition in Sect. 1).

Our previous discussion shown that there is a map ψ from the set £F of
inequivalent Feynman diagrams of open string theory into the set 9* of inequiv-
alent string diagrams (JR, φ), where φ is an open string quadratic differential. It
is also clear that an open string quadratic differential defines a unique Feynman
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diagram; the horizontal foliation determines for us all the strips. To each finite
strip we associate a propagator of length equal to the height of the strip, and
to each semi-infinite strip we associate an external state. This defines a map
\p~ι \Sf ι-> 3F. By their explicit definition it follows that ψ and ψ~x are inverses
of each other. We therefore have the desired isomorphism between the sets 3F
and £f. The Feynman diagrams produce a single copy of all possible open string
quadratic differentials. Two different Feynman diagrams produce two different
open string diagrams.

Having established the desired isomorphism, let us turn to the minimal area
property. We first need some results on the open string diagrams. There is a
useful curve ^m in open string diagrams [GMW]. On every strip it runs parallel
to the boundary in the middle of the strip cutting it into two equal halves, It has
self-intersections at every vertex, and goes to infinity in every semi-infinite strip.

Lemma 1. On any open string diagram the following properties hold:
(i) // the string diagram is cut along the curve ^m we obtain a cylinder of height

π 12 for each boundary component without punctures, and m infinite strips of height
π/2 for each boundary component with m punctures.
(ii) On every strip in the string diagram a Jordan open curve joining the two

boundaries of the strip is nontrivial.
(iii) Any nontrivial open curve in the open string diagram is longer or equal to π.

Proof, (i) The result is clear and we refer the reader to Fig. 4 to understand the
meaning of the statement, (ii) The open curve is homotopic to an open horizontal
trajectories γ on the strip. The double of y on the doubled string diagram is a
core curve in a ring domain. Such core curve in a meromorphic JS quadratic

Fig. 4. A string diagram representing a surface with two boundary components, one with no punctures
and the other with three punctures. We also show the curve ^m cutting each strip in the middle. The
cut surface includes one cylinder of height π/2 and three infinite strips of height π/2

differential is always nontrivial (it represents one of the curves in the admissible
set of curves, see [St]). If the double of y is nontrivial, y has to be a nontrivial
open curve (Lemma 6, in [Zw3]). Therefore the original open curve is nontrivial.
(iii) Any open curve that does not cross ^m must be trivial. This is clear because
of (i). If the open curve does not cross ^m it begins and ends on the same
boundary component. It must lie completely in one of the cylinders or infinite
strips of (i). It can therefore be shrunk away. As a consequence any nontrivial
open curve must cross # w . Since the shortest distance between a boundary point
and Ήm is π/2, this shows all nontrivial curves must be longer or equal to π. D

The above properties will allow us to show that the open string diagrams do
solve the following minimal are problem:
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Theorem 1. An open string diagram for a Riemann surface with boundaries and
m > 0 punctures on the boundaries gives the metric of minimal area under the
condition that all nontrivίal Jordan open curves are longer or qual to π.

Proof Because of Lemma 1, (iii), we know that on the open string diagram all
nontrivial Jordan open curves are longer or equal to π. The length conditions
are therefore satisfied and we only have to show that the area cannot be made
smaller. Imagine the surface cut into the strips of the open string diagram. If
there is a metric of lower area it must have lower area at least on one of the
strips. Nevertheless this is impossible. On any strip the curves going from one
boundary to the other are nontrivial (Lemma 1, (ii)) and must be longer than
π. But under that condition the original flat metric on the strip is already of
minimal area, so its area cannot be lowered. D

Having explained why the open string diagrams are minimal area metrics let
us show why this already guarantees that no overcounting takes place. We first
need the following lemma.

Lemma 2. // two open string quadratic differentials on a surface R give rise to the
same metric they must be identical

Proof Suppose two quadratic differentials φ\ and φi give rise to the same metric:
\φι(z)\ = |02(^)| Then the two quadratic differentials can only differ by a phase
φ\(z) = Qxp(ίθ(z))φ2(z). But then this phase can only be a constant. The constant
phase can be evaluated along a boundary component of R. There both quadratic
differentials must have the same phase, since both must have a vertical trajectory.
Thus the two quadratic differentials must be identical. This establishes the lemma.

It follows that two different Feynman diagrams, which construct different open
string quadratic differentials, must construct different metrics. By uniqueness of
minimal area metrics [St,Zwl], two different metrics must correspond to two
different surfaces. As a consequence, two different Feynman diagrams cannot
yield the same surface, and there is no overcounting.

3. Vacuum Graphs From QDS of Specified Heights

The discussion in Sect. 2 guarantees that the open string diagrams do not over-
count but we still have not shown that they do not miss some surfaces. In order to
show this we have to establish that for any surface there is such a string diagram.
For surfaces without punctures this is guaranteed by StrebeΓs height problem.
We look at this case next. The case of surfaces without puncture was analyzed
explicitly in [GMW], and the arguments presented there are remininscent of the
proof given in [St].

It was shown by Strebel [St, p. 107, Theorem 21.1] that given a Riemann
surface with an admissible set of curves on it (a set of nontrivial, nonintersecting
and nonhomotopic simple Jordan closed curves) the surface can be built in a
unique way by gluing together cylinders of specified heights, one for each curve in
the admissible set. The circumferences of the cylinders and the lengths of gluing
segments give the modular parameters. This theorem applies both the surfaces
with and without boundaries [St, p. 116]. The case of a disk is excluded.

For the case under consideration, namely, of a surface with boundaries and
no punctures we pick an admissible set of curves as follows. For each boundary
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component we pick a closed curve homotopic to it. We therefore get as many
curves as boundary components of the surface, except for the case when the
surface is an annulus, where we get just one curve. These curves are nontrivial,
can be chosen to be nonintersecting, and are nonhomotopic, therefore they make
an admissible set. The height condition is simple, we demand that all ring domains
have heights equal to π/2. In each cylinder, one boundary represents a boundary
component of the Riemann surface and the other boundary is glued with similar
boundaries in the other cylinders. Whenever we glue two such boundaries across
a gluing segment, we get a strip of total width π and height equal to the length
of the gluing segment. Note that the singularities induced by the gluing happen
on the midpoint of the strips, namely, a distance π/2 away from the boundaries
of the surface. The end result is a surface built with strips of width π in the
way described in Sect. 2. This shows the existence of open string diagrams for
Riemann surfaces with boundaries but no punctures.

4. A Class of Mirror Symmetric QDS

Let us now begin our analysis of existence of open string quadratic differentials,
as we defined them in Sect. 1. The first step will be to study an interesting class of
quadratic differentials on Riemann surfaces with boundaries. We will obtain those
from mirror symmetric admissible systems of curves on the doubled surface. It
will be shown that these quadratic differentials are mirror symmetric, and satisfy
a number of properties. In Sect. 5 we will show how to choose a special quadratic
differential from this class. That special quadratic differential will be shown to
be an open string quadratic differential in Sect. 6.

Consider a Riemann surface R with boundaries and possibly punctures on the
boundaries, its mirror image R* and its double R. A mirror symmetric admissible
set in R includes a closed curve surrounding each puncture and a set of closed
curves % These closed curves are obtained by doubling a set of open curves ji
in R. The set of curves y\ is a set of nonintersecting, nontrivial homotopy simple
Jordan open curves, not homotopic to punctures, nor to each other. Recall that
an open Jordan curve has no self-intersections and only its endpoints lie on
boundary components.

Let us verify that the admissible sets of curves in R are consistently defined.
This requires that all the closed curves be nonintersecting simple Jordan closed
curves of nontrivial homotopy not homotopic to each other. All the closed curves
are clearly simple Jordan closed curves, and do not intersect each other. They are
of nontrivial homotopy since they are made by doubling nontrivial open curves,
and cannot be homotopic to each other (see [Zw3, Lemmas 6 and 8]).

For each mirror symmetric admissible set we can now pose a minimal area
problem. We demand least (reduced) area under the condition that any curve
homotopic to one in the admissible set be longer or equal to 2π. As shown in
[Zwl], the minimal area metric arises from a Jenkins-Strebel quadratic differential
whose characteristic ring domains include both annuli and punctured disks. Every
closed horizontal trajectory is of length 2π and the quadratic differential has
second order poles at the punctures. We shall define this to be the quadratic
differential based on a mirror symmetric admissible set of curves. Such quadratic
differentials are studied next.

Theorem 2. The following properties hold for a quadratic differential φ based on
the mirror symmetric admissible set of curves in R:
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(i) It induces on R a metric invariant under the antίconformal map exchanging R
and R* in R.
(ii) It induces on the open surface R a quadratic differential for which the boundary

components of R are real trajectories. On every ring domain in R the boundary
components of R appear as vertical trajectories cutting the ring into two identical
rectangular strips of height π.
(iii) The boundary of R as it appears in a ring domain cannot hit the boundary of
the ring domain and become immediately part of that boundary.

Proof (i) If the metric ρ were not invariant, the anticonformal map would yield a
new metric ρ* on JR of the same total area. We claim that the metric ρ* satisfies
the same length conditions as the metric ρ did. Consider any closed curve y
homotopic to the closed curve % of the admissible set: y « %. The length lγ(ρ*)
of y in the metric ρ*, is clearly equal to the length ly*(ρ), of y* (the image of γ)
in the metric ρ. Since y « yu it follows that y* « γ*9 however, the latter curve,
by construction is invariant under the map, and as a consequence y* « %. It
therefore follows that /y(ρ*) = ly*(ρ) > 2π, and indeed the matric ρ* is seen to
satisfy the length conditions of the minimal area problem. Since the area of R
is the same, and minimal, with both metrics, the uniqueness of minimal area
metrics implies ρ = ρ . D

(ii) Any quadratic differential in Φ^ will have semi-infinite tubes of circumference
2π at the punctures, and internal annuli corresponding to finite cylinders of
circumference 2π whose core curves are homotopic to the curves in the specified
admissible set of curves (as usual, all annuli may not be realized, since some may
collapse). Our first step will be understanding how the boundary components of
R, which are a disjoint set of closed curves #,- in R, appear on the cylinders of
the quadratic differential.

Any curve in the admissible set can clearly be chosen so that it intersects the
set of curves #,- at only two points. For a curve homotopic to a puncture, the
two intersection points lie on the same component of ^ . For some other closed
curves the intersection points may lie in different components of #,-. It follows
that any curve homotopic to one in an admissible set must intersect the relevant
boundary components(s) at least two times. Let us consider one of the cylinders
of the quadratic differential. Since any closed curve in it must intersect the curves
y>i in two points at least, the relevant pieces from ^ must appear as two curves,
each one extending from one boundary of the cylinder to the other, as shown in
Fig. 5. The two curves, denoted as %>a and ^ in the figure, cannot intersect each
other and do not have self intersections (since they do not that on R).

A

Fig. 5. A ring domain in a quadratic differential arising from a mirror symmetric admissible set of
curves on the double R of R. The curves # f l and #& are boundary components of R, they will be
shown to be geodesies
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Let us first show that the curves ^a and #& must be geodesies of the flat
metric in the cylinder. If these curves are not locally shortest then there exist
two points Pi and P2 on the curve through which there is a straight segment
shorter than the length of the curve in between these two points (Fig. 5). This
shortest segment is unique. Its image under the anticonformal map relating R and
R* in R must yield another segment of the same length between the same two
points. The uniqueness of the segment implies that the segment must coincide
with the boundary component of R. Thus the boundary of R is locally shortest,
namely, a geodesic. It is also necessary to show that no additional segment %>c

of a boundary component can appear on this cylinder. If it did, it must also be
a geodesic and cannot intersect %>a or #&, so it must also go from one boundary
to the other one on the cylinder. In fact such extra boundary segments, if they
would appear at all, would have to appear in pairs (so that they would cut the
cylinder into connected pieces that belong alternatively in R and R*). Consider
Fig. 6, where we show the three boundary segments, and an open curve, which is

Fig. 6. We need to rule out the possibility that an additional curve # c representing a boundary
component of R could appear in the cylinder

part of a core geodesic on the cylinder, going through Pi, P 2 and P3. Under the
antiholomorphic map we should get another open curve of the same length and
going through the three fixed points P, . But this is impossible since near Pi and
P3 the map must look like a reflection, and the new curve cannot go through P2.
This is a contradiction, and shows that only two boundary segments can appear
on a cylinder.

Let us now see why any geodesic core curve in the cylinder must be divided
into two pieces, each of length π, by the boundary segments. The situation is
illustrated in Fig. 7, where we see the two boundary segments ^a and ^ dividing
the cylinder into two regions, one in JR and the other in R*. Consider now a core
curve; it is cut by the boundary segments into two pieces. Take one of the pieces

p*

Fig. 7. We must show that the boundary components of R, namely ^a and ^ divide the ring domain
into two identical rectangular strips of width π
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of the core curve; it is a geodesic, so its image under the map must also be a
geodesic between the two endpoints. The only other such geodesic is the other
segment of the core curve. Therefore these two segments are mapped into each
other, and they must have equal lengths (= π).

Let us finally show that the core curves and the boundary segments must be
orthogonal to each other (this shows that the boundary segments cannot twist
around the cylinder). Suppose they are not, as illustrated in Fig. 7. Consider the
point P lying on the core curve, near the intersection point Q, and its image P*.
Clearly, IPQ = IP*Q. NOW consider a point Pi on the boundary segment, also near
Q. The image of the segment PP\ must be the segment P*Pi, which is of different
length unless the core curve and the boundary segment are orthogonal. Since
the core curves are the closed horizontal trajectories of the quadratic differential,
the boundary segments are vertical trajectories of the quadratic differential. This
argument is simply equivalent to saying that the map exchanging R and R* is just
a reflection about the boundary components. It applies as well to semi-infinite
cylinders (corresponding to the punctured disks), thus we have shown that the
boundary components of R cut every ring domain of the quadratic differential
on R into two identical flat rectangular strips of height π. D

(iii) Assume a boundary component ^a of R appearing in some ring domain
hits the boundary of its ring domain at a point P o (the boundary of the ring
domain is by definition a critical trajectory). We want to show that the boundary
component %>a cannot turn and become immediately part of the boundary of the
ring domain.

Consider first the case when the point Po is an ordinary point on the critical
trajectory. Suppose that ^a actually hits Po and becomes part of the bound-
ary, as illustrated in Fig. 8, where we show a ring domain whose boundary is the

R \ .

A1

A
P*

Fig. 8. It will be shown that the curve # f l , representing a boundary component of JR cannot hit the
ordinary point Po on the critical trajectory AA! and become immediately part of the critical trajectory.
If this would happen PQ would become a first order pole

closed critical trajectory A A' (A and A. are the same point). Since this is a critical
trajectory some ring domain is glued to the right of the line AA1. Consider the
point Q on the line AAf and a point P nearby. The image of P under ^a is
P* . Since ^a also goes through g, and the map is locally a reflection, P also
maps into P'. Since the map is one to one P* = P' and the same ring domain is
also sitting to the right of AA'. Consider now the segment PQ, it has as image
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both the segment p * Q * and P'g, but these two are clearly the same segment,
thus β* = Q. This implies that the segment PoQ is actually identified (glued) to
the segment PoQ*, with Po being a singular point. The point Po becomes the
center of a neighborhood of total angle π, thus a first order pole of the quadratic
differential. This is a contradiction since the point Po was supposed to be a
regular point. At any rate the quadratic differentials in Φ^ have no first order
poles. (If such pole were there, there would exist closed curves homotopic to the
core curve of the ring domain and shorter than 2π, such as the closed curve
formed by QΛf together with AQ*)

Let us now consider the possibility that Po is a critical point, namely, an nth

order zero of the quadratic differential (n > 1). An nth order zero corresponds to a
singularity with n-\-2 prongs, where n+2 ring domains join. Suppose we have a first
order zero, as shown in Fig. 9. The boundary ^a hits the zero symmetrically (since

a b
Fig. 9a, b. If the boundary component of JR, denoted as ^a would hit an nth order zero, with n odd,
it must exit along a critical trajectory, a The case n = 3. b The general case

it is a vertical trajectory in the ring) and in order to preserve reflection symmetry
of the metric around the singularity, it must exit along a critical trajectory, the
one that is not on the boundary of the original ring domain. This is generic for
all odd n, as shown to the right. This takes care of the case when n is odd. If n is
even, symmetry around the zero requires that ^a hit the zero and leave it along
a vertical trajectory, as shown in part (a) of Fig. 10. This shows that ^a cannot
turn into a critical trajectory at all for even n. Thus we have shown that if ^ α

hits a critical point Po, it cannot turn immediately into a critical trajectory in the
boundary of the corresponding ring domain. Since we dealt above with the case

a b
Fig. 10a, b. If the boundary component of R, denoted as ^a would hit an n t h order zero, with n even,
it can happen in two ways, a it enters and exits along vertical trajectories, or b it enters and exits
along a horizontal critical trajectory
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when Po is regular, this concludes the proof of (iii). Our proof does not rule out
the possibility that ^a hits an odd-order zero and turns into a critical trajectory
not lying on the boundary of the original ring domain. D

We have established that the boundary components of R show up as vertical
trajectories on each ring domain. Our result also implies that the reflection map
acting on R does not move points from one ring domain to another. The vertical
trajectories representing boundary components cut the cylinders into two strips
that are mapped into each other by the reflection map. The boundary components
of R could also appear in the critical trajectories of the quadratic differential.
Since critical trajectories, by definition, are horizontal trajectories, it follows that
the quadratic differential is real all along the boundary components of R. This
has a direct consequence.

Corollary 1. The quadratic differential φ^ arising from a mirror symmetric admis-

sible set of curves in R is mirror symmetric.

Proof The quadratic differential φ^ induces a quadratic differential on R and one

on R*. We denote this as φ^ = (ψR, φR*). Since ψR is real along the boundaries of

R it can be extended to the mirror surface to form a quadratic differential on the

double surface [St, p. 19]. Thus we can construct another quadratic differential

φ'^ on R using ψR in R, and assigning to R* the mirror image φR. We thus have

φ' = (φR,φ^). By definition, φ'* is a mirror symmetric quadratic differential. The

quadratic differentials φ^ and φf*, are both defined in R, and are equal to each

other in some finite region on R, namely, all over R. By analytic continuation,

they must be identical all over R. Therefore φ^ = φ'^ and this shows that φ^ is

mirror symmetric.

5. A Generalized Extremal Problem

We have defined and studied in the previous section an interesting class of
quadratic differentials, those based on mirror symmetric admissible sets of curves.
Given a Riemann surface R there are an infinite number of mirror symmetric
admissible sets of curves. Each one can, a priori, yield a different quadratic
differential. We need a criterion to choose a particular quadratic differential out
of the set. As we did for the case of classical closed string diagrams [Zwl], we will
choose the quadratic differential with largest (reduced) norm, or (reduced) area.
In this section we will prove some properties of this quadratic differential. In
Sect. 6 we will establish that the quadratic differential of largest norm is unique
and indeed it is open string quadratic differential we are after.

Generalized Extremal Problem. Consider a Riemann surface R with b > 0 bound-
ary components and with m > 0 punctures at the boundaries (except for the disk
with m < 1 punctures). Denote by R* the mirror image of R and by R the double
of R. Consider the set Γ^ whose elements are all possible mirror symmetric
admissible sets of curves γ in R (an infinite number). For each admissible set of
curves in Γ^ there is an associated mirror symmetric quadratic differential φ^(y).
The collection of quadratic differentials obtained in this way is called Φ^. We are
interested in studying the quadratic differential (s) of largest norm in Φ^.
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The above extremal problem is a mini-max problem (as explained to me by
K. Strebel). One first minimizes the area for a given choice of curves, and then
maximizes over the possible choices of curves. The only fact one needs to show
at this stage is that at least one of the quadratic differentials in Φ^ attains the
maximal norm. The proof given in [Zwl], where we discussed the same issue for
closed Riemann surfaces, applies without modification for the present case. Thus,
there is at least one quadratic differential of maximal norm. In fact, we will show
in Sect. 6 that this quadratic differential is unique. The rest of the present section
will be devoted to establishing some properties of the quadratic differential of
maximal norm. Denote by φ any such quadratic differential.

Lemma 3. The quadratic differential φ induces on R a quadratic differential such
that any nontrivial open Jordan curve homotopic to a critical path is longer or equal
to π.

Proof. Denote the open curve by yo and assume it is shorter than π. We will
show that this contradicts the assumption that we are dealing with the quadratic
differential of maximal norm φ. The double %, made up by joining γo to its mirror
image γ$, is twice as long as γo, and is therefore smaller than 2π. The curve %
is a nontrivial Jordan closed curve [Zw3, Lemma 6]. Thus % is a curve that can
belong in a mirror symmetric admissible set. The curve % cannot be homotopic
to any of the curves in the admissible set for the quadratic differential φ, since if
it were, it would have to be longer that 2π. The admissible set associated to φ can
be taken to contain a representative curve around each puncture, chosen far away
from any critical graph, and a representative curve for each annulus. This latter
curve can be taken to be a core curve in the middle of each annulus. The curve
% may intersect the representatives of the admissible set. Nevertheless, since it
is homotopic to a closed critical trajectory, one can choose a representative γo
in that homotopy class that does not intersect the other representatives in the
admissible set for φ. This can always be done since the annuli have finite heights
and one can push the curve close enough to the critical trajectory and away from
the core curve in the middle of the annuli. (The representative cannot in general
be chosen to be the critical closed path since this may not be a Jordan curve.)
We have shown that our representative does not intersect nor it is homotopic to
any of the curves in the admissible set. Therefore it can be added to the present
admissible set f giving a new admissible set f. Since the closed curve % is shorter
than 2π it means that the present quadratic differential does not minimize the
area under the condition that all curves in the homotopy classes of f be greater
than 2π. The minimum area metric ρ' for the set f must be different from the
minimal area metric ρ for the set γ9 and its area must therefore be larger (since
the metric ρ' is also admissible for the set γ, and is different from the minimal
area metric ρ). Thus the original quadratic differential cannot be the one of
largest norm in Φ$. This is the contradiction. D

Lemma 4. No part of the boundary of R can lie on a critical trajectory of φ.

Proof Assume part of the boundary of R lies along a critical trajectory as shown
in Fig. 11. The part of the boundary in question must extend between two zeros
Po and Pi, since otherwise it would violate Theorem 2, Part (iii) Note again, that
since the reflection map does not move points into different ring domains, we
must have the same ring domain, denoted as "i" to the two sides of the PoPi
critical trajectory. The segment PQPI cannot include the two points A and B



Open String Theory Gives a Single Cover of Moduli Space 209

Po P :

Fig. l la, b. It will be shown that a boundary component of R cannot lie on a critical trajectory of the
quadratic differential of maximal norm, a We assume it does, namely a boundary component extends
along the critical segment PoΛ The same ring domain, denoted as i must appear to each side of

I . b A picture of the ring domain ί, with the critical segment and its own boundary components
and ^h

where the vertical trajectories ^a and #& of ring " i" (representing boundaries of
R), hit the boundary of the ring domain Fig. lib). If the segment included A or
B in its interior, we would have crossing of boundary components of K, which
is impossible. If the endpoints of the segment would correspond to either A or
B we would violate Theorem 2, Part (iii). Finally note that beyond the zeroes Po
and Pi, the boundary component of R cannot remain in the boundary of our
ring domain; it must exit the ring domain at those points. In other words, there
are no more zeroes in the segment.

The pattern of identification in the ring domain is shown to the right. The
segment P$A is an open segment with endpoints on boundaries of R, lying on a
critical trajectory. It is clear that near enough to Po and to A the segment does
not include any piece of the boundary of JR. Assume for the time being that the
segment Pô 4 is an open Jordan curve (namely, does not include in its interior
any point of the boundary of R). This open segment must be nontrivial because
its double, a closed Jordan critical path, is nontrivial [Zw3, Sect. 2,3], and if the
double of an open curve is nontrivial, then the open curve is nontrivial [Zw3,
Lemma 6]. It follows from Lemma 3 that the length 1PQΛ of the segment must
exceed π. This is in direct contradiction with Fig. l ib, that shows that the length
lp0A is less than π (because A must be equidistant from Po and Po*, and lPoPi φ 0).
This proves Lemma 4 up to the assumption with which we deal now.

We assumed that the segment Pô 4 is a simple Jordan open curve with end-
points on boundary components of R. This may not be true, but, as we show next,
it is always possible to find a new segment that will play the desired role. Several
things can happen inside the segment PQA: it may happen that both points A
amd Po repeat themselves; there can be self identification of subsegments within
Po^4; or some other segments of the boundary of R may lie within PQA. Begin
at A and go towards Po Denote by B the first point when we encounter a
boundary component. This point may just be the original point Po or may be
a point we find earlier. From now on we concentrate on the open segment AB
which does not contain in its interior any point belonging to the boundary of
R (if B happened to be a copy of A, the segment would be closed). There may
be self indentifications inside the AB segment, or some zero may repeat several
times, any of these things makes the segment AB a curve with self-intersections.
If a segment lying between zeroes Zo and Z\ is self identified, then the sequence
of zeroes from A to B must read A... ZQZ\ ...Z\ZQ...B. From the segment AB
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we find a segment without self-intersections by beginning at A and each time
we find a letter that is repeated later we jump up to its latest occurrence in the
series. We continue in this way until we reach point B. This new segment con-
tains no boundary points except A and B and no self-intersections. It is shorter
than π because it is shorter than PQA. This is the desired open Jordan, critical
segment. The only remaining complication could arise, as mentioned above, if
B is just a copy of point A. This would make the segment, which is already
free of self intersections or boundary points in its interior, into a closed Jordan
critical segment, thus nontrivial. It is possible, however, to deform the segment
infinitesimally in order to make it into an open segment, without increasing its
length beyond a specified amount that can be chosen at will. Near the beginning
point of the curve we just deform it such that the curve begins on %>a a bit below
A and joins into the critical trajectory immediately. The double of this open curve
would be a nontrivial closed curve since it is homotopic to a closed curve that is
nontrivial (as analyzed in [Zw3, Sect. 2.3, Fig. 1]). Thus the open curve in question
is nontrivial, and being shorter that π this gives the desired contradiction. D

Lemma 5. The boundary of R cannot go through a zero of φ.

Proof Its is clear from Fig. 9 that this cannot happen for odd n. In those cases,
part of the boundary of R must lie on a critical trajectory, and this was ruled
out in Lemma 4. The only remaining possibility is that sketched in Fig. 10a deal-
ing with even n. Not even this is possible, as we show next. Consider Fig. 12 where

A i

c:

a D
Fig. 12a, b. If will be shown that the boundary component ^a of R cannot hit a zero of the quadratic
differential of maximal norm, a Note the ring domain ί that must appear symmetrically, b The ring
domain ΐ, where we see its own boundary components #J, and ^'h

the piece %>a of the boundary of .R is denoted by the line with arrows that hits
the zero Po from the kth ring domain. The fth ring domain, due to the reflec-
tion symmetry, must appear two times as shown. Assume the ith ring is not the
same ring as the fcth ring. The ith ring domain is shown to the right. Point A (where
Ή'a hits the boundary of the ith ring) cannot coincide with Po, nor can one be a
copy of the other. If this would be the case, we would have in Fig. 12a another
boundary component of R hitting the zero, and this cannot happen since it would
imply intersection of boundary components of R. It follows, just as before, that
the critical segment Pô 4 with boundary endpoints must be shorter than π, and
this is impossible, as discussed in Lemma 4. If the kth and ith ring domains are
actually the same, then Fig. 12b still applies, it describes the i = k domain, except
that now point A is a copy of PQ, and ^'a = # f l . We can now apply the arguments
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in Lemma 4 to the closed path ΛPQ (namely, modify it infinitesimally to make it
open, and show it is shorter than π, and nontrivial). D

6. On the existence of Open String QDS

We have done most of the work necessary in order to show that the generalized
extremal problem gives us an open string diagram. We have learned so far that
the surface JR with the metric arising from the quadratic differential of maximal
area is built by joining together strips of height π. We need as many semi-infinite
strips as there are punctures, and as many finite strips as there are ring domains
in R. We also known that the strips must be joined across the horizontal edges,
and that the vertical edges correspond to the boundaries of R. We also proved
that after the gluing of the horizontal edges, the corners of the strips are regular
points. This is so because the boundaries of R do not hit any zero of the quadratic
differential. Finally, we know that every open critical Jordan path on R must be
longer than π. This is so because these paths are nontrivial, and thus Lemma 3
applies.

Our next step will be to analyze possible identification structures on a single
strip. The result we will establish next is given in the following lemma.

Lemma 6. Consider a horizontal edge of a strip in a quadratic differential of
maximal norm. The two endpoints of the horizontal edge cannot be identified. No
zero can appear on the edge more than once.

Proof. Consider a strip whose horizontal boundary, of length π is denoted as
AΛf. Recall that points A and A' belong to the boundary of R. No other point
in the horizontal edge can belong to the boundary of R, as a consequence of
Lemmas 4 and 5.

Let us assume for awhile that points A and A'9 are not identified by the gluing
that takes place at the horizontal edge of the strip. Under this assumption, we now
show that any zero of the quadratic differential cannot show up more than once
on the line AA\ In particular that implies that ther cannot be self identification of
segments along the AA! line. This follows because self identification of a segment
requires that two zeroes appear twice. Suppose we have a sequence of zeroes in
which at least one zero repeats itself (the sequence must be finite). We will extract
a path beginning at A and ending at A which is a Jordan open critical path, and
is shorter than π. The existence of such open curve is a contradiction. The open
path begins at A and stops at the first zero Zo that is repeated in the sequence,
we then jump to the last place where Zo appears in the sequence, and the open
path continues its way down there. This is repeated for the left-over sequence,
and repeated until we end in point A'. This gives us the desired open Jordan
critical curve. Since we assumed that at least some zero repeats itself, we must
have jumped some finite length and therefore the resulting segment is shorter
than π, which was the length of AAr. Thus we have the desired contradiction.

We wish to rule our the possibility that A and Af be identified. If points A
and A! are identified in the way shown in Fig. 13a, this is problematic. Once this
strip is glued to its double, the neighborhood of A would already have a full
2π angle. When the horizontal edge near point A is sewn with other domains,
the total angle at A would become bigger than 2π. Point A would therefore be
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P Q .... Q P

Fig. 13a-d. Analyzing if the endpoints of a critical horizontal segment on a strip can be identified.
a Identification of the endpoints only is ruled out. b If at all possible, the endpoints are identified
as part of the segment AP. c The critical trajectory with such identification, d* A Jordan open path
homotopic to the critical trajectory

a zero of the quadratic differential. But this is impossible, since we showed that
the boundary of R does not hit zeroes of the quadratic differential. Therefore,
points A and A! must be identified as part of a segment of identification in the
critical trajectory as shown in Fig. 13b, c. Let a be the length of the segment AP.
We have shown that a > 0. Moreover a < π/2, since for a — π/2 we would have
a degenerate Riemann surface.

Let us now show that in this configuration no other zero in the sequence
P . . . P can be repeated (not even P may appear ,once more). If some zero is
repeated we jump it until we get to its last copy. In this way we get an open
path beginning at A going to P, and then skipping its way back to P and then
to A. It would be shorter than π. This path retraces the segment AP, but it
can be deformed infinitesimally without increasing its length to the value π, and
making it a simple open Jordan curve homotopic to a critical open trajectory
(see Fig. 13d). This curve is nontrivial since its double is a nontrivial closed curve
(as discussed in [Zw3, Sect. 2.3]. The existence of this curve is in contradiction
with Lemma 3.

Now we can show that it is actually impossible to have A = A'. Suppose
we have the arrangement of Fig. 14, where the sequence of zeroes goes like
PQ...P, the first zero after P being β, and with the bottom and top segments
AP glued to each other. Since self-identifications on a strip are impossible, the
segment PQ must appear in some other strip, shown below. In this strip there
may be additional zeroes (not shown). The endpoints B and B' cannot be iden-
tified with A since the neighborhood of A is complete. Assume B and B' are
not identified. The segment APB is an open critical Jordan curve since A ψ B
and it has no self intersections. The condition that it be longer or equal to π
gives us a + a! > π. Moreover the curve APQB1 is another open critical Jor-
dan curve, giving us lAP + IPQB' > π, which yields a > d. The two inequalities
imply that a > π/2, which in light of Fig. 14a requires a = π/2. But this is a
contradiction since it requires the surface to be singular. This argument needs
slight modification for the case when B is identified with B'. There are two
possibilities, as shown in Fig. 14b, c. In (b) the identification segment is BS
and the above arguments hold in exactly the same way. In (c) the identification
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K— a—* K- a -J

A P Q P A

B1 Q P B

S Q P S B B P Q P

a'—i U—a1—% K — a 1 — J

Fig. 14. a A strip with endpoints identified with at least one zero Q in the PP segment. The segment
QP must be identified with a similar segment in another strip, denoted as B'B. The necessary
modifications when B and B' are identified are dealt with in b and c

h*-" i^H

k—a"—H K-a'-J

Fig. 15. A strip with identified endpoints and no zero in the segment PP. This segment is identified
with a similar segment in another strip (BBf). Actually B and B' must be identified. The final
conclusion is that endpoints of the critical horizontal edge of a strip cannot be identified

segment is BP. Here the path ΛPB is still an open Jordan critical curve and its
length condition gives α+d > π, that implies that either α or d is greater or equal
to π/2. Again, this makes the surface singular, and is therefore impossible. So we
have shown that the identification of segments ΛP in Fig. 14 is not consistent if
we have at least one zero (Q) in the PP closed curve.

Let us now address the case when there is no zero in the closed curve PP,
as shown in Fig. 15. The full closed PP segment must be identified with another
PP segment in another strip, as shown below. Since the point P appears at least
twice in this strip, this is only possible if points B and B' are identified. In fact
they must be identified via the segment BP, since if it would be via another
shorter segment, then P appearing more than once would be a contradiction.
It then follows that d = d1 = α. The open critical Jordan path ΛPB requires
that α + d = 2α > π, where from we deduce that α = π/2, which again is
inconsistent. This shows that having A = Λf, and no zeroes in the closed curve
PP is impossible, and together with the discussion of the above paragraph, that
A and A! cannot be identified at all. D

We will now use the above information to show in the next lemma that the
horizontal boundaries of the strips in the quadratic differential of maximal norm
are glued in a very simple way.

Lemma 7. In α quadratic differential of maximal norm the zeroes can only appear
in the midpoint of the horizontal edges of the strips.
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A1 T S ... Q P A

a
C T S C B1 Q P B

k—b1—H κ-b—-J

B1 T S Q P B

p b -H K— b-J b

B1 Q P T S B

Fig. 16a-c. Studying patterns of gluing, a We assume there are four or more zeroes in the horizontal
trajectory A! A. The segments TS and QP appear in other strips C'C and B'B respectively. If the
segments TS and QP appear in the same strip {B'B) there are two cases to consider, as shown in
b and c. The final conclusion is that a = a' = π/2 which implies that all the zeroes collapse to the
midpoint of the horizontal segment

Proof. Let us now address the general configuration shown in Fig. 16. In part
(a) we have a strip with horizontal edge AA and let us assume there are several
zeroes in this segment: P, Q..., S, T. The zero P is the first zero we meet as we
go down the line from A, and T is the last zero in this segment. The segments
AP and TA! of lengths a and a! respectively, must be glued to other strips. The
segment PQ is glued to the strip BB\ shown below, and the segment ST is
glued to the strip CC (the case when PQ and ST are glued to the same strip
is considered later). Let us show points A and B are not identified. If they were,
it can only happen if point P would be the first zero from B, and the segment
AP would be identified with the segment BP. This is impossible, however, since
this identification would be followed directly by the identification of segment
PQ, and as a consequence P could not be a zero. Therefore APB is a open
Jordan critical curve, and we must have a + b > π. Moreover, A and B' cannot be
identified, since P would have to appear more than once. Thus the open Jordan
critical curve APQB' gives the condition a > b. These two inequalities imply
that a > π/2. In an exactly analogous fashion the nontrivial open Jordan critical
curves ATC and A'TSC imply that d > π/2. Since both a and d appear in
the same strip the only possibility is that a = d — π/2. This being the case, all
the zeroes (P,β, ..., <S, T) must collapse into a single one at the middle of the
strip. Thus the strips must be glued together with zeroes that can only appear
at the middle of the strip. This conclusion is not changed if both segments PQ
and ST are glued to the same strip BBf, as shown in Fig, 16c, d. All of the above
arguments hold with the lengths b and b' defined as shown.

Strictly speaking, the above argument shows that if there are four or more
zeroes in the line AA, they must collapse in the middle. One must repeat the
argument for the case when there are three zeroes, or two zeroes in the line
AA. Since the arguments are almost identical to that given above, we just show
the relevant configurations in Fig. 17a, b. For the case of three zeroes, P, β, and
T, the two segments PQ and QT cannot appear in the same strip again since
Q cannot appear twice, and therefore they would have to appear one after the
other, as in the original strip, making Q into a regular point.



Open String Theory Gives a Single Cover of Moduli Space

U—a'—^ N— a — J

C

- a 1 — * K-

A' T Q P

T Q C B1

215

Q P

h
A1

B1

-a'—H

Q

Q

K —

p

P

•H
A

B

Fig. 17a, b. Analyzing patterns of gluing when there are three zeroes in the horizontal trajectory a,
and when there are two zeroes b. Again, all zeroes must collapse to the midpoint of the horizontal
segment

A'

A1

P B1 B

Fig. 18. A strip horizontal segment has a single zero. A short argument shows that a = d = π/2.
Thus the gluing pattern is that of open string theory

We can now finally address the simplest configuration, that having a single
zero on the horizontal boundary, as shown in Fig. 18. Here we show the horizontal
edge AA! with the zero at P. Let the length of the segment AP be a, and that of the
segment A'P be d. The segment AP is glued to a segment in the horizontal edge
AB shown below. The segment AP must be glued to a segment in yet another
horizontal edge A'Bf. The open Jordan critical curves APB' and AfPB yield
the conditions a > π/2 and d > π/2, respectively. These conditions imply
a = d = π/2, and therefore we have shown that the zero must appear at the
midpoint of the vertical segment. D

Theorem 3. The quadratic differential of maximal norm in Φ^ is unique and induces
on R an open string quadratic differential

Proof It has been established that the quadratic differential of maximal norm has
as characteristic ring domains in R strips with horizontal trajectories of length
π, whose horizontal edges are critical trajectories, and whose vertical boundaries
correspond to boundaries of JR and are vertical trajectories. We have shown that
the endpoints of a horizontal edge cannot be identified, and that all zeroes of the
quadratic differential lie on the midpoints of the horizontal edges. Thus, all of



216 B.Zwiebach

our work has established that any quadratic differential of maximal norm
gives us an open string quadratic differential. This establishes the existence, for
any R, of an open string quadratic differential.

Assume φ and φl are two different open string quadratic differentials. As we
have shown in Sect. 2, an open string quadratic differential gives rise to a minimal
area metric under the condition that all nontrivial Jordan open curves be longer
or equal to π. This metric must be unique, thus φ and φl must give rise to the
same metric. Because of Lemma 2 (Sect. 2), the quadratic differentials must be
the same. This concludes our proof of uniqueness of the quadratic differential of
maximal norm in Φ^. D

Theorem 3 together with Theorem 1 are summarized by Theorem 4 in the
introduction. As discussed in Sect. 2 the uniqueness and existence of open string
quadratic differentials, given the isomorphism between the set of Feynman dia-
grams and the set of string diagrams, implies the single cover or moduli space,
as given in Theorem 5.
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