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Abstract. We analyze the Ginzburg-Landau equation for a superconductor in the
case of a 2-dimensional model: a cylindrical conductor with a magnetic field parallel
to the axis. This amounts to find the extrema of the free energy

< = 1/2 j [|(V - iΛ)Φ\2 + \BA\
2 + κ/4(\ Φ\2 - l)2]rfx,

Ω

where Ω is a bounded domain with smooth boundary in IR2, A = (Aί9A2) the
vector potential, BA = d1A2 — d2Aί the magnetic field, Φ Ά complex field. We
describe the connected components of the maximal configuration space, i.e. of the
set of all {A, Φ) with components in the Sobolev space Hί(Ω) and such that | Φ\ = 1
on the boundary, modulo the action of the gauge group. In the critical case K = 1
we give a complete description of the minimal configurations in each component.

1. Introduction

The Ginzburg-Landau model [6] has been proposed in 1950 in order to give a
phenomenological description of superconductivity. It is an experimental fact that
at low temperatures and weak magnetic fields some materials get an infinite electric
conductivity. This phenomenon has been described by Ginzburg and Landau with
the help of a complex valued field Φ interacting with the magnetic field B. Φ and
the vector potential A which generates B satisfy a system of nonlinear partial
differential equations (see [6,12 or 13]). The physical interpretation of Φis rather
complicated and was understood only after the appearance of the microscopic
theory of Bardeen, Cooper and Schrieffer. Roughly speaking, this theory considers
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superconductivity as being due to some correlations between electrons which tend
to form pairs, and |Φ(x)| 2 is proportional to the number density of these pairs.

In this paper we shall consider only superconductors invariant under
translations in a certain direction and magnetic fields parallel to this direction.
For this reason we shall make some simplifications in the equations which will
reduce the problem to a two-dimensional one.

Let ΩaJR2 be an open, bounded set with C00 boundary Γ such that Ω is

locally on one side of Γ. We denote dj = — , D , = - idj {j = 1,2) and V = (3 l 9 32),
OXj

D= —ffl considered as vector differential operators. The magnetic field B is a
real-valued function on Ω of the form B = BA = dxA2 — d2Ai9 where A = (Al9A2)
is an IRΛvalued map on Ω. We also introduce the vector differential operators
VA = V - IA and DA = D — A = - NA. Let * be the rotation in R 2 with an angle
π/2 in the direct sense, i.e. *(xi,x2) = (— *2>xi) ( w e shall use this notation for
xί9x2e(C also). The Ginzburg-Landau equations (in our simplified setting) can
now be written in the form:

(1.1)

*VBA= -Re(DAΦΦ)

which is a system of non-linear partial differential equations for the unknown
functions Φ:Ω^><E and A Ω^JR2. Here K is a real parameter (depending on the
temperature, etc.). The solutions of the system have a qualitatively different
behaviour for κ<\ and κ>\ (this distinguishes between type I and type II
superconductivity). Equations (1.1) are written at some fixed temperature smaller
than the critical one. Φ and K are "reduced" physical quantities (see [13], p. 30)
so that I Φ\ = 0 in normal (i.e. non-superconducting) phase and | Φ\ = 1 in the
superconducting one. One expects 0 ^ | Φ\ g 1 in general (this is rigorously proved
in Theorem 3.2 of this paper). Finally, the free energy is by convention equal to
κ/4 in the normal phase, hence in general it is equal to (see [13]):

, (1.2)

and (1.1) are the variational equations associated with the above functional. We
shall consider a special class of superconductors, namely those with penetration
depth equal to zero (see [12,13]), which gives (Φ\ = 1 on Γ as boundary condition
for (1.1). One may think this is a rather strong idealisation, but this is not the
case, because we consider Γ not as the real boundary of the material but as an
imaginary surface located well inside the superconducting part. Thus, the only
limitation of the results we obtain is that they are not accurate to describe the
behaviour near the surface of the real material. On the other hand they describe
quite well the vortex (anti-vortex) structure in the bulk.

In the next chapter we shall describe the configuration space of the system.
We make a distinction between the physical and the mathematical configuration
space. The mathematical one is the largest space on which siκ is well defined and
has a rather simple mathematical description. In order to define the physical
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configuration space one must take into account the fact that different mathematical
configurations may describe the same physical situation, due to the so-called
"gauge-invariance" of the system. An interesting physical fact, the flux quantization
(London effect), will emerge from the study of the topology of the configuration
space: flux quantization is an expression of the non-connectedness of the
configuration space. Remark that in the case of finite superconductors we are able
to solve the problem raised by Jaffe and Taubes in the footnote on page 96 of
[8]. In order to prove this result we will use an extension of the definition of the
degree for mappings S1 -+S1 of class H1'2. This is described in the appendix, which
is due to L. Boutet de Monvel and, for one crucial idea, to O. Gabber, and
announced in a lecture by L. Boutet de Monvel at the French-Israeli mathematical
meeting in Jerusalem (April 1984). We thank them for communicating their proof
to us which we present in an appendix of this paper.

In the third chapter we study the stationary points of the functional (1.2) defined
on the mathematical configuration space: we prove their smoothness (modulo
gauge-equivalence) and find some relations between the fields Φ and B
corresponding to a stationary configuration which in physical terms can be
interpreted as the Meissner effect.

The case K = 1 is more thoroughly studied in Chap. 4 where we completely
classify the absolute minima of the restriction of J / X to the connected components
of the configuration space. In [2] BogomoΓnyi pointed out that if K — 1 then the
solutions of (1.1) may be found by solving two systems of first-order differential
equations. The methods we use are similar to those introduced by Taubes (see
Jaffe and Taubes [8] for a complete account). We would also like to point out
that the results in Chap. 2 and in the appendix of this paper are relevant in
connection with conjectures 1 and 2, p. 34 of [8].

Finally, we would like to stress the fact that the boundary value problem we
study is interesting due to the invariance of the functional s/κ under a very large
group (the gauge group is infinite dimensional), which causes difficulties in the
proof of the regularity of the solution especially at the boundary Γ (the uniqueness
is, of course, lost). Let us mention that the main results of this paper have been
announced in our note [16].

2. Configuration Space of the System and Flux Quantization

We recall that the physical system under consideration is a complex field Φ:Ω-+<E
(ί2c:]R2 as in the introduction) interacting with a magnetic field 5:ί2-»IR. The
interaction is given by the minimal coupling hypothesis, which requires the
introduction of a real vector field A = (Λu A2)'Ω^Wi2 such that B = d1A2 — d2Aγ.
Then the free energy of the system is equal to (1.2). In order that the free energy
functional be well defined, we must impose some conditions on Φ and A.

Let us denote Hsp the usual Sobolev spaces of complex functions on Ω and
H5'2 ΞΞ Hs. Then we define Hsp as the space of C2-valued functions on Ω with
components in Hsp (Hs = Hs2). Hs

r>e

p

al (respectively Hs*al) will denote the set of real
(respectively R2)-valued functions in Hsp (respectively Hs'p). Let || | |p be the norm
in LP = LP(Ω) and || || = || | | 2; we denote \α\ the modulus of the complex number
α or the euclidean norm of the complex vector αe<E2.
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The largest configuration space which we shall consider is the real Hubert space:

Then the functional stfκ is well defined and continuous on #; we may write:

< ( A , Φ ) = UDAΦ\\2 + UBA\\2 + *-\\\Φ\2 -1\\2 (2.2)
λ λ o

and for K ̂  0 we have that stfκ is also positive. This follows from the Sobolev
inclusion H1 c f] IP, that is true in two dimensions, and from the inequality

\\AΦ\\ ^ | | ,4 | | 4 | | Φ | | 4 . We remark that this configuration space is not the largest
one making stfκ well defined, but is the largest one which has a simple mathematical
description. In fact, because of the gauge invariance which we shall require below,
the vector potential A has no physical meaning but is introduced only in order
to represent the magnetic field in the form B = d1A2 — d2Aι. A particular case of
Theorem 4.2.2 from [4] shows that A\-+BA is a surjection of Hs onto if5"1 for
all s ̂  1. Since the finiteness of srfκ requires Bel?, we can always find AeH1 such
that B = BA. Then the finiteness of the last term in (2.2) implies that ΦeL4. This
shows that DAΦ is a well defined distribution on Ω and (2.2) again implies that
DAΦGH°. Since AEH1, A has components in LP for all p< oo, hence AΦeH0.
Clearly then DΦeH0, i.e. ΦeH1 which shows that ^ is essentially the maximal
configuration space which makes jtfκ finite.

As we have mentioned in the introduction, we shall mainly consider perfect
superconductors, for which the configuration space is given by:

Vx = {(A, Φ)eV\ I Φ\ = 1 on Γ}. (2.3)

The definition makes sense because the restriction map φ\-^κp\Γ has a continuous
extension H1(Ω)-^Hί/2(Γ). On Vί we consider the topology induced by that of
#. It is a non-trivial fact, following from the results of the appendix, that the
configurations of ̂  with C°°(Ω) components are dense in <^ί.

Proposition 2.1. The subset

# 1 > 0 0 = {(A9Φ)e<igί\Λ and Φ are of class C

is dense in (i^1.

Proof Since

111 Φ| = 1 on Γ}

and C°°(Ω) is dense in H1(Ω), it is enough to prove that each function ΦeH1 with
I Φ\ = 1 on Γ may be approached in H1 by functions ΦneC™{Ω) with | Φn\ = 1 on
Γ. Let φ denote the trace of Φ on Γ. By the last part of Theorem A.3, there is a
sequence {φn} of functions belonging to C 0 0 ^ ) such that \φn\ = l and φn ̂ κp in
H1I2(Γ). It is known (see [15] Theorem 5, Chapter VI, Sect. 3) that there i s a
continuous linear application R:H1/2(Γ)-^Hι(Ω) such that K(C°°(Γ)) c C°°(ί2)
and R{f)\Γ=J for a l l / e H 1 / 2 ( Γ ) . Let Ψn = R(φn), so that Ψn-+R(φ)= *Fin Hι

and ΨneC»{Ω). Now Φ - ΨeH^, so we can find a sequence ξneC%(Ω) such that
£ Π - Φ - «Fin fl1. Then Φ π = ^ £MeC°°(f2), | Φ J | Γ = 1 and Φ π -^Φin H\ •
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We shall now refer to the so-called "gauge-invariance" of the system and the
definition of the physical configuration space. We define the gauge-group as the
additive group ^ = H2

cal. It has a continuous action on # (leaving c^1 invariant)
given by:

Λ, ΦA) = {A + VΛ eiΛΦ)e<# (2.4)

for Λe&. Then the physical configurations are in one to one correspondence with
the orbits of this action, so that we can define the physical configuration space as
^ = <#/#, or in the case of perfect superconductors (i1 = φjy.

Let us observe that a function defined on the "mathematical" configuration
space ^ (or ^ Ί ) is a physical quantity (i.e. depends only on the physical
configuration) if and only if it is gauge-invariant (i.e. invariant under the action
of ^ ) . This is clearly true for BA and |Φ\. Since DAΛΦΛ=eiΛDAΦ, this is also true
for stκ and for the current.

(2.5)

The physical quantity defined here is in fact the current density of the pairs, which
have a number density given by | Φ\2. This interpretation comes from a conservation
law one may write for the configurations (A, Φ) which minimalize the free energy
s/κ9 [14]. One should also remark that B and \Φ\ are not enough to uniquely
characterize an orbit (i.e. a physical situation). This can be seen for example from
the fact that (A, Φ)\-^(B9 \ Φ\) is invariant under the action (A, Φ)\-+{A + WΛU eiAlΦ)
of the larger group & x ^ , while \DAΦ\ is not.

We shall now make several remarks concerning the action of the gauge-group
on ^. We recall a regularity result which will be repeatedly used in the following:
if A is a tempered distribution on Ω such that VΛeH\ seR\{—\9 — | , . . . } , then
ΛeHs+1 (see [5]). In particular, if AeHs, if A is a tempered distribution on Ω and
if A + V/leC°°(i2), then ΛeHs+1. Also, this shows that in order that the action
(2.4) of the gauge group leaves # invariant, one must define ^ as # 2

e a l . We would
also like to remark that if BAι = BAl then there exists at most one ΛeΉ (up to an
additive constant, which is irrelevant for us) such that A2 = Ax+ VΛ (Λ exists if
Ω is simply connected, but not in general).

The next two propositions contain some technical results which will be needed
later on. We shall denote v = (v l9 v2):Γ-*S1 czR 2 (where S1 is the unit circle) the
exterior normal field on Γ and τ = (τί,τ2)'.Γ^>S1 the tangent field to Γ defined
by the condition that (v(x),τ(x)} is a positively oriented orthonormal basis in R 2

for each xeΓ. If Aefί *eal, then A | Γ is a vector field on Γ with components of class
H1I2(Γ). Hence the scalar product vA = vΆ\ΓeH1/2(Γ) is well defined. We always
denote by a dot the scalar product in R 2 (extended by bilinearity to C 2).

Proposition 2.2. Any configuration (A\ Φ')e# is gauge-equivalent to a configuration
(A,Φ)e%> such that: divy4 = 0 and Vv4 = 0. Moreover, A and A' have the same
regularity properties; more precisely, if A'eHsp with s e N and 1 <p< oo or any
real s ^ 1 and p = 2, then AeHsp also.

Proof. In fact, let us take an arbitrary configuration (A\ Φ')e^ and consider a
gauge transformation Λe& and the new configuration (A, Φ) given by: A = A' + VΛ,
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φ = φ'eiA. Then, in order that (A, Φ) verify the described relations, we must have

where vV/i = — , and thus A must be the solution of a Neumann problem:
dv

ΔA = — div A

Now this problem has a unique solution up to an additive constant, because:
di\ A EL2(Ω\ VAEH1/2(Γ) and the compatibility condition (we denote dσ the
length element on Γ):

\d\\Adx = J vAdσ (2.7)
Ω Γ

is evidently satisfied. Then the proposition follows from [9]. •

Remark. The gauge transformation A which relates (A, Φ) to (A, Φ') in the
preceding proposition is unique up to an additive constant.

A configuration (A, Φ]e^ is said to be locally gauge-equivalent to C00 con-
figurations if for each xeΩ there is an open neighbourhood U of x in IR2 and a
function A = AveH2

eal(U) such that A + Wl and eiΛΦ are class C00 on Ωn U.

Proposition 2.3. // a configuration (A, Φ)e%> is locally gauge-equivalent to_ C00

configurations, then it is gauge-equivalent to a configuration of class C°° on Ω (i.e.
there is Ae& such that A + VA and eiΛΦ are C00 functions on Ω).

Proof. All gauge-invariant quantities associated to (A, Φ) are clearly C00 on fl. In
particular B — dxA2 — d2A1eCco(Ω). If we denote dA the exterior derivative of the
vector field A (we identify vector fields with 1-forms and 2-forms with functions)
then we can also write B = dA. Known results (see for example [4]) imply that
the equation dX = B will have solutions X of class C°°(β). Two solutions X\X"
of class H1 will have the property d(X' -X") = 0. Using once again results from
[4] for example, it follows that there is a function feH2 and a vector field Y of
class C°°(ί5) such that X' -X" = df + Y (Y is a closed but not exact form). In
conclusion there is AeH2

eal such that A + dA is of class C°°(ί2). Let us now consider
an open neighbourhood U and a function /l^as in the above definition. Then
(A + dA) — (A + dAO) is of class C00 on l/nfl, hence d(A_-Av) has the same
property. Clearly this implies that A —Aυ is C0 0 on UnΩ. This being true by
hypothesis for exp(iAv) Φ, it will also be true for exp(z7l)Φ. Since the sets U cover
A we finally get exp(iVl)ΦsC^φ). •

In the following we shall define a certain gauge-invariant quantity which may
be given some interesting physical interpretation in connection with the so-called
London effect of magnetic flux quantization. In [8] Jaffe and Taubes study the
magnetic flux inside the superconductor (of type II) and prove that its values are
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only integer multiplies of a certain quantity. In our case the problem is complicated
by the presence of the boundaries and the boundary conditions which in physical
terms are determinated by the field configuration outside the superconducting
material. Making use of the current defined in (2.5) we may define the following
gauge-invariant, and thus physically relevant, quantity:

P(A,φ) = λ I BAdx-± i τ-J(A,Φ)dσ. (2.8)
2π Ω 2π r

As we already said, τ J is the scalar product in R 2 of the vectors τ and J, and dσ
is the measure on Γ induced by the euclidean structure of R 2 . We interpret &(A9 Φ)
as a magnetic flux inside ί2, this being in agreement with the second London
equation (see formula (1.11) in [12]) which allows us to give a physical meaning
to the last term in (2.8). On the other hand it is not evident that this term is
mathematically well defined. In fact, A and Φ being of class if1, their restrictions
to Γ make sense and are functions of class H1/2(Γ) (see [10]). However, the
restrictions of the derivatives djΦ to Γ does not have any meaning for a general
configuration, hence some problems arise in connection with the term Im (VΦ Φ)
from (2.5). In order to define (2.8) for a general configuration (A, Φ)e%>, remark

dΦ d
first that τ VΦ = — for C -functions Φ on JΓ, where we have denoted — the

dσ ' dσ
tangential derivative operator on Γ. Denote < , > Γ : i ί 1 / 2 (Γ) x H~1 / 2(Γ)->C the
antiduality map (antilinear in the first variable) obtained from the scalar product
in L2(Γ) by considering the continuous, linear embeddings H1/2(Γ)c=L2(Γ)cz
H~ιl2{Γ) (i.e. <f,g}Γ= f fgdσ if f,geL2(Γ)). Then we define ^:<ίP->R by:

r

&(A9Φ) = ± $ BAdx + ^Im(φ9^\ -±-\τA\Φ\2dσ. (2.9)
2π Ω 2π \ dσ / Γ 2π Γ

Since the operation of restriction H1(Ω)^H1/2{Γ) and the derivation

— :H 1 / 2(Γ)->tf~1 / 2(Γ) are continuous, and H1/2(Γ) c Π{Γ) for all p < oo, we see
dσ
that 3F is a continuous functional on the Banach space (€. From the usual
integration by parts formula (valid for any AeH1) we get:

J BAdx = j (vxA2 - v2A1)dσ = J (*v)Άdσ = J τΆdσ, (2.10)
Ω Γ Γ Γ

and thus we can put (2.9) in the following form:

#XΛ,Φ) = — I m / φ , — \ + — f τ A(l-\Φ\2)dσ. (2.11)
2π \ dσ / Γ 2π Γ

If we restrict ourselves to configurations in <£l9 the last term vanishes and we see
that ^{A, Φ) equals the topological degree of the function Φ\Γ:Γ-^S1 of class
H112, which is an integer. This is a consequence of Theorem A.3 of the Appendix
if we take into account that Γ is a finite union of curves diffeomorphic to 5*. It
is also an immediate consequence of Proposition 2.1 because SF is continuous on
* and 3?(A,Φ) is trivially an integer if (A9Φ)eVUaD. Since J ^ ^ - ^ Z and is
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continuous, we see that the configuration space C t is disconnected. We summarize
these results in:

Proposition 2.4. The functional & defined by (2.9) (formally by (2.8)) on V is
continuous. Its restriction to # x is given by

which is equal to the topological degree of the map Φ\Γ:Γ-+S1. In particular, γ γ

has only integral values, the sets V* = {(A, Φ)e(€x\^(A, Φ) = N} (NeZ) are open
and closed in <ίfl9 ^ n t f f = φ for N ΦM and V1 = (J #? .

NeZ

The subsets ^ are not connected if Ω is not simply connected. We shall now
find the connected components of ^ . Let Γo, Γx,..., Γm (m §; 0) be the connected
components of Γ9 Γo being the exterior boundary of Ω. Each Γj is diffeomorphic
to S1, hence if f'.Γj-^S1 is of class H112 one can define its topological degree
(or winding number) which will be an integer denoted G(f) (see Theorem A.3 of

the Appendix). If f'.Γ^S1 is of class H1/2, put G(f)= £ G(f\Γ.) (remark that

the orientation of Γ} is determined by Ω). Clearly J=o

j=o2πι \ dσ / Γj j=0

The functions (S13(A9Φ)\-^G(Φ\Γj)eΈ are clearly continuous. If Nθ9Nl9...9Nm

are integers, let us denote ^ ° ^ the set of elements (A,Φ)e(£ι such that
G(Φ\Γj) = Nj for all j . Then <gNo Nm are open and closed in <βί9 and «\ is the
disjoint union of all sets ^No Nm.

Proposition 2.5. ^ ° W w is connected.

Proof. By Proposition 2.1 and the continuity of (A, Φ)ι—>G(Φ|Γj), the subset of
(gNo....,Nm of configurations with C°°(Ω) components is a dense subset of ^ ° " " i V m .
Hence, by an argument similar to that in the proof of Proposition 2.1, it is enough
to prove that the set:

{ΦeC°°(ί2)| \Φ\ = 1 on Γ and G(Φ\Γ.) = Np j = 0,...,m} (2.13)

is a connected subset of C°°(ί5). Let Φ o, Φx be two functions in this subset and
d>0 small enough. Denote U = {xeί2|dist.(x,Γ)<d] and remark that we can
choose d so that \Φt\> 1/2 on U for ί = 0,1. Clearly (for d small) U is the disjoint
union of open sets diffeomorphic to {ze(C| 1 < \z\ < 2}. Since Ψ = Φ1ΦQ 1eCco(U),
\φ\^ const. > 0, \φ\ = 1 on Γ and G(φ\Γj) = 0 for all j , it follows that there i s a
function geC^ψ) which is real on Γ such that φ = expig. Now let a,beCco(Ω)
with supp aczU, a = l in a neighbourhood of /" and a + b = \ on β. Since
Φ1=aΦ1 + bΦί= aei9 Φ0 + bΦl9 the application t\-+Φt = aeitg Φo + £>(ί Φi + (1 - ί) Φo)
is a continuous path in the set (2.13) going from Φ o to Φί. •

Remark that the gauge group ^ on (^ί leaves invariant <gNo,...*Nm^ h e n c e ^ e

physical configuration space <&ί has a similar connectedness structure.
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3. Smoothness of the Stationary Configurations

In this chapter we prove analyticity (modulo a gauge transformation) of the
stationary points of the functional stκ defined on # or on a subset of ^ defined
by boundary conditions on Γ only (for example on ^ J . Then we show that the
stationary points of s/κ\

<^ι satisfy some interesting relations which can be
interpreted in physical terms as Meissner effect (we follow Taubes, see [18]).

We begin by calculating the first and second derivatives of the continuous
functional srfK\%>-+WL (%> is a real Hubert space) by expanding s/κ(A + a,Φ+ φ)
around (A, Φ)ec€ for (a, φ)ec€. The first derivative, at the point (A, Φ), is the linear
map J/'K(A, Φ ) : # - > R given by

/ 1 - I Φ I 2 \
( ^ ^ ) (3.1)

where <•,•> is the scalar product (anti-linear in the first variable) in L2(Ω) (or in
the corresponding space of <C2-valued functions). The second derivative is the
symmetric bilinear map srf"κ{A, Φ):%> x ^ - > R defined by:

= II DAφ | | 2 - 2 Re <DAφ9aΦ> + \\ aΦ | | 2

(3.2)

By stationary configuration we shall mean a configuration (A, Φ)e^ such that
s/'κ(A, Φ){a, φ) = 0 if (a, φ) has components in CQ(Ω). This is weaker than asking
that the derivative s/'κ{A, Φ) be equal to zero. Moreover, if we restrict stfκ to a
submanifold 9) of <β with the property (,4 + α, Φ + φ ) e ^ if (Λ, Φ ) e ^ and (α, φ) has
components in CQ(Ω) (for example 2) = (β^ then the points where the derivative
of the restriction is zero are stationary configurations (because the tangent space
to 9i at some point (A, Φ)eΘ will contain the configurations with components of
class CQ(Ω)).

From (3.1) and a similar relation but with φ replaced by iφ, we see that (A, Φ)
is a stationary configuration if and only if:

1 — IΦI2

for all (α, φ) with CQ(Ω) components. This condition is equivalent to the following
system of second order differential equations for (A, Φ):

1 - I Φ I 2

D2

AΦ=κ ' ' Φ
A 2

(3.4)

All the terms of these equations are well defined because (A, Φ) has components
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in H1 cz P| IP. In particular we obtain that 3 (A, Φ), and hence VBA, has
p< oo

components of class Lq(Ω) for all q<2. This implies that BAeHiq for all q<2.

Theorem 3.1. Each stationary configuration (A, Φ)e<& has the property ΦeH2

oc(Ω)
and is gauge-equivalent to a configuration with real-analytic components on Ω. More
precisely, if [A, Φ)e<$ is stationary and div A = 0 (which can always be achieved by
a gauge transformation, see Proposition 2.2), then A and Φare real-analytic functions
onΩ.

Proof. In the case div A = 0 the system (3.4) becomes

D2Φ=2ADΦ-A2Φ+κ-—— Φ

(3.5)

= Re(ΦDAΦ)-A\Φ\2

which is an elliptic system and (A, Φ) has components in H1. We can obtain the
analyticity of the solution by directly applying a rather difficult theorem of Morrey
[11]. We shall give a simple proof of the fact that the solutions are of class C°°(ί2)
based on the well-known lemma: if T is a distribution on Ω such that ΔTeLfoc

for some ps(l, oo), then TeH^ξ. This immediately implies that (A, Φ) has
components in H2^ for all q < 2. Since H2£ <= L£c for 2 — q small enough, we see
that (A, Φ) has components in L™c. Returning to Eqs. (3.5) we observe that D2Φ
and D2A are of class L2

OC, hence (A, Φ) has components in H2

0C. Now by
differentiating Eqs. (3.5) and by an iteration procedure we get that the components
of (A, Φ) are in Hk

loc for all fceN, hence are of class C°°(Ω). •

We pass now to the mathematical formulation of the Meissner effect (see Jaffe
and Taubes [8 and 12-14]). Now the boundary conditions play an important
role. The following argument justifies our choice. We consider only the restriction
of the functional s/κ to the set <Sί. The tangent space to ̂  at a point (A,Φ)ec€1

is the linear subspace of # consisting of configurations (a, φ) such that Re φΦ\ Γ = 0
(no condition on a). Taking <p = 0 in (3.3) we see that in order that the derivative
of .s/jcl̂ Ί be zero at (A, Φ) one must have:

<BA,Ba} + (J(A,Φ),a}=0 (3.6)

for all aeHleΛl. We already know that for a stationary configuration one must
have BAeHlq for all q<2, hence the restriction BA\Γ makes sense as an element
of L2(Γ) and if a is of class Cλ(Ω):

<BA,Ba) = <-*VBA,a> + J BAτ adσ. (3.7)
r

From (3.6), (3.7), the second equation (3.4) and the arbitrariness of a we get
BA\Γ = 0. This explains the conditions we put in the next definition:

Definition. (A, Φ) is a Ή^-regular stationary configuration if ΦeH1 nU0, \ Φ\ \ Γ = 1,
BAeH1,BA\Γ = 0 and is a stationary configuration of stfκ (remark that these
conditions are gauge-invariant).
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Theorem 3.2. // {A, Φ) is a <g\-regular stationary configuration, then:
1° Either | Φ\ = 1 on Ω, or | Φ(x)\ < 1 for all xeΩ.

1 — \Φ\2 1 — IΦ(x)l2

2° //, moreover, K ^ 1, ίftβn eίrfter l ^ l = L - L on Ωor \BA(x)\ < for

all xeΩ. 2 2

Proof We essentially follow Sect. III.8 of [8]. Let w = ±(l-\Φ\2)eH1

0(Ω). The
first equation (3.4) gives

(D2 + κ\ Φ\2)w = \DAΦ\2 ^ 0. (3.8)

The maximum principle (Theorem 8.1 in [7]) implies now the first assertion of
the theorem. Then, the second equation (3.4) gives:

(D2 + I Φ\2)BA = i{DAΦ){*DAΦ\ (3.9)

where (al9b1) (a2,b2) = a1a2 + b1b2 for two vectors in C 2 . If /c^ 1, we get from
(3.8) and (3.9):

(D2 + I Φ|2)(w ± BA) = (1 - κ)\ Φ\2w + \DAΦ\2 ± i(DAΦ)(*DAΦ) ^ 0.

Since w,BeHι

0(Ω\ a new application of the maximum principle gives the second
assertion of the theorem. •

The fact that the magnetic field BA vanishes in the super-conducting phase
(\Φ\ = 1) is called Meissner effect in the physics literature.

4. Vortex-Antivortex Type Configurations

In this chapter we shall apply the techniques of BogomoΓnyi [2] and Jaffe and
Taubes [8] for a detailed study of some of the stationary points of s/κ in the
critical case K = 1 (see the introduction). The general idea is that of Taubes, the
main differences being due to the following situation. In the case studied by Taubes
(Ω — IR2), the stationary configurations were globally smooth, but there were
difficulties due to the unboundedness of R 2 . In our case Ω is bounded, but we
have not been able to show regularity up to the boundary (i.e. on Ω) of the
stationary configurations of s/κ. So, one of the main points of this chapter will be
to study the boundary behaviour of the absolute minima of sί^Yβ^ for all NeZ,
see Proposition 4.2. Then we shall give a complete classification of the minima
(Theorem 4.4).

It was an important remark of BogomoΓnyi that in the critical case K = 1 one
may replace the second-order non-linear system (3.4) by a first-order system which
can then be studied much more easily using the methods of Taubes. The first step
is to put the functional s/κ into a form which involves explicitly the total flux 3F
and gives better lower bounds for $tκ on the open sets Ή^NeZ. For this, recall

that *: C 2 -> <C2 is given by * ( 1 ] = ( 2 ) (from now on we think of the elements
\a2j \ a, )

of C 2 as column vectors and we provide C 2 with the usual scalar product, antilinear
in the first variable: <α|b> = ά1bί +ά2b2). Thus * is the unitary operator in <C2

defined by the matrix * = ί
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If p± = = -I _ ~~ 1, then p± are orthogonal projections in <C2,p+ is
2 2 V-hi 1 /

orthogonal to p_ and * = ip+ —ίp_. This implies:

-KDAΦ,*DAΦ}=\\p+DAΦ\\2-\\p_DAΦ\\\ (4.1)

\\DAΦ\\2 = \\P+DAΦ\\2 + \\P-DAΦ\\2. (4.2)

Assume for the moment ΦeH2 and integrate by parts the left-hand side of
(4.1). Since DA*DA = - (DA)1(DA)2 + (DA)2(DA)1 = - iBA and *v(x) = τ(x) for each
xeΓ, we get

-i(DAΦ,*DAΦ)= -ί(Φ,DA*DAΦ)+ j Φ[v*DAΦ]dσ
r

= - (Φ,BAΦ) - j Φl*v D
r

= -(\Φ\2,BAy-jΦτDAΦdσ.
Γ

Since this is a real quantity (see (4.1)), taking the real part and using (2.5), (2.8), we get

\ ) . (4.3)

We know that J^ ^ - ^ R is continuous and that configurations with C°°(ί2)
components are dense in ̂ . Hence (4.3) remains true for all (A, Φ)e(€ι (not only
for those with ΦeH2). Then (4.1), (4.2) and (4.3) imply:

2\\p±DAΦ\\2=\\DAΦ\\2±(\-\Φ\2,BA)T2π!F{A,Φ\ (4.4)

This allows us to put (2.2) in the following form:

J*K(A>Φ)= 1/411 DAΦ+i*DAΦ\\2 + 1/2 \\BA + w\\2 + (κ-l)/2\\w\\2±π^(A9Φ)

(4.5)

for all {A, Φ)ec€ι. The notation w = 1/2(1 - 1 Φ\2) will be systematically used from
now on.

Let us restrict ourselves to the critical case K = 1. Since <^1 is the disjoint union
of the open subsets V^NeZ (see Proposition 2.3), the stationary configurations
of s/1\Vί can be found by studying the restrictions s/^Yβ^. Let us fix an integer
n^0 and consider for s/γ\<€\n the form (4.5). Since &\<e\n = ±n , we get:

j / x (A Φ) = l/4\\DAΦ+ i*DAΦ\\2 + l/2\\BΛ + w||2 + ππ, for all (A, Φ)eVfn.

(4.6)

From the above representation one sees that s/ί on Ή*" is bounded below by
πn and this minimum is effectively reached for those configurations (A, Φ)G^fn

which satisfy the following system of first-order non-linear equations:

(DATi*DA)Φ=0

BA=±w^± 1/2(1 -\Φ\2)

Remark. %>^n being open subsets of # 1 ? any minimum of s/1 in if*n is also a
minimum of s/ί in <g7

1, and thus any solution of (4.7) is a stationary configuration



Boundary Value Problem Related to the Ginzburg-Landau Model 13

of s/u i.e. verifies (3.4) with /c= 1 (of course this can also be proved by direct
calculation). The following can be shown (we do not give details, because this is
outside the main subject of the paper): a ̂ -regular stationary configuration (A, Φ)
of ja/± in # * " with ΦeH2 satisfies (4.7) (i.e. is an absolute minimum of ji/^Vf")
if and only if

j vxl(d\Φ\/dv)2-l/2\DAΦ\2]dσ = 0. (4.8)
r

The configurations (A,Φ)e(£fn on which jtf^Ήf" assumes its absolute
minimum πn are the object of our study from now on. We shall confine ourselves
to the case stfxγβ\, the other case being obviously similar.

So, let us fix an integer n ̂  0. A configuration (A, Φ)e(£n

1 realizes the absolute
minimum πn of sί^Y€\ if and only if:

(DA-i*DA)Φ=0

BA=+w.

We shall study this system by the complex variable method of Taubes. Let

z = x1 + ix2e<E9 d = — = {l/2)(d1-id2\ d = —_= (\/2)(d1 + id2) and a = (ί/2){A1 + iA2).

n , dz dz
Observe

) ( ψ\ (4.10)
d2-id1-ίA2-Aj \0 -2i)\d-a)

On the other hand

BA = idi\A-4d(x. (4.11)

In conclusion, in order to classify all the configurations (A, Φ) such that
ι(A, Φ) = πn it is enough to describe all the solutions α, Φ of the system:

j ( δ ' - α ) Φ = ° (4.12)

The unknowns are the complex functions α and Φ on ί2, such that
a,ΦeH\\Φ\ = 1 on Γ and G(Φ|Γ) = n. We have denoted G(f) the topological
degree of a function f'.Γ-^S1 of class H1/2(Γ) defined by Theorem A.3 of the
appendix (see also (2.12) and the remarks preceding it). Remark that the condition
l ^ | Γ = 0 (see the definition of a (g1 -regular stationary configuration) is auto-
matically satisfied.

Remark also that the system (4.12) has a very large invariance group: if
ΛE^ = H2

eal and α, Φ are solutions of (4.12) (with all the boundary conditions
satisfied, in particular with the n given a priori) then the functions aΛ = α + id A,
ΦΛ= eίΛΦ(obtained after a gauge transformation on (A, Φ)) also verify the system
(and the same boundary conditions, with the same ή). In particular a general
solution of (4.12) cannot be smooth.

The system (4.12) will be solved using Taubes' procedure of factorizing the
solution into a holomorphic part and a factor which is different from zero. As we
said at the beginning of this section the main difficulties in our case are due to
the presence of the boundary 7". In order to overcome them, we shall first study
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some properties of holomorphic functions of Sobolev class H1 in Ω. The main
technical point is part (a) of the proposition below.

Proposition 4.1. (a) Let Fbea bounded harmonic function in Ω of Sobolev class H1^).
Assume that on a neighbourhood in Γ of a point xoeΓ we have \F\\Γ ^ const. > 0.
Then there is a neighbourhood of x0 in Ω on which \F\}£ const. > 0.

(b) LetV= {feL2(Ω)\dfeL2(Ω)} provided with the norm \\ f \\ v = (|| / 1 | 2 +1| df || 2 ) 1 / 2 .
Then C*(Ω) is dense in V and the application CQO{Ω)Bf\-^f\ΓeCco(Γ) has a unique
continuous extension to an application of V into H~ίl2(Γ).

(c) Let f be a holomorphic function on Ω which is bounded and of Sobolev class
H1{Ω). If I/I ^ const. > 0 on Γ9 then f has only a finite number N of zeros in Ω and
we have the usual formula:

^dz= Σ nk9 (4.13)

where nk is the multiplicity of the kth zero and the integral is interpreted in the
distributional sense.

Proof (a) Since the assertion is purely local, we shall consider a smooth simply
connected open set U in Ω whose boundary contains a neighbourhood of x 0 in
Γ. Then we map U on the upper half-plane using a conformal transformation.
Thus it is enough to prove the following fact: if /2is the upper half-plane, /:1R->C
is a bounded function which is of class H1/2 on some open interval / cz]R, then
for any xel and any neighbourhood J of x in / the distance from fε(x) to the
image /(J) tends to zero as ε -• 0, where

/.(x) = (ε/π) J /(t)((x-ί)2 + ε2r1dt
R

and the connection with our problem is given by the formula F(x + iy) = fy{x\
where F is the harmonic extension of / to Ω. Let Pε(x) = ε/(π(x2 + ε2)) be the
Poisson kernel for the upper half-plane. For each a > 0 we define λ > 0 by the
equality:

J Pε{x)dx = l/π[π - 2 arctg λ/2] = a.
\x\>ελ/2

Since Pε(x) ^ (επ)~ί, we have for all

\fε(x) - f(y)\ ί J Pε(x - ί)|/(ί) - f(y)\dt
R

ί \f(t)-f(y)\dt+ j Pβ(x-ί)Λ 2sup|/(ί)|
\x-t\£ελ/2 \x-t\>ελ/2 ίeR

J 2αsup|/|.
|jc-ί| ε̂Λ/2

Thus if we denote

Ie(x) = (x-λε/29x + λε/2)

and

Γ Ί 1 / 2

MεW= JJ \f(y)-f(t)\2\y-t\-2dtdy\ ,
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we have

(λεy^\fε(x)-f(y)\dy^2asup\f\ + (λ/π)(λε)-2 JJ \f(ή-f(y)\dtdy

[ Ίi/2

(λε)~2 JJ \f(t)-f(y)\2dtdy\

Γ Ί 1 / 2

^2αsup|/|+μ/π) JJ \f(t)-f(y)\2\t-y\-2dtdy\

because λε ̂  \t - y\ in the domain of integration.
Remark that Mε(x) -* 0 as ε -> 0 uniformly for x in compact subsets of /, because

feH1/2(I). Now, as in the appendix

i {ysle{x)\ I /e(x) - /()0i ^ JS} I ^ (λε/«[2α sup I/1 + μ/π)Mε(x)].

Hence:

which is strictly positive if 2a sup |/1 + (λ/π)Mε(x) < β. This can clearly be achieved
for any β > 0 and all x in a compact subset of / by taking first a small (which
fixes λ) and then letting ε -> 0. This proves (a).

(b) The density of C°°(ί2) in V follows from the "weak equal strong" lemma of
Friedrichs. Let v = vx + iv2:Γ^><C, which is a C00 function on Γ with |v(x)| = 1.
An integration by parts yields for /, geHί(Ω):

where vf is the usual product of complex functions on Γ. Thus there is a constant
Cj such that:

|<flf,v/>Γ | ύ2\\g\\\\df\\+2\\dg\\\\f\\Sc1\\g\\HHΩ)\\f\\y.

There is a linear continuous application R:H1/2(Γ)-^H1(ί3) such that
(Rφ)\Γ=φ for all φeHί/2(Γ), so

for all φeH1/2(Γ). Replacing φ by vφ and taking into account that veC°°(.Γ) and
|v(x)| = 1, we get:

for allfeH1(Ω) and some finite constant C. This proves (b).
(c) By (a), I/ | will be bounded below by a strictly positive constant on a

neighbourhood of the boundary JΓ in ί2, hence it has only a finite number of zeros
in Ω. Clearly f'eL\Ω) and is holomorphic, so, by part (b), f'\Γ is a well defined
element of H"1 / 2(Γ). Also, since | / | ^ const. > 0 on Γ and /eH 1 / 2(Γ), we also
have f~1\ΓeHϊl2{Γ). We shall interpret the integral appearing in the left-hand
side of (4.13) using the anti-duality map < , >Γ:tf1/2(Γ) x i/"1 / 2(Γ)-^C:

^ 7 r = <Γ\df/dσ}n (4.14)
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where τ = τ1 + iτ2'Γ-+(E is a C00 function and d/dσ is the tangential derivative
on Γ (we have f ' τ = (d/dσ)f for holomorphic / ) . In order to prove (4.13), let
Γε = {zeί2|dist(z,Γ) = ε}. For ε small enough, (4.13) is true with Γ replaced by
Γε. If we make ε->0 in the left-hand side we get (4.13) by a simple continuity
argument. •

Let us now return to the boundary value problem, (4.12). Our first result
concerns the zeros of Φ.

Proposition 4.2. Let α, ΦeH1 satisfy (4.12) with | Φ| = l on Γ and G(Φ\Γ) =
n (n = 0,1,2,...). Then ΦeHfoc and either \ Φ{z)\ = 1 for all zeΩ or \ Φ(z)\ < 1 for
all ZEΩ. Moreover, Φ has only a finite number of zeros zι,...,zkinΩ and there are
integers n1,..., nk ̂  1 such that n1-\- — \ - n k = n, and a function Φo eH2

oc (Ω) n H1

with I Φ0(z)\ ^ const. > 0 on Ω, such that.
k

Φ{z)=Y\{z-zj)^Φ0{z). (4.15)

Proof. Let p(z) = (πz)" 1 be the fundamental solution of ̂ i n R 2 , i.e. d(p x /) = /
for / e L ^ R 2 ) with compact support (here and below x denotes the convolution
product). We shall use the following known properties: if /eI?(R 2 ) for some q > 2,
then p x / is continuous; and if feHι{lR2) then p x / e # 2

o c ( R 2 ) . Let (XQEH1^2)
have compart support and α o | β = α . We put bo = exp(ρ x α0). It is clear that
^oe#i2oC(R2)> 3b0 = aobo. Moreover b~' = e x p ( - p x α o)e// 2

C(R 2). We put b = b0\Ω

and define h:Ω^(C by the condition Φ = bh. It follows that h is a holomorphic
function in Ω of Sobolov class H1. Moreover \h\ = I b " 1 ! is a bounded function
on Γ such that \h\ ̂  const. > 0 (because b is continuous and non-zero). Hence
heU°(Ω) also. Using part (c) of Proposition 4.1 it follows that Φ has a finite
number of zeros, the same as those of h. By an argument similar to that from the
end of the proof of Proposition 4.1 (i.e. calculate the degree by replacing Γ by Γε)
one can easily prove that

since b is a pure exponential and is of class H2. In order to prove n = n1 + — \ - n k 9

we use Proposition 2.4 and formulas (4.13) and (4.14). Finally, Thecrem 3.2 may
be applied because BA = w = (l/2)(l-\Φ\2)eH\ so that (A,Φ) is a ^-regular
stationary configuration. •

In order to give a complete classification of the solutions of (4.12) we make
two more remarks. First, if φeH1/2(Γj) and | ^ | ̂  const. > 0, we define its winding
number by:

G(ψ) = (l/2πiKφ-\dφ/dσ}Γj. (4.16)

As in Theorem A.3 this is an integer. Secondly, let φeHι(Ω)nHfoc{Ω) be such
that 1̂ 1 ̂ const. > 0 and G(φ\Γj) = 0 for all 7 = 0, l,...,m. Then there is a

^ ^ such that φ = eθ. In fact, let Ωε= {zeί2|dist(z,Γ)>ε} with ε
m

very small. Then dΩε = Γε = \J ΓjjE and it is easily seen that G(φ \ Γj) = G(φ \ Γj) = 0.
j=o

Since φ is continuous on ί2ε, it is well-known that there is a continuous function
θ on Ωε (unique modulo an additive constant) such that φ = eθ on Ωε. Making
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ε -* 0 we extend θ to a continuous function on Ω such that the equality remains
true. It is easy to show that VΘ = φ~1Vφ. The right-hand side belongs to L2(Ω)
because φ~ι is bounded. So θeH1(Ω) and the fact that θeH2

0C(Ω) follows from
the same identity.

Let us assume that we are in the conditions of Proposition 4.2 and denote
G(Φ\Γi) = NieZ, ΐ = 0,l,...,m (see the end of Sect. 2). Then G(Φ\Γ) = n = N0 +
Nι + —\- Nm. Choose ζ1,..., ζm m points in the bounded domains limited by the
curves Γu..., Γm and define φ:Ω->C by

k m

Φ(z) =U(Z~ zjTJ Π (* ~ W ( 4 ( 4 1 ? )
7 = 1 i = l

Clearly φeH1 CΛH2

OC(Ω) and 0 < const. ^ \φ(z)\ ^ const. < oo. Moreover G(φ\Γ.) = 0
for all i = 0,1,.. ., m (use the equality with G(φ \ ΓUε) for small ε, see above and the
end of the proof of Proposition 4.1). Hence φ = eθ_with θeH1 r\Hfoc{Ω). Clearly
dφ = φ dθ and the first equation (4.12) implies α = dθ. The second equation (4.12)
becomes ΔReθ = -w = (1/2)(\Φ\2 - 1).

We define u = log | φ\2 = 2 Re 0 which is clearly in Z/1 n#, 2

O C and:

Then α e C 0 0 ^ ) and α(z) > 0 on Γ. Let φ = - lnα| Γ eC°°(Γ). Hence u is a solution
of the following boundary value problem:

[u\Γ=φ.

We shall prove later on the following general result:

Theorem 4.3. Let k^—1 be an integer. Assume three real functions aeHk(Ω),
vεHk(Ω), φeHk + 3/2(Γ) are given such that a^O and aeL1+ε(Ω)for some ε > 0 .
Then there is a unique real function ueHi(Ω) such that:

lu\Γ=φ.

Moreover, we have ueHk + 2(Ω). In particular, if a, veC^φ) and φeC™^), then

We can now describe all the configurations in <β\ on which sίx assumes its
absolute minimum πn.

Theorem 4.4. Let n^O an integer and No,Nl9...,NmeZ such that No + N1-\—
+ JVm = n. Let zί9...,zkeΩ and ζ( in the bounded domain limited by Γi9 i — 1,...,m.
Finally, letnί9...9nk^.lbe integers with nγ + + nk = n (if n = 0, the set {zί9..., zk}
is empty by definition). Let u be the unique solution of (4.18) with a and φ defined
as above. Then

Φ{z) =Y\{z- zjf" Π (z
j=1 i = 1 (4.20)

/4(Z) = (-1/2)*VM(Z)
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defines a configuration (A,Φ)e^°'"Nm such that <s/1(A,Φ) = πn. Moreover, any
configuration in q?"°'"Nrn on which stfγ assumes its absolute minimum πn is gauge
equivalent to one of those described above. In particular, any such configuration has
the property ΦeH2, |Φ|2eC°°(ί2) and BA€C*(Q) and is gauge-equivalent to a
configuration with CCO(Ω) components.

Remarks. The points ζt are not determined by the function Φ; they may be chosen
a priori and considered as fixed. This follows from the construction of φ in (4.17).
Solutions (4.20) with N1 = ••• = Nm = 0 are called of multi-vortex type. The other
ones are of mixed vortex-antivortex type in general (if some Nt are negative) and
do not appear in the case of simply connected regions. If n< 0, one must replace
in the preceding analysis "holomorphic" by "antiholomorphic" and z — zj9 z — Ct

by z-Zj,z-ζj.

Theorem 4.4 follows easily from Theorem 4.3 and the construction we have
done^ before. We only want to observethat θ is of Sobolev class H2. In fact,
a = dθeH1 and Re0 = w/2eC°%f2) so dlmθeH1; Imθ being real, this implies
imθeH2. Making a gauge-transformation A= — Imθ, we may suppose
θ = Re θ = M/2, which gives the unique solution (4.20).

We finish by giving the proof of Theorem 4.3. From now on we shall work
only with real functions, so we simplify the notation: HStP = Hs

τfaV IF = Lfeal, etc.
We shall use the following inequality (see [7] p. 155): there is a constant c depending
only on Ω such that for all UGH1(Ω),

(because we can extend u to an element UGHQ(Ω) for some fixed Ω open, bounded,
with ΩaΩ). Then taking ε = 2c~ί\\u\\~? we get for any p< oo:

2 2ε 4

In conclusion, we get:

with the same constant as before, all p < oo and all ueH1(Ω). In particular, the
application exρ:wι->eM sends H1 into f] IF. Moreover, for each p, exp:Hx^>Lp

p< oo

is continuous and even continuously Frechet derivable, its derivative at the point
ueH1 being the linear continuous application: H13v\-+euveLF. In order to prove
this we use the inequality \ex — 1 — x| ^ | x | 2 e | x | valid for all real x and denote by
the same letter c all the irrelevant constants. We get:

\\eu + v-eu- euv \\LP = || e\ev -\-v) \\LP

Since IF a H'1 if p > 1, it follows that exp considered as an application from Hι

to i ί " 1 is also continuously Frechet derivable.

Let us define T:Hι(Ω)^H"\Ω) by T(u)= -Δu + aeu. Since aelF for some
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p > l , it is easy to see that T is well defined, continuous and even continuously
Frechet derivable.

Let T0=T\H1

0(Ω)Aΐu,veH1

0:

(u-v, T0(u) - T0(v)> = || V(n -1;) | | 2 + J a(eu - ev)(u - v)dx
Ω

-v)\\2^c\\u-v\\2

Hl, (4.22)

where we have used the assumption a ^ 0, the fact that (ex — ey)(x — y) ^ 0 and the
boundedness of Ω. Here c> 0 is a constant. The above inequality and a well known
theorem of F. Browder (see [1] for example) implies that T0\H1

0(Ω)-^H~ι(Ω) is
a homeomorphism.

Remark. The result of Browder we use is a non-linear variant of the Lax-Milgram
lemma. More precisely, it says that if X is a real Hubert space, X* its dual and
F: X -• X* is continuous and has the property: <x — y9 F(x) — F(y) > ^ c \\ x — y || \ for
some constant c> 0 and all x, yeX, then ΐ7 is a homeomorphism of X onto X*. We
use this result only for a continuously Frechet derivable F and in this case the proof
is very easy. We give it for completeness. First, from c\\x—y\\χ^(x — y, F(x) — F(y)} ^
\\x-y\\x\\F{x)-F(y)\\x one gets | | F ( x ) - F O 0 l l ^ c | | x - j i * so F is injective,
with closed range F(X)=Y^X* and continuous inverse F 1:Y-*X (even
Lipschitz). We have to show that Y=X*. But it is clear that the derivative
F'(xo):X^>X* at any point x0 will have the property c | | ι? | | J^ {v,F'(xo)v}. Now
the linear variant of the Lax-Milgram lemma implies that F'(x0) is a linear
homeomorphism of X onto X*. The inverse mapping theorem assures us that F
has open image, so 7 = X*.

The preceding arguments show the existence and unicity of the solution in the
case φ = 0. In order to prove uniqueness in general, consider ul9u2eHί solutions
of (4.19) and denote u = u1- M2eHj, b = aeu\ Since aeLp for some p > 1 and eU2eLq

for all q<co, we have b^O and bell for some p>\. Clearly we have
-Δu + b(eu - 1) = 0. Let S:HJ -»H~1 be given by S(u) = -Δu + b(eu - 1). Exactly
as before we see that S is well defined (even continuously Frechet derivable) and
<w — v,S(u) — S(v)} ^ C | | M — v\\jjl9 hence 5 is injective. This implies w = 0, i.e. we
have uniqueness of the solution of (4.19). To prove the existence let u0eHk + 2 with
uo\Γ = φ and look for u of the form u = w + u0 with vveHj. The w must satisfy
-Δw + aeuoew = v + Δu0. Since k + 2 ^ 1, we have euoeLq for all q < oo, so aeuoelf
for some p > 1 and is positive. Also v + ΔuoeHk and fe ̂  — 1. Hence the existence
of a solution we/ί^ follows from the properties of T (in which a is replaced
by aeuo).

We have proved the existence and uniqueness of the solution ueH1 of the
system (4.19). We must prove now that ueHk + 2. Of course, we can assume k ^ 0.
First we make a reduction to the case φ = 0 introducing a function w0 as before.
Then v + ΔuoeHk is trivial and aeuoeHk is proved by induction on k (if fe = 0, then
uoeC°(/2), hence the assertion is trivial; if k = 1: V(aett0) = Vα e"0 + aVuo-euoeH°,
so ae^eH1, etc...). So, we may consider φ = 0 and /c ̂  0. weHj has the property
4M = aeu — v and α, i ei/*. Then aeueLP for all p < 2. Theorem 8.16 of [7] implies
ueU°. But then aeu —yel}, so wei/2 due to //s-regularity for the Dirichlet problem.
In particular ueC°(Ω). If k ^ 1, then V(αew) = Va-eu + aVueTeL2 because a and Vw
are of class if1, hence are in LP for all p < oo. So aetieH1 which implies ΔueH1.
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Since ueH^ we get ueH3. If k ̂  2 we shall use two facts: 1) Hk is an algebra for
the usual multiplication of functions; 2) if ueHk + 1 then eueHk. The first is
well-known and easily proved by induction. The second is a consequence of the
first because it is enough to show Ve" = VweueHk~ι which is clear by induction.
In conclusion, if ueHk + 1 and aeHk, then aeueHk. The proof of Theorem 4.4 is
finished by a new induction procedure. •

Appendix

As mentioned in the introduction the result of this appendix is due to L. Boutet
de Monvel, and for one crucial point, to O. Gabber. It was exposed orally in a
lecture by L. Boutet de Monvel in the Franco-Israelian Congress on P.D.E.'s in
Jerusalem, April 1984. We thank them for providing us with this material.

A.I. Let S1 denote the unit circle in the complex plane (C. With its geodesic measure
S1 is also identified with R/2πZ. We will say that a measurable function / from
S1 to RΠ belongs to VMO, the space of functions with vanishing mean oscillation,
if the following condition holds:

For any interval / cz S1 we denote |/| the length of /, and fj = — J / the mean
of / over /; then /eVMO if | 7 ' '

^ ^ 0 if I/HO. (Al)NI(f) ^Γ
M l /

(The integral is taken with respect to the Lebesgue measure of S1, for which the
total length is 2π.)

We will set

w(ε)=supiV/(/), thus limw(ε) = 0 if /eVMO. (A2)

If / is a locally integrable function we set

F(x9ε)=fε(x) = -]f(x + t)dt. (A3)
So

Let us notice that for any interval / and any number c>0, the set IccI of

points yel such that | f(y) - fι \ > c is of length | Ic \ g -Nj(f) \ 11, since

\I\Nj(f) ^ J 1/ -fj\ ^ c\Ic\. From this we get C

/c

Proposition A.l. ///eVMO the distance offε{x) to the range off is ^ w(ε),/or any
xeS1 and ε>0.

Indeed we have fε(x) = fj with / = [x,x + ε], and if c>ε the set of yel such

that \f(y) — //| ^ c is of length ^ ε( 1 I > 0, hence non-empty.
\ c J

If we now suppose that / takes its values in a smooth submanifold M c= R",
e.g. the circle S1 a C, it follows from Proposition A.I that for small ε, F(x, ε) takes its



Boundary Value Problem Related to the Ginzburg-Landau Model 21

values in a small fixed tubular neighbourhood of M (which is of course homotopic
to M). Hence fε defines a constant (independent of ε) homotopy class of M, and
we can take this as a definition of the homotopy class [/ jeπ^M), although /
may be discontinuous (F is of course continuous if ε > 0).

A.2. From now on we specialize to the case where / belongs to the Sobolev space
H1/2, which is the useful case for us.

Proposition A.2. We have H1'2 c VMO.

Proof. lϊfeH112 we have

(A4)

(A4)bis

1/2

Equivalently

A

ίί
S ' x R

f(χ)
X

-fiy)

-y

e)-f(
ε

2

dxdy <

x) 2

dxdε

00.

< 00

(where we have, in the notation identified S1 and R/2πZ).
Now for any interval I aS1 we have, by Schwarz' inequality

\{f{χ)-f{y))dy ί
hence also

1/2

^ \^ViW \ fix) ~

ίί
|

f{χ)-fiy)

x-y

l/2

> \l/2

The last inequality holds because |x — y\ < \I\ iϊx,yel. Since integral (A.4) is finite,
the last integral tends to 0 if |/ | ->0, so / satisfies (A.I). •

We will now prove the following theorem:

Theorem A.3. Let f be a function of Sobolev class H112 from the circle S1 to itself
Then there exists an integer n and a real function geH1/2 on S1, unique up to an
integral multiple of 2π, such that f' — zn exp ig. The winding number n is given by

1 f f-ldfA
n = — / L — dx.

2πil dx

(The integral is defined in the distribution sense since f~x =feH1/2 and

dx
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It also follows that smooth functions from S1 to itself are dense in H1/2 such
functions, for the H1/2 topology (one may approximate g by smooth real functions).

4 x + ε

Proof Let us first notice that the function F(x,ε) = - J f(t)dt introduced above
ε x

dF 1
belongs to the Sobolev space if1. Indeed we have — = -(f(χ + ε) — /(*)), and this

dx ε
belongs to L2 by (A4)bis. On the other hand we have

dF

fa"
dF

"dε'

1

ε2b

dF,

Hence

since

dF dF

dx dε L2 0

dF

dx X'S

d_F_

~dx
(x,sε) ds = -\

3 \
\\

3 \\dx L2

L2

dF

~dx L2

This being so let us set

ιdfdx = ̂ l f 'ψdx (for small ε).
dx 2 dx

The function F is continuous, does not vanish for small ε (|F| ^ 1 — w(ε)), and its

winding number is n. It follows that the logarithm G = -Logz~nF is well defined
i

(up to an integral multiple of 2π), and continuous. In fact we have GEH1 since
dG = F~ιdF has L2 coefficients (for small ε). Letting ε-^Owe get

f = zn exp ig

with g the boundary value of G. We have geH1/2 since GEH1, and g is real (a.e.)
since | / | = 1.

We finally prove the uniqueness statement in the theorem. It is enough to
prove that if geH112 and expig — 1, then g is constant. If this were not so, since
the values of g are of the form k2π with ksZ, there would exist an integer m such
that both sets A = {g^2πm} and B = {g^.m+1} have no zero measure. Let

1

{ g } { g }

h = inf ί ( ml ,11; then heH112 and h only takes the values 0 (on A) and
\\2π /+ /

(on B). It follows from the Lebesgue density theorem that there exist arbitrarily
small intervals / such that h1 is close to 0, or to 1. Since hι depends continuously
on /, there also exist arbitrarily small intervals / such that hj = 1/2. Since heVMO
(Proposition A2), this contradicts Proposition Al. This ends the proof.
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