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Abstract. We show that the ̂ -matrix which intertwines two n-by-N" 1 state cyclic
L-operators related with a generalization of Uq(sl(n)) algebra can be considered as
a Boltzmann weight of four-spin box for a lattice model with two-spin interaction
just as the K-matrix of the checkerboard chiral Potts model. The rapidity variables
lie on the algebraic curve of the genus g = N2(n~ί\(n-l)N — n)+l defined by
2n — 3 independent moduli. This curve is a natural generalization of the curve
which appeared in the chiral Potts model. Factorization properties of the L-opera-
tor and its connection to the SOS models are also discussed.

0. Introduction

As it is observed in [1] the chiral Potts model [2-4] can be considered as a part of
some new algebraic structure related to the six vertex ^-matrix. In particular, the
high genus algebraic relations among the Boltzmann weights of the chiral Potts
model arise as a condition of the existence of an intertwining operator for two
different representations of some quadratic Hopf algebra [5-7] which generalizes
the Uq(sl(2)) algebra.

It is natural to make an attempt to find new solvable lattice models whose
Boltzmann weights obey high genus algebraic relations generalizing the results of
[1] for the case of other ^-matrices.

This program for the case of the three state ^-matrix of [8] which is related to
the Uq(sl(3)) algebra at q2N = l has been partially realized in [9, 10].

In the present paper we extend the result of [9, 10]. We construct an
n-by-N(n ~ υ state cyclic L-operator related with an n-state ̂ -matrix of [8] and find
explicitly the corresponding N(n~ υ-state Λ-matrix. This result is described below.

Consider an oriented square lattice 5f and its medial lattice $£' (shown in Fig. 1
by solid and dashed lines, respectively). The oriented vertical (horizontal) lines of
££' carry rapidity variables p,p' (q,qf) in alternating order (note that the
orientations of rapidity lines shown by open arrows alternate, too). The edges of
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Fig. 1

the lattice Jέf are oriented in such a way that all the NW— SE edges have the same
(NW—SE) direction while the NE — SW edges are oriented in a checkerboard
order.

Each rapidity variable p is represented by n 2-vectors (h+(p\ h~(p)\ α = 1,..., n,
n ̂  2 which specify a point of the algebraic curve defined by the relations

(0.1)

where Kαjg are 2 x 2 complex matrices of moduli with the unit determinant
satisfying the relations

Ka^KΛβKβyKyoι = l. (0.2)

There are 2n — 3 independent moduli, since the variables h^(p) entering (0.1) are
defined up to a gauge transformation

T-N

where C7α = diag(wα,w~1) which does not affect the Boltzmann weights [see
Eq. (0.5), below]. This curve is a natural generalization of the curve which
appeared in the chiral Potts model [4]. Using the Riemann-Hurwitz formula one
can calculate the genus g of the curve (0.1) in a generic case:

On each site of the lattice <£ place (n — 1) Z^-spins which are described by a
local variable

with the identification:

k~m o k

(0.3 a)

(0.3b)

Then there are only two kinds of neighbouring local state pairs depending on the
relative orientation of the dashedand solid lines as indicated in Fig. 2, with states /
and m, and Boltzmann weights Wpq(l, m) and (Wqp(l, m))~ 1 on the edges of <£. The
arrow from / to m indicates that the argument is (/, m) rather than (m, /)•

It is convenient to denote by Zn (ZN) the set of integer residues modulo n (N).
Besides, the set of local variables with identification (0.3 b) will be denoted as AZn

N.
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To write down WM(l,m) introduce the function gpq(l,m), l,meAZ^, which
satisfies the relations

(0.4a)

(0.4b)

(0.5)

the symbol ^α means a unit vector in the αth direction, i.e., all its components vanish
except the value 1 in the αth_place; ω = exp(2τπ/ΛΓ); mΛtβ = mΛ—mβ.

The Boltzmann weight W^(/, m) has the form

gpq(k, m) = gpq(k, l)gpq(l, m), V/c, /, m e AZ"N,

gpq(m,m) = ί , VmeAZ"N.

Then it is unambiguously defined by the following relations:

, fc -i
gpq(m,m+dχ)

where

One can show that

where

β(/,m)=

,. _ f l , k = m (modN);
k'm= (0, otherwise,

(0.6)

(0.7)

(0.8)

(0.9)

P), t(P)= Π ^α(p). (O.H)
αeZn

The above-mentioned Λ-matrix which intertwines two L-operators is just the
Boltzmann weight of an elementary box of the lattice $£ shown in Fig. 3:

(0.12)
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Fig. 3

It is (ZN x )" ^invariant in the sense that

= <MS(ί,β';p,p')|m,s>, αeZ,; (0.13)

which makes our lattice model (ZN x )"" Asymmetric. This β-matrix satisfies the
following inversion relation:

where /12 is the identity matrix. Besides, jR-matrix (0.12) should satisfy the Yang-
Baxter equation

ίΛP'; r,r')S23te<7'; r,r')

r,r')S13(p,p'; r,r')S12(p,p'; q,q'). (0.15)

We verified this equation numerically at n = 3, N = 2. Up to the moment we have
not yet proved this equation analytically and claim it as a conjecture.

We notice that a particular form of the .R-matrix just described has been
obtained in [10] for the case n = 3. We also remark that in the trigonometric limit
KΛβ -> 1 (identity matrix) the K-matrix (0. 1 2) at n = 3 and N = 2is equivalent to that
found in [11]. In the same limit we expect the 9-state ^-matrix found in [12] to be
equivalent to the K-matrix (0.12) at n = N = 3.

1. The L-Operator

In this section we construct the particular cyclic (i.e. with no highest weight vector)
L-operator related with the n-state β-matrix of [8].

Let L(x) be an operator in C"®CM, satisfying the following Yang-Baxter
equation (YBE) represented in Figs. 4 and 5:

= Σ (1.1)

where Lα/?> kl(x\ α, β = 1 , . . . , n, k, I = 1 , . . . , M, denote the matrix elements of L(x) and
Raβfγd(x) is defined explicitly as [8]:

βyσΛβ9 (1.2)

where δaβ is the Kroneker symbol, ρΛβ are nonzero complex parameters such that

Qm = QΛβQβΛ = ί , Vα,£=l,. . . ,n (1.3)
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Fig. 4

Fig. 5

and
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0,

- 1 , a>β.

(1.4)

Here x is a variable, while q, ρaβ are considered as constants.
Note, that the ^-matrix has the following explicit dependence on the

variable x:
R(x) = xR++x~1R- , (1.5)

where R+ and R~ are independent of x. If one searches for an L-operator of a
similar form

L(x) = xL++x" 1L", (1.6)

where L+ (L~) is independent of x, then using (1.2)-(1.6) one can reduce Eq. (1.1) to
the following relations:

= 1 L2 = L2 L^ JR12 , (1.7)

where we use the standard matrix notations. Hereafter, we assume that L+ (L~) has
an upper (lower) triangular form as a matrix in Cn. Relations (1.7) can be written
explicitly as

T T T T / / 7 ~ l W Γ ~ ^ 7 " ~ ~ Γ ~^ Γ ~ ̂  ^ 1 8 rΛ

T T τ=n~ε<χβvn T T w^>'J (\ 8H^

LΛβLβyQΛβ — LβyLΛβQβy= —εΛβy(q — q~*)l?jffyLΛy9 n>2, (l 8f)

r T n T T n =(nε<x^Ύ nε°ί^Ύ\J T n~>^ (Ί Rά\

where a,β,γ,δ in (1.8d)-(1.8g) do not coincide and εaβy is the antisymmetric in
α, β, y symbol such that

, = 1, if α (1.9)
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and

L"^' l>'β (UO)
(Λα0 > α > P .

These relations can be considered as a definition of some quadratic Hopf algebra

[5-7] with co-multiplication ΔL^β=^L^y®L^β, which generalizes the Uq(sl(ή))

algebra [7].
In this paper we restrict ourselves to a special irreducible cyclic representation

of this algebra which gives a factorizable (in the sense that will be explained in the
next section) L-operator. Such a representation exists provided that

(l.lla)

Q^tf 'at -*', (1.1 lb)

with ΛΓ^2, sα being some arbitrary integers and

1, *>β;

0, oc = β; (1.12)

-1, <z<β.

To write down the corresponding formulae for our L-operator, let us define the
operators Xv ZΛβ, α,/ϊ = l, ...,rc by the following relations:

XN

Λ=Z»β = \. (1.13d)

Then we have

where the indices α, /? run over 1 , . . ., n modulo n in the sense that zero is identified
with n (so that, e.g., ε0> ί = eB> j = + 1),

Y α = Y n Π ^, α = l,...,n-l, 7n= ft ̂  (1-15)
^ = α+l jβ=l

and ζ,v*9tΛ are non-zero complex parameters.
The operators Xα, Zα/? satisfying (1.13) can be realized in CM with M = N(n ~ υ as

follows:

>> = $.„_,., α-l,...,n, (l.lβa)

-ω^-^,WJ α, /? = !,. ..,n. (l.lδb)

Here we use Dirac's notations for bra- and ket-vectors with n component indices
(m = (ml5 . . ., wπ), mα = 0, . . ., N — 1 (modΛ/)) identifying their values by the following
rule:

fc~m o ka-mΛ = kβ-mβ, (modN) Vα,/? = l,...,n'. (1.17)
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The symbol δa means the unit vector in the αth direction, i.e., all its components
vanish except the value 1 in the αth place and

1, l=m (modJV);

0, otherwise.

We will find it convenient to use the following notation:

l,...,n. (1.19)

2. Factorization of L-Operator and Cyclic SOS Model

In this section we consider factorization properties of the L-operator (1.14) and
discuss its connection with a particular case of the cyclic sl(n) SOS model of [13].

The L-operator (1.14) factorizes in the following sense. Let Eaβ, α, β = 1,..., n be
a basis of n-by-n matrices with the elements

(EΛβ)yδ = δayδβδ, α, β, 7, δ = 1,..., n. (2.1)

With the aid of Eaβs the L-operator can be written in a matrix form:

L(X) = Σ (X^aβ"^X~1^'ΛβWΛβ (2-2)
Λ,β=ί

Substituting (1.14) in (2.2) and collecting the coefficients of YΛ we rewrite (2.2) as

L(x)= £ L«(x)yβ, (2.3)

where
n

£(«)/-£)_ y (ξ/χ)ε~β"t~'Lt V + Z E
β=l * a βa βcc

n

_l_ y (x/ξ)ε«+l βt~1t v~Z E , (2.4)
0 = 1 α+1 α /*'α + 1 '

where

Note that the matrices EΛβ can be written in a product form:

E =E E* (2.6)

with Ea being an n-component vector with elements

r> /? — 1 n (21}°Λβ> p — ±9...9n V"i)

which is thought to be a column n x 1 matrix and E^ is the corresponding row 1 x n
matrix.

Now by using of (2.6) formula (2.4) takes the following factorized form:

"αία+Λ~Z«,α+l£α+l} (2.8)
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Formula (2.8) means that

rankL(α)(x) = 1, (2.9)

where L(α)(x) is considered as an n x n matrix.
Motivated by this observation we will define below new objects having a

natural graphical representation.
By Zπ (ZN) we will denote the set of integer residues modulo n (N). For Zn we

also fix the order of the elements: 1<2< ... <(n — l)<n = Q. Besides, the set of
integer n-component vectors with identification (1.17), introduced in Sect. 1, will
be denoted as AZn

N.
Define the vectors eΛ e AZn

N, α e Zn by

y»Hm-O, (2 10)
where the operators ΎΆ are defined by (1.15). Consider the following "three spin
interaction" weights (/,weAZ#, α,βeZn):

ιn«rΨl aK
'

rv0,

Ί ίf Wl —
β,*-ι)> " m-

,ιotherwise,

where ω is defined in (1.11 a); A = {ft*}, αeZπ, and x are non-zero complex
parameters; vα, α e Zn are some linear forms on index vectors which will be defined
in Sect. 3.

Now, introduce "inverse" weights t/^α(x, h) defined by any of two relations

Σ ΨΪJίx>
eAZft

Σ ψUx,

(2.12a)

(2.12b)

each of them is a consequence of the other (see Figs. 6 and 7 for graphical
representation of these relations). Such inverse weights exist provided

A(x,h) =
<xeZn αeZn

(2.13)

Fig. 6

-τ-m / 7 \

=Ψι,a(x,h}
—a

Fig. 7
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Fig. 8

Explicitly, we have

m
.<>.

I
, h]

A(x,h) Π I
γ = β+l

β-1

Π (

0, otherwise,
(2.14)

where the products are taken in Zn.
Consider the following expression (Fig. 8):

where h denotes another independent set of the parameters h*.
Now we will show that the Λ's and /Γ's can be chosen in such a way that

LΛβ(x) = A(x9 h)J?Λβ(x, h, h). (2.16)

Taking matrix elements of (2.3) and using (2.8) and (2.15) we rewrite (2.16) as

rβ(x, /)" Wα' β(ξ/x)ε"βt~ l = A(x, K)ψ\*Λ

eβ(x, h), (2.17b)

where rβ(xj\ βeZn, leAZn

N are some nonzero parameters which cancel in the
L-operator. Comparing (2.17) with (2.11) and (2.14) and picking out terms with δβa

and δβta-1 in (2.17a) we obtain

« /v Γv / , Xv£»^ι (\-\ /Ό I Q α ^
β\ ' / ^̂  β\ / ' \ )

(2.18b)
fthβ9 (2.18c)

(2.18d)

'), αφjS, (2.18e)

rβ(x)(ξ/x)2δnβtβ + 1vβ=-;

x

ξtarx(x)

«-l

= π (**

= π

π
where rβ(x), βeZndo not depend on

Excluding ta from (2.18e) and (2.18d) we have

Now multiplying (2.19) by itself with (α <->/?) we have

ξ2= γ\ (K-ffi).

Solution of (2.19) with respect to rΛ(x) has the form

(2.19)

(2.20)

(2.21)
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i ».P

Fig. 9
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where c is some constant parameter which is not fixed by Eq. (2.18). For
convenience let us choose

αeZn

Then from (2.18d) we calculate

ί«= Π (V/V).

and from (2.18b) and (2.18c)

(2.22)

(2.23)

(2.24)

Thus we have proved equality (2.16). Since the L-operator (2.2) satisfies the YBE
(1.1) then due to (2.16) we can conclude that ^f(x,K,h) satisfies the same YBE,

(x, K, h)Rl2(x/y) . (2.25)

Multiplying this equation from the left by a vector (φ^(x,E)®\pl

k(y,H))'eCn®Cn,
k,l,meAZΪ,, we obtain (see Fig. 9 for graphical representation)

(ψT(x,h)®ψ'k(y,h))'R12(x/y)

= Σ (2.26)

where

Wsos(k,l,m,p\x/y)

, /Γ) . (2.27)

[Since the left-hand side of (2.26) is independent of h, WSOS(19 m,n,k\ x) does not
depend on Λ.]. Similarly, one can prove that (Fig. 10)

ΐ(y, E)

= Σ (2.28)
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Fig. 10

Thus we have proved the first part of the following general statement:

Lemma. // the L-operator, satisfying the YBE (2.25), can be decomposed in the form
(2.15) with the three-spin weights \p,\p satisfying (2.12), then there exist the weights
Wsos satisfying (2.26), (2.28). Conversely, if there exist an R-matrix9 Wsos weights
and vectors ψ satisfying Eqs. (2.26), (2.13) then the L-operator of the form (2.15)
satisfies the YBE (2.25).

The proof of the converse statement is similar. Explicit calculation gives the
following formulae for the nonzero elements of Wsos:

γ\—γn γ-ln~l /9 9Q rΛX) — Xq — X q , \L.Δya)

(2.29b)

Note that Wsos weights (2.29) correspond to a particular trigonometric case of the
cyclic SOS model of [13] related with elliptic n-state jR-matrix [14]. We can handle
the elliptic case as well. In fact, applying our lemma to Eqs. (3.4) and (3.6) of [13] we
obtain a cyclic L-operator related with the above elliptic ̂ -matrix. These subjects
will be discussed in a separate paper.

3. Construction of the Generalized Chiral Potts Model

In this section we calculate Boltzmann weights of the generalized chiral Potts
model with the help of some linear equation (which, in fact, is a variant of the YBE)
and determine the algebraic curve which constrains the rapidity variables.

First, we define one more set of "three spin interaction" weights (/, m e AZn

N,

otherwise,

where the transformed set σ(h) is given by

σ(h)*=h*9 αeZπ

(3.1 a)

(3.2)

There is a graphical representation for these weights shown in Fig. 11. One can
introduce also corresponding "inverse" weights φ™α(x, h) by any of two relations
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Fig. 11
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Fig. 14 'k / h a

(see Fig. 12):

Σ Φlk,*(x>h)φl

m9(X(x,h) = δk,m (3.3b)

just as in Sect. 2. Explicit formula for φ™β(x,h] has the form:

/=~m~^ ; (3.1b)
otherwise,

Using these objects the other factorized L-operator can be constructed (Fig. 13)

which satisfies the YBE (2.25), where the R(x) is defined by (1.2) with ρΛβ replaced by
ρβa. Obviously, there are counterparts of Eqs. (2.26H2.28) with the corresponding
Wsos weights.

Now let us consider the following linear equation on the set of unknowns
fi^H(/,w), l,meAZ"N, which was invented by Korepin and Tarasov [15] (see also
[16]) for the case of the chiral Potts model (Fig. 14):

Wht1f!9s)
αeZM

αeZn

(3.5a)
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Fig. 15 fr
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Equation (3.5 a) can be written in other forms by using inversion relations (2.12)
and (3.3). Indeed, multiplying (3.5 a) from the left by φl

kίβ(x,h), from the right by
Ψm,y(x>h) and summing over k and s we obtain (Fig. 15),

nkeAZN

(3.5b)

On the other hand, multiplying (3.5a) from the left by ψl

ktf(x, /z), from the right by
Φm,γ(x? h) and summing over / and m we obtain one more form of (3.5a) (Fig. 16):

(3.5c)= Σ Wh,-h(k,m)ψ°m,β(x,lήpm,y(x,h).

It is useful to introduce the graphical representation for (W^h(l, m)) 1 (p->Λ5 q ->Λ)
as in Fig. 2b. Then the same Eq. (3. 5 a) with h <-> h can be represented as in Fig. 17.

Substitution of (2.11), (2.14), and (3.1) into (3.5a) at / = fc + eα, s = m + eβ gives
explicitly

) α α + ι ? ^ = β^

_

Wh-h(k,m)

α, β-<eoc-eβ,vβy

In (3.6b) we have used (3.6a) to move eβ from the second argument of Whjl(k, m) to
the first one.
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To obtain the consistency condition between (3.6a) and (3.6b) let us divide
(3.6b) by itself with replacements k^>k + ey, m-+m + ey:

Λ- eβ, m) Wh-h(k + erm + ey)

Wh-h(k + eΛ-

In the left-hand side of (3.7) we can use (3.6 a) twice and obtain

(jj-2(\γ,e<x-eβy-(e<x-eβ)γ>γ+ι _ ̂ - 2<vα- vβ,eγy -2(eγ)<x, β (38)

Thus we have the following equations on linear forms vα:

<eΓvΛ-Vβy-<ea-eβ,vyy = ̂ (ea-eβ)yfy + ί-(ey)aίβ. (3.9)

Solution of (3.9) is

<vβ,eβy = μaβ-±(eΛ + ep)Λtβ9 (3.10)

where {μaβ} is an arbitrary set of numbers, symmetric in α,/?:

μβ/? = %α P 11)

We choose

μΛβ = i(δaβ-ί). (3.12)

The condition for Wh^(l m) to be a finite dimensional Nn~ 1 x Nn~ 1 matrix has the
form

(3 13)

and imply the following equations

(3.14)

If we require that this condition should be satisfied at least for two different sets of
values of Λ's while keeping /Ps fixed then it is not difficult to see that the manifold
defined by (3.14) contains a direct product of two identical algebraic curves
specified by the following equations:

where the argument p of /ί's denotes a point of the curve and Kaβ are 2 x 2 complex
matrices of moduli with the unit determinant. Equations (3.15) with ft's replaced by
/Γ's specify the other point q of this curve. The matrices KΛβ satisfy the consistency
relations (no summation)

Km = KaβKβyKyaι = l, Vα,/?,yeZπ . (3.16)

There are In — 3 independent moduli, since a gauge transformation of the form

//Zα

+(p)\ „ N
U\h-(p))' K«-*V.Wβ ' (3-1?)

with matrices l/α = diag(wα,w~1) does not affect the W's. This curve is a natural
generalization of the curve which appeared in the chiral Potts model [4]. Using
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the Riemann-Hurwitz formula one can calculate the genus g of curve (3.15) in a
generic case:

(3.18)

which at n = 2 yields the genus of the curve which appeared in the chiral Potts
model [4]. Hereafter we will write symbols p,q,... instead of /z,^, ....

Now substituting (3.10) and (3.11) into (3.6) we obtain

where gpq(l,m) is uniquely defined by:

gpq(k, k) = gpq(k, l)gpq(l, m)gpq(m, k) = 1 , (3.20a)

,. . , v h:(p)h-(q)-h-(p)h:(q)af"'^
g^k+e'-e*-hϊWfto-hϊWt(4tf+*.>» (3'20b)

and Q(l,m) satisfies the relations:

Λ- eβ, m) - Q(l, m) =mΛtβ, (3.21 a)

(l,m)=(l-m)β+i!X+ί + mβ!t + l-δxβ. (3.21 b)

Explicit solution of (3.21) has the form

β(/,m)=Σmα_1>α(/α-mα). (3.22)
α

Now, applying consequently Eq. (3.5a) (Fig. 14), Eq. (3.5b) (Fig. 15), Eq. (3.5c)
(Fig. 16), and again Eq. (3.5 a) (Fig. 17) one can show that an J^-matrix of the form
(see Fig. 3)

>0 (3.23), ,
"β'jΛΛ> l)

intertwines two L-operators (2.15) with rapidity parameters (q,qr) and (p,p') (see
Fig. 18):

Σ J§%(x, q, q')®<?βy(x, p, p')S(q, q'; p, p')

= Σ %> ί'; P, P')^βy(x, q, q')®^xβ(x, P, P') , (3.24)
β

where

&ώx> & «') = &ώx, h(q), h(q')) (3.25)

and &Λβ(x,h(q\h(q')} is defined in (2.15) with h = h(q) and h = h(q').

\ 5 ̂  4
/

\i/ \ /
\ __ N x

^ \ — x

\ \ x

\s N^ ^ /t\ /|\

\ ^ q' ^,
Fig. 18
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